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Abstract— Tracking data provenance (or lineage) has become
increasingly important in many large-scale applications, and a
few methods have been proposed to record data provenance
recently. However, most of previous works mainly focus on
deterministic databases except Trio style lineage that aims at
probabilistic databases, which is much more challenging because
of the exponential growth of possible world instances and
dependence among intermediate tuples. This paper proposes
an approach, named PHP-tree, to model how-provenance upon
probabilistic databases. we also show how to evaluate probability
based on a PHP-tree. Compared with Trio style lineage, our
approach is independent of intermediate results and can calculate
the probability both cases of restricted and complete propagation
of data provenance. Detailed experimental results show the
effectiveness, efficiency and scalability of our proposed model.

I. INTRODUCTION

Aiming at indicating how the data is processed and prop-

agated from source to its current form, the data provenance

(or lineage) is employed intensively in many fields, inclusive

of data quality, audit trail, replication recipes, data citation,

etc. Nowadays, a few ways are proposed to describe data

provenance over relational databases. Representative works

consist of where- and why- provenance [1], how- provenance

and B[X] provenance [2], [3], Trio style lineage [4], and

lineage over data warehouse [5].
Management on uncertain and probabilistic databases has

become an increasing hotter topic in database community

[6], [7], [8], since data uncertainty widely exists in a lot of

applications, such as data cleaning and integration, information

extraction, moving objects and sensor data management, RFID

data and so on. In general, there are two kinds of uncertainties,

named existential uncertainty and attribute level uncertainty.

Here, existential uncertainty is used to describe whether a tuple

exists or not, and attribute level uncertainty is used to describe

imprecise attribute values. More recently, some researchers

pay attentions to the provenance upon probabilistic database.

The ULDB [4] is the first prototype that can handle provenance

over probabilistic databases, where Trio style lineage (lineage

in short) is proposed to describe the provenance. Sarma et al.

[8] studied how to evaluate probabilities for SQL-like queries

on ULDB. In their method, probabilities of query results are

efficiently calculated based on lineage reserved in advance.
The lineage storage strategy could be treated as restricted

propagation since the lineage of the result data item inherits

TABLE I

THE BASE PROBABILISTIC RELATION R0

tupleID color kid length probability
t1 red Tom long 0.6
t2 yellow Tom short 0.8
t3 red Tom short 0.5
t4 yellow Mary short 0.9

TABLE II

R1 AND R2 ANNOTATED BY LINEAGE

tupleID lineage tupleID lineage
t11 t1 ∨ t3 t21 t1
t12 t2 t22 t2 ∨ t3
t13 t4 t23 t4

only last data transformation in ULDB. To find the origin of a

data item, the representation of lineage can not avoid tracking

intermediate tuples, thus we can not directly use the lineage for

probability evaluation. Instead, we should expand the lineage

of each atom in result data item by lineage formulas, until all

variables refer to the base tuples.

Example 1: Let’s consider a tiny table Candle(color, kid,
length, probability) to record kids’ candles information, as

shown in Table I. For example, tuple t3 means that Tom owns

one red, short candle with probability 0.5. Now, our task is

to find: all kids who own red candle(s) and short candle(s) at
the same time. This query can be written as Q4 that is also

based on Q1, Q2, and Q3, as shown below.

Q1 : R1 = Πcolor,kid(R0)

Q2 : R2 = Πkid,length(R0)

Q3 : R3 = R1 �� R2

TABLE III

R3 ANNOTATED BY LINEAGE AND HOW-PROVENANCE

tupleID lineage how-provenance

t31 t11 ∨ t21 t21 + t1t3
t32 t11 ∨ t22 t1t2 + t1t3 + t2t3 + t23
t33 t12 ∨ t21 t1t2
t34 t12 ∨ t22 t22 + t2t3
t35 t13 ∨ t23 t24

TABLE IV

R4 ANNOTATED BY LINEAGE AND HOW-PROVENANCE

tupleID lineage how-provenance

t41 t32 t23 + t1t3 + t1t2 + t2t3
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Fig. 1. A Diagram of Lineage for Probability Evaluation

