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Abstract. Location (or equivalently, “venue”) is a crucial facet of user
generated images in social media (aka. social images) to describe the
events of people’s daily lives. While many existing works focus on
predicting the venue category based on image content, we tackle the
grand challenge of predicting the specific venue of a social image.
Simply using the visual content of a social image is insufficient for this
purpose due its high diversity. In this work, we leverage users’ check-in
histories in location-based social networks (LBSNs), which contain rich
temporal movement patterns, to complement the limitations of using
visual signals alone. In particular, we explore the transition patterns on
successive check-ins and periodical patterns on venue categories from
users’ check-in behaviors in Foursquare. For example, users tend to
check-in to cinemas nearby after having meals at a restaurant (transition
patterns), and frequently check-in to churches on every Sunday morning
(periodical patterns). To incorporate such rich temporal patterns into
the venue prediction process, we propose a generic embedding model
that fuses the visual signal from image content and various temporal
signal from LBSN check-in histories. We conduct extensive experiments
on Instagram social images, demonstrating that by properly leveraging
the temporal patterns latent in Foursquare check-ins, we can significantly
boost the accuracy of venue prediction.
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1 Introduction

The unprecedented growth of smart mobile devices allows people to easily take
pictures of their life events and post them on online social networks. As a result,
the current social Web is experiencing a tremendous volume of user generated

? This research is part of NExT++ project, supported by the National Research
Foundation, Prime Ministers Office, Singapore under its IRC@Singapore Funding
Initiative.
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Fig. 1. Examples of social images with venue tags to show the challenge of venue
prediction based on visual content only.

images, which we term as social images [6]. According to a recent study by
Chen et al. [7], over 45% of tweets are associated with images in Weibo — the
largest micro-blog service in China. To facilitate understanding and use of such
social images, it is crucial to address the fundamental problem of “where did it
happen”.

Several existing works have explored the prediction of venue category for
social images [22] and micro-videos [21], such as to predict whether a photo is
taken at a restaurant or a theme park. In this work, we move one step further,
to predict the specific venue1 of a social image, which permits us to infer a
user’s footprint more accurately so as to provide better location-based services.
Specifically, we aim to predict the exact venue where the user was taking the
photo, such as the Los Tacos No. 1 restaurant or Universal Studios Singapore,
rather than the general categories of restaurant or theme park. Nevertheless,
existing approaches rely solely on images’ visual contents [21, 22] for venue
category prediction, which is far from being sufficient to predict the specific
venue accurately due to the high diversity of social images. Figure 1 gives an
illustrative example. The first row shows that simply relying on visual content
of the image itself, it is difficult to distinguish whether the image is taken in the
Universal Studio of Singapore, Osaka or Hollywood. The second row shows that
images taken at the same venue can be very different visually.

To alleviate the difficulty, an intuitive idea is to utilize a user’s historical
locations to restrict the venue prediction candidates and discover possible
movement patterns. As an example, the visual content may show that the image
was taken in a McDonald’s restaurant, while the recent movement history of
the user can help to identify which specific store of McDonald’s. However, the

1 In this work, we use point-of-interest (POI), venue, and location interchangeably,
which all refer to a specific venue.
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Fig. 2. Overview of our proposed framework. Given a social image and the user’s
check-in history, our framework predicts the specific venue of the image by inferring a
probabilistic distribution. (a) We train a deep convolutional neural network to learn
venue information (both category and specific venue) from visual content. (b) We mine
various signals from the check-in histories of a LBSN to complement the visual signals.

high sparsity of venue-tagging activities of social network sites (e.g., Twitter
and Instagram) makes it challenging to implement the idea based on the data
from one site only. Fortunately, the emerging of location-based social networks
(LBSNs) provides an excellent alternative source of data to tackle the problem.
For example, users mainly use Foursquare2 to check-in to POIs, leaving us with
valuable spatial-temporal trails of users’ historical movements. In this work, we
explore the possibilities of mining check-in histories of LBSNs to address the
problem of predicting the exact venues of images in a social media site with
sparse check-in histories.

