Attentive Collaborative Filtering: Multimedia Recommendation with Item- and Component-Level Attention

9 Aug, 2017

Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, Tat-Seng Chua

National University of Singapore / Columbia University / Shandong University/ Tencent

- Introduction
- Motivation
- Attentive Collaborative Filtering
- Experimental Result
- Conclusion

Value of recommendation

Value for the customer

- Find things that are interesting
- Narrow down the set of choices
- Help to explore the space of options
- Discover new things

Value for the provider

- Provide personalized service for the customer
- Increase sales
- Obtain more knowledge about customers

35% of sales result from recommendations

75% of views result from recommendations

38% of clickthrough results from recommendations

Why multimedia recommendation

Amount of videos uploaded: 300 hours/min

Information overload

Average number of monthly searches: 2 billion

Average number of photos and videos shared daily: 95 million

Exploratory user behavior

Multimedia information seeking is often for entertainment. Users explore the multimedia space with no clear end goal.

Diversity

Different from products, multimedia contents are hard to be categorized or described.

The intention is there, but cannot be explicitly expressed.

NEXT Implicit Feedback in MM

Explicit Feedback

Implicit Feedback

Pin on Pinterest

Revine on Vine

As implicit feedback lacks evidence on how users like and dislike items, it is a major challenge that MM recommender systems should tackle.

3. The Godfather: Part II (1974) 4. The Dark Knight (2008) **48.9 ***8.9 5. 12 Angry Men (1957) 6. Schindler's List (1993) *****8.9

Watch history on Youtube

No preference information

User preference is known

2. The Godfather (1972)

- Introduction
- Motivation
- Attentive Collaborative Filtering
- Experimental Result
- Conclusion

Two levels of implicitness – Item-level

9 July 2017

23 July 2017

repost o

3 July 2017

15 July 2017

- ✓ A positive set of user feedback does not necessarily indicate equal item preferences.
- ✓ *Item-level implicitness*: user's preference on each item is unknown.

Two levels of implicitness – Component-level

Two levels of implicitness – Component-level

- ✓ Positive feedback on multimedia content is merely in the whole content level. However, multimedia content usually contains diverse semantics.
- **Component-level implicitness**: user's preference on different components of the item is unknown.

Limitations of previous work

Item-level implicitness

- ✓ Most efforts are focused on how to select the negative items (popularity-based [He et al.])
- ✓ As for positive item, only constant weight for each item is considered [Koren et al.]

Component-level implicitness

- Introduction
- Motivation
- Attentive Collaborative Filtering
 - Preliminaries
 - Model
- Experimental Result
- Conclusion

Latent Factor Models [Koren et al. 2009]

$$\hat{R}_{ij} = \langle u_i, v_j \rangle$$

User-Item Matrix

Latent Space

Bayesian Personalized Ranking (BPR) -- Implicit Feedback

- Introduction
- Motivation
- Attentive Collaborative Filtering
 - Preliminaries
 - Model
- Experimental Result
- Conclusion

Attentive Collaborative Filtering

-- General Framework

Item-level implicitness

Component-level implicitness

NEXT ++ Component-Level Attention

NEXT++

<u>Item-Level</u> Attention

Attention score:
$$a(i, l) = \mathbf{w}_1^T \phi(\mathbf{W}_{1u} \mathbf{u}_i + \mathbf{W}_{1v} \mathbf{v}_l + \mathbf{W}_{1p} \mathbf{p}_l + \mathbf{W}_{1x} \overline{\mathbf{x}}_l + \mathbf{b}_1) + \mathbf{c}_1$$

$$\phi(x) = max(0, x)$$

$$\alpha(i,l) = \frac{exp(a(i,l))}{\sum_{n=1}^{|\mathcal{R}(i)|} exp(a(i,n))}$$

- Introduction
- Motivation
- Attentive Collaborative Filtering
 - Preliminaries
 - Model
- Experimental Results
- Conclusion

NEXT ++ Experimental Settings

Datasets

Dataset	Interaction#	Item#	User#	Sparsity
Pinterest	1,091,733	14,965	50,000	99.85%
Vine	125,089	16,243	18,017	99.96%

Evaluation Protocols

- Hit Ratio (HR): measures whether the ground truth item is present on the ranked list
- **NDCG:** accounts for the position of hit.