Q4 : R4 = Πkid(σcolor=“red” and length=“short”R3)

Let tij denote the jth tuple in relation Ri. Tables II-IV show

the lineages of all tuples in R1 − R4. Keep in mind that the

“lineage” in this paper always refers to the “Trio-style lineage”

[4]. Moreover, Tables III-IV also describe the how-provenance

of each tuple in R3 and R4, respectively. It is clear to observe

that the lineage model records the data evolving information

in many relations. For instance, tuple t41 comes from t32 (in

Table IV), which further comes from t11 and t22 (in Table

III). In addition, tuples t11 and t22 also come from (t1, t3),

and (t2, t3), according to Table II. As a conclusion, to find the

whole lineage of tuple t41 as Figure 1, it is necessary to visit

all five relations listed in Table I-IV, which makes the data

exchange very complex and difficult. Contrarily, by using the

how-provenance, we can easily find how the tuple t41 evolves

from the base tuples t1, t2, and t3 in Table IV, which makes

the data exchange very clear and convenient.

The difference between lineage and how-provenance may

become critical in some realistic applications, and is also

implemented in some main projects. For example, Orchestra

is a collaborative data exchange prototype that supports peers

in a P2P network sharing data and resource with each other. It

uses how-provenance to describe how data tuples are evolving

among lots of sources. As claimed in [9], the how-provenance

used in Orchestra can satisfy two goals: “(i) reconciliation

can choose between transactions based on user preferences,

and (ii) efficient incremental recomputation of the target data

instance and provenance is possible.”

As discussed above, it is also necessary to record the

how-provenance for uncertain databases. However, how to

calculate the probability of a result tuple still remains as a

great challenge. For example, how to compute the existential

probability of t41 if given the how-provenance in advance?

This paper explores a novel approach, named PHP-tree,

to cope with this issue. A PHP-tree consists of a tuple

header-table and a tree. The contributions of this paper are

summarized below.

• We propose a novel approach, named PHP-tree, to ap-

proximately describe the how- provenance upon proba-

bilistic databases, avoiding tracking too many intermedi-

ate results. Based on PHP-tree, the existential probability

of a tuple can be calculated easily.

• Experimental results evaluate the effectiveness, efficiency

and scalability of our new approach.

The rest of paper is organized as follows. Section II in-

troduces some preliminary knowledge. Section III describes

our PHP-tree approach in detail. A systematic performance

study is reported in Section IV. We review the related works in

Section V. Finally, we conclude our work briefly and propose

some extensions.

II. PRELIMINARY KNOWLEDGE

A. How-Provenance

Currently, how-provenance (also called provenance poly-

nomial) mainly focuses on managing deterministic databases.

How-provenance not only includes the bags information about

involving base tuples, but also includes the times information

about involving base tuples, etc. It records information about

origin data items and the process of their derivations.

One character of how-provenance is that it is described by

base tuples. Let t.howp denote the how-provenance of tuple

t. For instance, the how-provenance of t41 (Table IV) is t23 +
t1t3+t1t2+t2t3(denoted as t41.howp = t23+t1t3+t1t2+t2t3),

indicating that t41 can be computed by the self-join of {t3}, or

join of tuple set {t1, t3}, or {t1, t2}, or {t2, t3}. Furthermore,

the coefficient of t1t3 (here, the value of the coefficient of t1t3
is 1.), indicates that there is only one way to join tuples t1
and t3. Compared with other provenances, how-provenance is

the strongest one in the aspect of representative capability.

B. How-Provenance upon Probabilistic Databases

Probability and how-provenance in probabilistic databases

can be viewed as meta-data of tuples in deterministic

databases. Generally, how-provenance can track the process

of data propagation and origin of base tuples, as well as the

propagation of uncertainty.

For example, the source of uncertainty of t41 is t1, t2 and t3,

and the propagation of uncertainty is inferred from t41.howp.