Using Foursquare as a check-in–rich LBSN for our case study, we first
conducted comprehensive statistical analysis to understand users’ movement
behaviors. Our analysis reveals some promising patterns that support our
premise of using LBSN check-in histories for venue prediction. For example,
we found that people typically move within a bounded region and seldom
travel long distances within a short time; and moreover, successive check-ins
usually exhibit certain correlations and strong periodical patterns. Guided by
these phenomenon, we developed an end-to-end probabilistic solution for social
image venue prediction (Section 3). Figure 2 shows an overview of our proposed
framework. Specifically, our solution unifies the inference of venue category and
specific venue, and both components carefully fuse the visual signal from image
content and various temporal signal from LBSN check-in histories. We evaluate
our solution on social images of Instagram (Section 4). Extensive experiments
demonstrate that by exploiting the rich temporal patterns in Foursquare check-

2 https://foursquare.com
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ins, we can significantly enhance the venue prediction accuracy by 5.7% on
average.

2 Related work

Image venue prediction, also called image geotagging, aims to identify the venue,
landmark or location that an image refers to from a set of candidates [18, 19,
1]. Most methods extract a rich set of visual features from images and leverage
the visual features to train either shallow or deep models to estimate the venues
of the given images. As reported in [12], the landmark identification [3] and
scene classification [2] of images are the key factors to recognize the locations.
In addition to visual content, Crandall et al. [9] combine both visual and textual
information to map photos on Flickr into different venue categories based on
landmarks. These approaches are based on the observation that there exists
strong correlation between the content of images with certain venue categories.
However, most of these methods ignore the high diversity of the content of social
images. For example, visually similar images can be taken at different venues,
while images taken at the same places can have different visual appearance.
In such cases, utilizing only the content of images is far from being sufficient
to predict the specific venue accurately. Our work differs from these studies
by utilizing a user’s historical movement behaviors on LBSN to discover users’
possible movement patterns and adjust the prediction accordingly.

3 Proposed Method

In this section, we begin by formulating the venue prediction problem, followed
by elaborating the design of solution components one by one. In terms of
techniques, we wish to develop models that are expressive enough to capture
the various relevant signals and temporal dynamics, while at the same time can
generalize well with a controllable number of parameters. To achieve these design
goals, we resort to embedding-based models, which encode various features and
patterns in the latent space.

3.1 Problem Formulation

Let Su = {s1u, s2u, · · · , snu
u } be the historical check-in sequence for user u, where

nu denotes the number of u’s historical check-ins; if a user has check-in behaviors
on multiple social networks, we can merge them together to form Su. Each check-
in entry snu is represented as snu = (lnu , i

n
u, t

n
u), meaning the location, image, and

t ime of the check-in. Note that inu is an optional field for snu, as not all check-ins
are associated with images. Each location lnu corresponds to a venue category
cnu. Given a set of images with venue categories, we train a ResNet to predict
the venue category of the image. In this work, we aim to solve the problem
of predicting the specific venue lnu+1

u of the next check-in snu+1
u , given its

check-in image inu+1
u , timestamp tnu+1

u , and the user’s check-in history. From a
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probabilistic point of view, the task can be addressed by inferring the probability
that user u would visit lnu+1

u at time point tnu+1
u :

p(lnu+1
u |Su, inu+1

u ). (1)

Apparently, it is not advisable to predict the specific venue directly. On
one hand, it is more challenging to predict the specific venue than the venue
category solely based on the visual content of social images due to their high
diversity (example see Figure 1). On the other hand, it has been found that
there exists a strong correlation between the categories of two successive check-
ins for a user in a short period according to our pilot study. As such, we
tackle the problem in two steps. First, for each social image, we predict its
venue category by taking into account multiple aspects including the visual
content, user’s personal interests, global popularity of the category and the
transition probability between successive check-ins. Second, given the predicted
venue category, we predict the specific venue based on the similar aspects.
Mathematically, we decompose Eqn. (1) into two parts:

p(lnu+1
u |Su, inu+1

u ) = p(lnu+1
u |Su, inu+1

u , cnu+1
u ) · p(cnu+1

u |Su, inu+1
u ). (2)

In what follows, we first detail how to predict the venue category, and
then discuss the venue prediction model. We pay special attention to temporal
modeling, which is used in both the category and venue prediction.