It is also critical to compute the probability of a result tuple

based on its how-provenance.

Let R denote a set of all k base relations, R =
{R1, · · · , Rk}, where |Ri| = ni, 1 ≤ i ≤ k. Let T =
{t1, · · · , tn} denote all base tuples in relations Ri, 1 ≤ i ≤ k,

where n =
∑k

i=1 ni. We also use Pr(ti) to denote the

probability of tuple ti. In this way, the how-provenance of

a tuple t in result relation is defined below.

t.howp =
h∑

i=1

(bi

∏

tj∈Si

t
ni,j

j ) (1)

, where h is the number of monomials in t.howp. The ith
monomial has bi ∈ N as its coefficient and is product of base

tuples, which consist of a set Si. In addition, ni,j denotes the

power of the tuple tj in the ith monomial.

We summarize two theorems and three important properties

about how-provenance to evaluate the probability .

Property 1: (Independence of Power): Assume t.howp is

defined by Equation (1), and

t.howp
′
=

h∑

i=1

(bi

∏

tj∈Si

tj) (2)
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, then we have Pr(t.howp) = Pr(t.howp
′
), where

Pr(t.howp) registers the probability of tuple t based on

t.howp.

Proof: Each monomial in a how-provenance can be

treated as a probabilistic event. So, when a base tuple occurs

multiple times in an event, the probability of this event is

identical to another event where the same tuple only occurs

once. In other words, the power of a base tuple in how-

provenance is independent of the probability evaluation.

Property 2: (Independence of Coefficient:) Assume

t.howp
′

is defined by Equation (2), and

t.howp
′′

=
h∑

i=1

(
∏

tj∈Si

tj) (3)

, then we have Pr(t.howp
′′
) = Pr(t.howp

′
).

Proof: Each coefficient of a monomial in a how-

provenance can be viewed as the occurring times of the same

event. So, when an event occurs multiple times, the probability

of union of multiple events is equal to the probability that the

same event only occurs once. In other words, the coefficient

of a monomial in a how-provenance is independent of the

probability evaluation.

According to Property 1-2, the coefficient of monomials in

t.howp and the power of base tuples in the monomial will

not influence the final probability calculation. Hence, we can

execute probability evaluation based on Sl. In fact, Sl records

the existing tuples in lth monomial of t.howp. Let t.RHP
register the refinement of how-provenance of tuple t, denoted

t.RHP = {S1, S2, · · · , Sh}. For instance, t41.RHP =
{{t3}, {t1, t2}, {t1, t3}, {t2, t3}}. We have Pr(t.howp) =
Pr(t.RHP ), where Pr(t.RHP ) is the probability of tuple t
based on t.RHP . Next, Theorem 1 indicates how to calculate

Pr(t) based on t.RHP .

Theorem 1: Let t.RHP = {S1, S2, · · · , Sh}, then the

probability of tuple t is calculated by Equation (4):

Pr(t) = Σh
i=1Pr(Si) − Σ1≤i,j≤h,i �=jPr(Si ∪ Sj)

+ Σ1≤i,j,l≤h,i �=j �=lPr(Si ∪ Sj ∪ Sl)

+ · · · + (−1)h−1Pr(S1 ∪ S2 ∪ · · · ∪ Sh),

(4)

where S = ∪i∈ISi, and I is a subscript subset of

{1, 2, · · · , h}, Pr(S) =
∏

tj∈S Pr(tj), l = 1, 2, · · · , h.

Proof: For each Si ∈ t.RHP, i = 1, 2, · · · , h, let tj ∈
Si, according to the possible worlds model, we can easily

obtain Pr(S) =
∏

tj∈S Pr(tj). Thus, Pr(t) can be easily

calculated by addition formula of probability with h events.

However, when h is not small, the processing cost will

be high because there are 2h − 1 monomials in the RHS of

Equation (4). According to Theorem 2, we can reduce the h
to a small one.