3.2 Venue Category Prediction

Although there are several work on predicting venue category of multimedia
posts on social networks, such as the micro-videos on Vine [21, 5], these work
are merely based on the multimedia (and textual) content while overlooking
other relevant signals. One important signal is the sequential pattern between
two successive check-in categories. For example, if a user just checked in at a
shopping mall, then the user is more likely to visit a restaurant as compared
to office or school. Such sequential patterns naturally motivate us to adopt
the Markov chain [8] modeling. Secondly, venue categories usually show varying
global popularity, for instance, users tend to check in at office more frequently
than hospital. Apart from the global popularity, they may also express different
personal interests in different venue categories. To tackle the venue category
prediction problem in a comprehensive way, we summarize the key factors to be
accounted for as follows:

– the global popularity of venue categories;
– the consistency between the user’s personal interest and the given venue

category;
– the correlation between the venue category of the last check-in and that of

the current check-in;
– the matching of the visual content of social image and the given venue

category.
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Based on the first-order Markov chain property, the venue category probability
conditioning on the full check-in sequence can be approximated as conditioning
on the last check-in:

p(cnu+1
u |Su, inu+1

u ) = p(cnu+1
u |cnu

u , inu+1
u ). (3)

By incorporating the proposed factors, we further parameterize the
probability as:

p(cnu+1
u |cnu

u , inu+1
u ) = αnu+1

u + ṽu · c̃nu+1
u + c̃nu

u · c̃nu+1
u + θ1p(c

nu+1
u |inu+1

u ),
(4)

where αnu+1
u denotes the global popularity of category cnu+1

u ; vectors ṽu ∈
RD1 and c̃nu

u ∈ RD1 denote the embedding vector for user u and category
cnu
u , respectively. The first inner product ṽu · c̃nu+1

u encodes the personalized
preference of user u on venue category cnu+1

u , and the second inner product
c̃nu
u · c̃nu+1

u encodes the transition probability between the two successive
check-ins. Note that we have intentionally chosen inner product to model the
interaction between two entities, which although is simple, but shown to be very
competitive compared to more complex neural network functions recently [16].

The last term p(cnu+1
u |inu+1

u ) denotes the probability that image inu+1
u

belongs to category cnu+1
u , which is inferred from the visual content of the image.

In our implementation, we employ the state-of-the-art deep convolutional neural
network ResNet [13], pre-training it on ImageNet data and fine-tuning it to
our venue category data (more details see Section 4.1). The hyper-parameter θ1
should be non-negative that controls the weight of the visual signal. Note that
we have further normalized the probabilities such that

∑
p(·|cnu

u , inu+1
u ) = 1, to

make it a valid conditional probability in the strict sense.

3.3 Specific Venue Prediction

As have mentioned before, most of user movements are constrained to a relatively
small geographical region in a short period. As such, a social image is more likely
to be taken at the venues near the user’s last check-in. We similarly adopt the
first-order Markov chain assumption and model the venue probability as:

p(lnu+1
u |Su, inu+1

u ) = p(lnu+1
u |snu

u , inu+1
u )

= βnu+1
u + v̂u · l̂nu+1

u + l̂nu
u · l̂nu+1

u + θ2p(l
nu+1
u |inu+1

u ), (5)

where βnu+1
u represents the global popularity of venue lnu+1

u , vectors v̂u ∈
RD2 and l̂nu

u ∈ RD2 denote the embedding vector for user u and venue lnu
u ,

respectively. Note that the specific venue model shares a similar formulation
with the venue category model, as users’ movement patterns on venue categories
can be smoothly transferred to specific venues. Specifically, the two inner
product terms encode the personalized user preference and transition pattern,
respectively. The last term p(lnu+1

u |inu+1
u ) denotes the probability that image

inu+1
u is taken at venue lnu+1

u judging from the visual content. The hyper-
parameter θ2 should be non-negative that controls the weight of the visual signal.
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As it is computationally expensive and inefficient to train deep learning models
over hundreds of thousands venues, we estimate the probability as the cosine
similarity between location features and image features. Specifically, the image
features are extracted by the ResNet (trained on venue categories), and the
location features are the average of extracted features of images that are taken
at the location.