Theorem 2: Let t.RHP = {S1, S2, · · · , Sh}. If Sj , Sl ∈
t.RHP and Sj ⊆ Sl, we denote t.RHP

′
= t.RHP \ {Sl},

then we have Pr(t.RHP ) = Pr(t.RHP
′
).

Proof: Let V ⊆ t.RHP , and Sj , Sl �∈ V . If Sj ⊆ Sl,

then probability Pr(V ∪ Sl) is equal to Pr(V ∪ Sl ∪ Sj)

because V ∪ Sl = V ∪ Sl ∪ Sj under condition Sj ⊆ Sl.

In the RHS of Equation (4), the signs of Pr(V ∪ Sl) and

Pr(V ∪ Sl ∪ Sj) are opposite, so that both Pr(V ∪ Sl) and

Pr(V ∪ Sl ∪ Sj) can be removed from the RHS of Equation

(4). Hence, any of set S = ∪i∈I′ Si and I
′

is a subscript subset

of {1, 2, · · · , l− 1, l +1, · · · , h}, Pr(S ∪Sl) can be removed

form in the RHS Equation (4). So, the probability of t can

also be obtained by Pr(t.RHP
′
).

Theorem 2 indicates that some information in t.RHP is

redundant for probability evaluation. It is clear that Pr(t)
remains unchanged after removing the redundant information

(also called pruning operation). For best case, Property 3

describes the property of linear complexity about probability

evaluation.

Property 3: (Law of Iterative:) Assume ∀i �= j, Si∩Sj = ∅,

Zl =
∑l

i=1(
∏

tj∈Si
tj) and Pr(Z0) = 0, where 1 ≤ i, j, l ≤

h, then we have

Pr(Zl) = Pr(Zl−1) + Pr(Sl) − Pr(Zl−1)Pr(Sl) (5)

and Pr(t.howp) = Pr(Zh), where Pr(Sl) =
∏

tj∈Sl
Pr(tj).

Proof: We can iteratively calculate Pr(Zl) by Equation

(5), we have

Pr(Zl) = 1 −
l∏

i=1

(1 − Pr(Si)) (6)

, the RHS of Equation (6) is identical to the probability that at

least one of l independent events happens. It also is equal to

the probability of adverse event of all l events not occurring,

where 1 ≤ l ≤ h. If l = h, we have Pr(Zh) = Pr(t.RHP ) =
1 − ∏h

i=1(1 − Pr(Si)).
Property 3 indicates, when there are no common tuples

between different elements in t.RHP , that Pr(t) can be

iteratively evaluated with linear time complexity. For example,

t.RHP = {{t1}, {t2, t3}, {t4}}, the condition of Property

3 is held. So, we can calculate Pr(t) with twice iterations

based on Pr(S1) = Pr(t1), Pr(S2) = Pr(t2)Pr(t3) and

Pr(S3) = Pr(t4). But this condition is very rigorous. In

most situations, the common subset is not empty between

different elements in t.RHP , hence the law of iterative is

not always correct. So, it is necessary to simplify the process

of probability evaluation. In next section, based on a set

t.RHP = {S1, S2, · · · , Sh}, we will introduce the PHP-tree

approach to complete it.

III. PHP-TREE APPROACH

This section describes our PHP-tree (pruning how-

provenance tree, PHP-tree in short) approach in detail. We

introduce the way to maintain a PHP-tree in Section III-A,

and show the probability evaluation in Section III-B.

A. Maintaining a PHP-tree

We have shown above that t41.RHP = {{t3}, {t1, t2}, {t1,
t3}, {t2, t3}}. It is easy to deduce the process of data deriva-

tion that four combinations of base tuples can be propagated

into tuple t41. However, it is still not easy to calculate
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probability because of complicated dependence among the

elements of t.RHP . Consequently, we propose a structure,

named PHP-tree, to evaluate probability. A PHP-tree consists

of a header-table and a tree containing base tuples in t.RHP .