3.4 Modeling Temporal Dynamics

We now present how to incorporate other temporal dynamics into our prediction
model. We discuss the details in the context of venue category prediction model.
As the encoding of temporal dynamics to specific venue model can be achieved
in a similar way, we omit these details here to avoid repetition.
Periodical patterns

According to our statistics, users’ visits to some venue categories, such as
concert hall, office, pub and restaurant, are highly dependent on the time (e.g.,
day of the week) and exhibit periodical patterns. For example, users typically
visit pub more frequently during the night of weekends than weekdays. Moreover,
within the span of a day, the category distribution also varies temporally. For
example, users prefer to check in more at train station in the morning, while
check in more at cafe in the afternoon. To capture the influence of temporal
information, it is natural to extend the user embedding vectors ṽu and v̂u
to be time-dependent. Specifically, we introduce three time-related categorical
variables to interpret a timestamp:

– t1 indicates whether the image is uploaded on weekday or weekend, e.g., 0
means weekday and 1 means weekend.

– t2 indicates the day of the week that the image is uploaded, e.g., 0 represents
Monday, 1 represents Tuesday, 2 represents Wednesday, etc.

– t3 indicates the time of the day the image is uploaded, where a day is divided
into 24 hours from 0 to 23.

Accordingly, we introduce three types of embedding vectors to capture the
temporal dynamics in user representation as,

ṽu(t) = ṽu + E1(t1) + E2(t2) + E3(t3), (6)

where E1 ∈ RD1×2, E2 ∈ RD1×7 and E3 ∈ RD1×24 denote the embedding matrix
for the three time indicators, which are weekday or weekend, day of the week
and time of the day, respectively. The symbol Ei(ti) returns the ti-th column
of Ei, and similarly for other notations. Here the stationary user preference is
modelled by ṽu, while the time-dependent periodical patterns are accounted by
remaining parts.
Temporal weighting drift

In addition to the periodical patterns, we also consider the temporal
dependence between two successive check-ins. As the time interval between two
successive check-ins generally follows a Poisson distribution and may range from
several minutes to days, it is natural to assume that smaller interval leads to
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Table 1. Number of data records in NUS-MSS.
City users# ch-ins# images# venues# venue cats#

London 2,860 63,273 11,661 5,857 394

Singapore 5,677 284,258 10,711 14,010 450

New York 5,122 189,152 23,925 14,891 485

higher dependence. To capture this effect, we introduce a time decay component
similar to [15] to adjust the transition probability:

p(cnu+1
u |cnu

u , inu+1
u ) = αnu+1

u + ṽu(tnu+1
u ) · c̃nu+1

u

+ δ(∆t)c̃nu
u · c̃nu+1

u + θ1p(c
nu+1
u |inu+1

u ).
(7)

where∆t = tnu+1
u −tnu

u represents the time interval between two successive check-
ins and δ(∆t) = e−λ∆t is the rate of the decay. Through this, the dependency
on previous check-in can be gradually weakened as time goes by.

4 Experiments

We first present the experimental settings, followed by studying the performance
of our proposed solution in venue prediction and exploring the effectiveness of
temporal check-in patterns. Lastly, we perform some micro-level analysis by
showing some illustrative examples.