To make the new structure compact and informative, frequent

tuples are arranged close to the “root” node.

• The header-table is in format of ( tupleName,

leafNode, frequency, nodeLink) , here tupleName
labels a base tuple, leafNode denotes whether the tuple

exists in a leaf node of a branch, where a branch grows

in the tree, which is a list of a sorted Si in t.RHP ,

frequency registers the tuple frequency occurring in

t.RHP , nodeLink is a pointer pointing to the first node

in the PHP-tree carrying the tupleName.

• Each node in the tree consists of three fields:

tupleName, count, and nodeLink, where count reg-

isters the number of branches going by the tupleName,

and nodeLink links to the next node in the PHP-tree

carrying the same tupleName, or null if there is none.

Algorithm 1: maintainPHPTree

Input: t.RHP = {S1, S2, · · · , Sh};

Output: the PHP-tree of tuple t;
Scan t.RHP to create a header-table;1

Create a empty tree with root F labeled as ”null”;2

for j=1 to h do3

Insert(Sj ,F);4

end5

for j=1 to M, where M is the size of header-table; do6

if tj .frequency > 1 then7

N = tj .nodeLink;8

while N�= null do9

if N.count >
∑

N ′∈N.children N
′
.count then10

Pruning-rule I;11

end12

if tj .leafNode = true then13

Construct a set V , which consists of all14

branches carrying base tuple tj ;
end15

N = N.nodeLink;16

end17

if |V | > 1 then18

Pruning-rule II;19

end20

end21

end22

return23

Algorithm maintainPHPTree (Algorithm 1) constructs

a PHP-tree by scanning t.RHP twice. First, it constructs a

header-table containing all base tuples in t.RHP with its

frequency(Line 1). Keep in mind that all elements in a header-

table are sorted in descending frequency. In the second scan,

it constructs a tree with root F labeled ”null” based on

the header-table(Lines 2-5), here the operation Insert(Sj , F)

inserts the element Sj in t.RHP into the tree. Subsequently,

it runs two pruning rules to make the tree compact (Lines 6-

23). If the frequency of tuple tj in header-table is 1, it do not

execute the pruning operations, because tj impossibly exists

in multiple branches(Lines 7-9). Else, it links tj to the node

in the tree by using tj .nodeLink in header-table(Line 8), and

executes pruning-rule I(Lines 9-17) and pruning-rule II(Lines

18-20) based on constructing set V in advance(Lines 13-15).

Three crucial operations in Algorithm

maintainPHPTree are described in detail below.

• Insert(Sj ,F): Before inserting each element of t.RHP
into the tree, we sort each element in Sj by descending

frequency of base tuples, and Sj is transformed into a

sorted list (p|P ), where p is the prefix of Sj and P is the

remainder. If F has a child N such that N.tupleName =
p, then increase N.count by 1; else create a new node

N with its count initialized 1 and construct a pointer

links to node N via nodeLink. If P is nonempty calls

Insert(P , N ), else updates the P.leafNode = true in

the header-table because P is the last tuple in sorted Sj .

• pruning-rule I: For any node N in the tree, if N.count >∑
N ′∈N.children N

′
.count, then deletes all the descen-

dant of node N and updates the header-table and the

tree.

• pruning-rule II: Only the leaf node of a branch B appears

in another branch, B maybe own the pruning capability.

So, if tj .leafNode = true, the algorithm constructs a set

V (Lines 13-15), which consists of all branches carrying

base tuple tj . Let branch b ∈ V and tj be the leaf node of

b, the other branch B ∈ V . If b ⊂ B meets, then deletes

the branch B, and updates the header-table and the tree.

Example 2: Let t.RHP = {{t3}, {t1, t2}, {t1, t3}, {t2, t3}
}, where S1 = {t3}, S2 = {t1, t2}, S3 = {t1, t3} and

S4 = {t2, t3}. Initially, we compute the frequency of all tuples

in a form (tupleName : frequency)(the number after “:”

indicates the frequency of tuple tupleName in t.RHP ). Here,

{(tupleName : frequency)} = {(t3 : 3), (t1 : 2), (t2 : 2)}.

• Processing S1 constructs the first branch of the tree:

< (t3 : 1) > and updates t3.leafNode = true in the

header-table, and processing S2 constructs the second

branch of the tree < (t1 : 1), (t2 : 1) > and updates

t2.leafNode = true in the header-table.

• For S3, since its sorted list < t3, t1 > shares a common

prefix t3 with the existing branch < (t3 : 1) >, the count

of node (t3 : 1) increases by 1, and a new node (t1 : 1)
is created and linked as a child of (t3 : 2) and updates

t1.leafNode = true in the header-table. The processing

of S4 is similar to the S3. Finally, we can construct a tree

as in Figure 2(a)(Lines 1-5 in Algorithm 1).

• Now, we continue to scan the header-table to obtain

a PHP-tree by pruning operations. Since t3.frequency
is equal to 3, the algorithm links to the first node in

tree by nodeLink. Because (t3 : 3) only has two

children (t1 : 1) and (t2 : 1), by pruning rule I, nodes

(t1 : 1) and (t2 : 1) can be deleted, the count of
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(a)

 

(b)

Fig. 2. An Example of Constructing PHP-tree

node t3 update to 1. At the same time, the header-table

is updated to {(tupleName, leafNode, frequency)} =
{(t3, t, 1), (t1, f, 1), (t2, t, 1)}. Finally, a new PHP-tree is

shown in Figure 2(b)(Lines 6-22 in Algorithm 1).

B. Probability Evaluation Based on PHP-tree

For tuple t41 in Table IV, Pr(t41) can be calculated based

on t41.PHP − tree (as Figure 2(b)) by Equation (4), this

approach reduce the cost to calculate 3 probabilities. However,

on some conditions, the probability evaluation may still be

very complex, making us seeking new way to simplify the

process of probability evaluation. To reduce the cost, we

propose the Algorithm calProb (Algorithm 2) to improve

the efficiency of probability evaluation.

Algorithm calProb (Algorithm 2) illustrates how to sim-

plify probability calculation based on a PHP-tree. First, we

group h0 distinct branches into a collection of disjoint sets by

link relationships (Lines 1-17), where h0 denotes the number

of branches in the PHP-tree. In Lines 1-3, we construct h0 sets

Vi. Then we scan the header-table with ti.frequency > 1,

and unite two set Vji
and Vli if they contain a common base

tuple ti(Lines 4-17), where a key operation unionSet(N) puts

all branches going by node N into a set denoted Vji and

deletes unnecessary sets, here, Vji
= ∪m∈I

′′
i
Vm, I

′′
i related

to base tuple ti is a subscript subset of {1, 2, · · · , h0} and

ji = MINm∈I
′′
i
m. After executing Lines 1-17, assume that

we group h0 branches into g disjoint sets, where a disjoint-set

data structure maintains a collection V = {V1, V2, · · · , Vg}.

Subsequently, we calculate probability of each Vi, 1 ≤ i ≤ g
by Equation (4)(Line 18). In this collection, each Vi can be

viewed as a probabilistic event, there is no common base tuple

between Vi and Vj , 1 ≤ i, j ≤ g and i �= j, so they can

be treated as independent events. According to Property 3 in

Section II-B, the final probability can be iteratively calculated

by multiple probabilities pi, 1 ≤ i ≤ g(Line 19).

For example, we construct disjoint sets from Figure 2(b) as

V1 = {{t1, t2}} and V2 = {{t3}}. Furthermore, we obtain two

different probability values Pr(V1) = Pr(t1)Pr(t2) = 0.48
and Pr(V2) = Pr(t3) = 0.5. Finally, we calculate Pr(t41) as

0.5 + 0.48 − 0.5 × 0.48 = 0.74.