4.1 Preliminaries

In this work, all the experiments are conducted based on the NUS-MSS
dataset [11], which provides a set of users’ behaviors on multiple social networks.
In particular, we utilize users’ check-in sequences on Foursquare and social
images on Instagram. Given a social image i posted by user u on Instagram at
time point t, user u’s last check-in venue is his/her lastest check-in on Foursquare
before time point t. To ensure the quality of the dataset, we retain only users with
at least 3 check-ins, and venues that have been visited at least 3 times. Finally,
we obtain a dataset consisting of 2860, 5677 and 5122 users, 63273, 284258 and
18912 check-ins, and 11661, 10711 and 23925 images in London, Singapore and
New York respectively, as shown in Table 1.
Dataset Alignment. Due to that the POI tags provided by Instagram cannot
be directly aligned with those on Foursquare, we first need to tackle the problem
of venue alignment. For each venue of Instagram, we crawl its profile to obtain
the name and location information (i.e. longitude and latitude), based on which
we utilize the Foursquare venue/search api endpoint3 to link each venue in
Instagram to that in Foursquare.
Visual Feature Extraction. As certain objects should frequently appear in
certain venue categories or venues, the multimedia content of social images
plays an important role in venue prediction. To build the deep model based
on the visual contents of social images as mentioned in Section 3.2 and feature

3 https://developer.foursquare.com/docs/.
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Table 2. Average top-1 and top-10 accuracy, and NDCG-10 for venue prediction.

City Method VenuePop ContentBased NearestNeigh FPMC-LR MFTP

London
Top-1(%) 8.25 11.01 28.71 35.21 38.25
Top-10(%) 25.31 39.09 49.48 63.81 65.98

NDCG-10(%) 15.95 23.01 38.29 48.68 51.16

Singapore
Top-1(%) 13.38 12.76 19.13 31.27 32.50
Top-10(%) 39.35 41.29 41.59 69.60 71.66

NDCG-10(%) 25.04 24.86 29.14 48.84 50.52

NewYork
Top-1(%) 11.03 10.07 27.72 38.99 40.96
Top-10(%) 25.79 37.72 46.60 65.25 66.97

NDCG-10(%) 17.26 21.86 36.52 51.08 52.91

extraction of specific venue matching as mentioned in Section 3.3, for each venue
category, we collected extra 200 images from the venue profile on Foursquare.
We then employ the ResNet-50 [13] model, which has been extensively studied
in computer vision domain, as the architecture of deep model. This model is
trained on ImageNet [10] and then fine-tuned on the venue category dataset we
collected. Finally, we adopt the output after softmax as the prediction score for
each venue category and pool5 layer output as the features for specific venue
matching. It is noted that the venue feature vector is generated by averaging all
the image features belongs to that venue.
Evaluation Metrics. To evaluate the performance of venue prediction, we
adopt the leave-one-out evaluation strategy, where for each user, we select the
latest social image as the testing sample and the remaining data for training.
Regarding the evaluation metrics, on one hand, we use the average top-1 and
top-5 accuracies, which are the standard measures for the single-label task [4].
On the other hand, to assess the position of the hit, we adopt another widely
used metric—Normalized Discounted Cumulative Gain (NDCG) [17]. Finally,
we report the average score for all testing samples. It is worth mentioning that
to save the time cost, for each testing sample, we randomly sample 200 negative
samples as the venue candidates rather than the whole samples.

4.2 Model Comparison

Since our proposed model is derived from the matrix factorization method [20]
with temporal patterns, we term it as MFTP for short. To evaluate the proposed
method, we compare it with the following baselines:

– VenuePop. Venues are ranked by their popularity, which is measured by the
number of check-ins. This is a non-personalized method to benchmark the
prediction performance.

– ContentBased. This method is solely based on the content of social images.
Due to the fact that the number of images for unpopular venues is not enough
for training the SVM classifiers, we simply calculate the cosine similarity
between the venue features and the given social image feature.

– NearestNeigh. According to our statistics, users usually move within a
bounded region. Therefore, for each social image, we select the nearest
neighbor venue to the user’s last check-in as the venue tag.

– FPMC-LR [8] This method mainly exploits the personalized Markov chains
in the inter check-in sequence. The difference from our model lies in that
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FPMC-LR predict the specific venue in one step and overlooks the importance
of the periodical patterns.