Algorithm 2: calProb

Input: The PHP-tree of tuple t;

Output: the probability of tuple t;

for i=1 to h0, where h0 denotes the number of branches1

in the input PHP-tree; do
Create a set Vi,2

Vi = {∪{tj}|tj existing in the ith branch};
end3

for i=1 to M0, where M0 denotes the number of base4

tuples in the header-table; do
if ti.frequency > 1 then5

N = ti.nodeLink;6

unionSet(N) ≡ Vji
;7

while N.nodeLink �= null do8

unionSet(N.nodeLink) ≡ Vli ;9

if Vji �= Vli; then10

Vji=Vji ∪ Vli ;11

Delete Vli ;12

end13

N = N.nodeLink;14

end15

end16

end17

Compute each pi = Pr(Vi) by Equation (4), where18

1 ≤ i ≤ |V|;
Pr(t) = 1 − ∏|V|

i=1(1 − pi);19

return Pr(t);20

Next, we begin to analyze complexity of our approach about

probability evaluation. Obviously, under the best situation,

there is no intersect between branches in a PHP-tree. In other

words, all branches are independent, the complexity of time is

O(g), where g = |V|. In the worst case, any of two branches

are connected by nodeLink. So that, because all branches

are in a set, the complexity of time is O(2g). In the other

case, the complexity of time is bounded by O(g×2g0), where

g0 = Max1≤i≤g|Vi|. For complexity of space, let the total

number of base tuples in input PHP-tree be H , then it is O(H).

IV. EXPERIMENTAL EVALUATION

A. Experiment Settings

In this section, we evaluate the effectiveness, efficiency and

scalability of our novel PHP-tree approach in terms of two

measures, the total number of base tuples in a probabilistic

database and the complexity of data derivation (represented

by the maximum length of branches in PHP-tree and the

number of monomials in a how-provenance, respectively). All

codes are written in Java and run in the WinXP system with

Pentium(R) 2.80GHz CPU and 1G DDR memory. We execute

algorithms over following data sets.

• Frequent Item Mining Data Sets: We use two data

sets, T10I4D100K(.gz)(SD for short) and T40I10D100K

(.gz)(CD for short)[10] , which are generated by the

generator from the IBM Almaden Quest research group,
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Fig. 3. The Complexity of Constructing a PHP-tree

downloaded from Frequent Itemset Mining Implementa-

tions Repository.

• Synthetic Data Sets: We randomly generate a branch

of the PHP-tree with maximum length l = 4, 6, 8, 10,

and each node of the branch from the set of base

tuples with size varying from 100 to 1000. Obviously,

varying length of branches in PHP-tree and the number of

monomials in how-provenance represent the complexity

of data derivation.

B. Evaluation of the PHP-tree Construction

We first illustrate the performance of constructing a PHP-

tree over both real and synthetic data sets. Specifically, Figure

3(a) illustrates the time cost for constructing PHP-trees over

four data sets, SD, CD, 4-length and 10-length’s synthetic data.

In it, the x-axis registers the number of the monomials in a

how-provenance, the y-axis registers the time of PHP-tree’s

construction. Figure 3(b) illustrates the scalability test on the

number of base tuples in probabilistic databases, the x-axis

represents the total number of base tuples in the probabilistic

databases, and the y-axis is the same to Figure 3(a). We can

see that the required time of constructing a PHP-tree is linear

about the number of the monomials in a how-provenance, and

is almost independent of the size of base tuples’ set, which

indicates the scalability of our approach against the size of

databases.

C. Pruning Efficiency of PHP-tree

Subsequently, we start to evaluate the pruning efficiency

over different complexity of data derivation and total number

of base tuples. The pruning efficiency is shown in Figure

4(a) for complexity of data derivation, and in Figure 4(b)

for scalability test on the total number of base tuples in the

probabilistic databases, all the x-axes are the same to Figure 3,

and the y-axes represent the rate of pruning against t.RHP . In
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Fig. 4. The Pruning Efficiency over a PHP-tree

the test results, the pruning efficiency increases smoothly with

the increasing the number of monomials in a how-provenance.

Moreover, the pruning efficiency also becomes higher, when

the length of each branch is shorter and the size of database is

smaller, which indicates the good scalability in complexity of

data derivation, compared with the lower complexity of data

derivation.

D. Evaluation of the Probabilistic Propagation

We report results of probability evaluation on synthetic data

sets by varying length of branches in PHP-tree and the number

of monomials in a how provenance. All the y-axes represent

the time of probability evaluation, all the x-axes are the same

to the Figure 3 as above. Figure 5(a) shows that the complexity

of probability evaluation is almost linear relationship to the

number of monomials in a how-provenance when g0 ≤ 5
. Figure 5(b) shows that the time of probability evaluation

has not clear tendency when the size of database varies. In

other words, probability evaluation has good scalability on the

number of base tuples in probabilistic databases.

V. RELATED WORK

The paper by Wang and Madnick [11] firstly studies data

provenance in heterogeneous database systems. Subsequently,

many researchers define the data provenance (or lineage,

pedigree) [12], [13], [1]. Buneman et al [14] define data

provenance in the context database systems as the description

of the origins of data and the process by which is arrived

at in database. Lanter [12] refers to lineage of derived prod-

ucts in geographic information systems (GIS) as information

that describes materials and transformations applied to derive

the data. Simmhan et al [13] define data provenance to be

information that helps determine the derivation history of a

data product, starting from its original sources. Y. Cui and

J. Widom [5] propose data lineage in data warehouse. And
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Fig. 5. The Complexity of Probability Evaluation

Buneman et al [1] define the where- and why-provenance

that is used to track the processing of derivations of data

objects. The paper by Green et al [2] propose the concept

of provenance semiring, which data provenance is annotated

by polynomials of semiring in relational databases and XML

data, and have discussed the containment and equivalence

of conjunctive queries on relations annotated by elements

of a commutative semiring. Thus, techniques of complete

propagation on diversity data provenance do not utilize to

probabilistic databases.

Though there has been extensive works on probabilistic

databases [6], [7], [8], but each makes simplifying assump-

tions for getting around the problem of high query evalu-

ation complexity that lessens their applicability. Generally,

the possible worlds model is commonly used for representing

the uncertainty [15]. The project of Trio by Stanford devel-

ops the ULDB database system which integrates uncertainty

and lineage into the relational databases. Many works are

completed based on this project. The papers by Benjelloun

[16] researches the model for uncertainty and lineage of x-

tuples. A. D. Sarma have discussed the function dependency

of uncertain relations [8] and the optimized algorithms of

probability calculation which is related to the intermediate

tuples. However, comparing with our work, previous works

are dependent of the intermediate results and is impracticable

for complete propagation of diversity of data provenances.

VI. CONCLUSIONS AND FUTURE CHALLENGES

At current, many applications records data provenance for

tracking the origin of data item and its derivations. For some

probabilistic databases, which data item is annotated by how-

provenance, we maintain the approximate how-provenance,

called PHP-tree, for probability evaluation upon the probabilis-

tic databases. To summarize, our approach has great advan-

tages. First, it separates the data and probability evaluation in

query processing, rather than simultaneously computes them.

The query engine can select the best query plan and query op-

timization techniques to execute the query. Second, doing this

averts the possible worlds to model the probabilistic databases,

but the computing result is identical to the possible world

semantics. Finally, the storage strategy of how-provenance

is complete propagation, it leads to probability evaluation is

independent of the intermediate dependent results.

Probabilistic databases need to handle more complex proba-

bilistic models, rather than independent tuples discussed in this

paper. So, a first evident extension to our work is a complex

probabilistic model, because containment correlations between

tuples or attribute values naturally occur in practice, such as

mutually exclusive and implication relationship.

In large-scale applications, sophisticated queries often de-

pend on multiple data sources instead of single one, that leads

to the uncertainty maybe take place in different data sources.

So, the other obvious extension to our work is more abundant

data schemas, rather than the relational data model.
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