Parameter Settings. We randomly initialized model parameters with a
Gaussian distribution (with a mean of 0 and standard deviation of 0.01) and
optimized the model with stochastic gradient descent (SGD) until convergence.
Finally, we tested the batch size of 32, the latent feature dimension of 32, the
learning rate of [0.01, 0.05] and the regularizer of 0.01.

Table 2 shows the performance for different models. The results show that:

– The general trend is that MFTP significantly outperforms the rule-based
baselines, such as VenuePop and NearestNeigh. Despite the relatively bad
performance of NearestNeigh method, it is still better than expected,
especially on TOP-1 accuracy. This maybe due to the fact that after data
cleaning there are only about 10, 000 venues left in each city, which are more
likely to be scattered throughout the city and thus have relatively large inter
distances. Moreover, as users tend to move within a bounded region, the large
inter distance would narrow down the number of venue candidates and hence
boost the performance of venue prediction. Therefore, we hypothesize that
NearestNeigh would work well on datasets with low density of venues.

– The performance of content-based method ContentBased is unsatisfactory,
due to the high diversity of content of social images. For the same venue, people
may take photos of different objects or from different angles. For example, it is
common that users would take photo of a dish, upload it to the social network
and then check-in to the restaurant. In such a case, the visual content cannot
reflect the unique characteristics of the specific restaurant.

– MFTP shows superiority over the strong baseline—FPMC-LR, which is based
on a similar generic embedding framework. The possible reasons are as
follows: 1) FPMC-LR directly predicts the specific venue tags in which the
category of the venue is not utilized; 2) although FPMC-LR considers the
transition patterns between successive check-ins, it ignores the important
periodical patterns of users’ check-in behaviors; and 3) FPMC-LR is a POI
recommendation framework in which no visual content information is utilized.

4.3 Illustrative Examples

To gain insights on the influential factors on the task of venue prediction, we
comparatively illustrate a few representative examples in Figure 3. From this
figure, we have the following observations:

– The image in Figure 3(a) refers to a famous landmark in Singapore and the
visual content is clean and distinctive. In such cases, the visual content will
dominate the prediction.

– From the visual content of the image in Figure 3(b), we can easily tell that the
image was taken in some library. However, it is difficult to figure out which
specific library it refers to. Fortunately, the user’s last check-in was to a bar
which is quite near the specific library ; this helps us to get the right answer.
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Fig. 3. Illustration of prediction results. They respectively justify the importance of
visual content, transition patterns on successive check-ins, and periodical patterns.

– The image in Figure 3(c) reflects a church in New York. However, the visual
signals derived from CNNs mistakenly indicate that this image is a concert
hall. Fortunately, we found that the time stamp of this image is Sunday moring
and the user periodically visit church around the same time every week. Based
on these temporal signals, the model could correctly generate the prediction.

Due to space limitation, we only show the positive results in Figure 3. It is
actually a very hard problem to get the specific venue prediction right in some
cases. For example, for users that travel frequently, the prediction performance
would be quite low. To tackle such problems, we will investigate how to include
GPS information to extend our model for further improvement.

5 Conclusion
In this work, we studied the novel problem of specific venue prediction of social
images. We first conducted exploratory analysis on real-world datasets, based
on which we found strong evidence of transition patterns on successive check-
ins and periodical patterns on venue categories. We then developed a generic
embedding model based on matrix factorization to capture the interactions
between visual content and temporal patterns. To the best of our knowledge,
this is the first work on time-aware social image venue prediction. Experimental
results on a real-world dataset demonstrate the effectiveness of our proposed
solution, where the accuracy of venue prediction was improved by more than 5%
by leveraging LBSN check-ins. Apart from quantitative analysis, we highlight two
qualitative insights gained from this work. First, it is promising to exploit the
venue category information for location-related tasks. Second, transition patterns
and periodical patterns are strong signals in predicting users’ movements and
activities. In future, we plan to investigate the effect of GPS information for
venue prediction of multimedia content. Further, we are interested in exploring
the recently developed neural factorization machines [14] for modelling the
higher-order interactions between users, venues, and temporal patterns.
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