Component-level Feature Extraction

- **Image**: *res5c* layer feature map in *ResNet* $(7 \times 7 \times 2048)$
- **Video**: pool5 layer in ResNet (2048)

Next + Baselines

CF-based Methods

- UCF: user-based collaborative filtering [Zhao et al.]
- ItemKNN: item-based collaborative filtering [Hu et al.]
- BPR: [Rendle et al.]
- SVD++: a merged model of latent factor and neighborhood models [Koren et al.]

Content-based Methods

CBF: content-based filtering [Pazzani et al.]

Hybrid Methods

- SVDFeature: is a generic model for feature-based collaborative filtering [Chen et al.]
- Deep Hybrid: uses convolution neural network to regress multimedia content to the item latent vectors [Oord et al.]

NEXT ++ Model Comparison

The performance of HR@100 and NDCG@100 with respect to the number of latent factors.

- ACF achieves the best performance.
- Although the Vine dataset is more sparse than Pinterest, the performance is much better.
- With the increase of the number of latent factors, the performance improvement of ACF compared with other baseline methods also increases.

NEXT ++ Model Comparison

The performance of Top-K recommended lists where the ranking position K ranges from 10 to 100.

ACF demonstrates consistent improvements over other methods across positions.

Model Analysis: Performance over Users of Different Sparsity Levels

- ACF consistently outperforms other baseline methods for all the number of item settings.
- When the number of items per user is relatively small, ACF performs much better than the other methods.

The performance with respect to the number of items a user has.

NEXT ++ Model Ablation

Effect of Attention Mechanisms in Item- and Comp-Level

Model	Level		Pinterest		Vine	
ACF	Item	Feature	HR	NDCG	HR	NDCG
	AVG	_	31.95%	8.12%	60.54%	18.20%
	ATT	AVG	33.21%	8.42%	62.81%	18.75%
	ATT	ATT	33.78%*	$8.55\%^*$	63.65%*	19.03%*

- Both attention mechanisms applied in item- and component- level improve the performance for multimedia recommendation compared with utilizing average pooling in each level.
- The attention mechanism in item-level contributes more for our model as compared to that in component-level.

• Effect of User, Item and Content Information

Model	Attention Type	Pinterest		Vine	
	Attention Type	HR	NDCG	HR	NDCG
ACF	None	31.95%	8.12%	60.54%	18.20%
	U+V	32.17%	8.31%	61.68%	18.36%
	U+P	32.69%	8.34%	62.37%	18.65%
	U+V+P	32.96%	8.32%	62.60%	18.71%
	U+V+P+X	33.78%*	8.55%*	63.65%*	19.03%*

- The information of both user and item contributes to our model as compared to a constant weight model.
- The information of users is more effective than the items to enhance recommendation.

NEXT ++ Attention Visualization

- Introduction
- Motivation
- Attentive Collaborative Filtering
 - Preliminaries
 - Model
- Experimental Results
- Conclusion

NEXT ++ Conclusion

- We have introduced the component- and item-level attention model to assign attentive weights to infer the underlying user preference encoded in the implicit user feedback.
- We have conducted extensive experiments on two real-world multimedia social networks: Vine and Pinterest, to demonstrate the effectiveness of ACF.
- **Key take-way insight**: inferring the underlying user preference encoded in the implicit feedback in a distant supervised manner should be explored towards **Explainable Recommendation**.

NUS-Tsinghua Centre for Extreme Search A Joint Research Collaboration Between NUS & Tsinghua University

NExT research is supported by the National Research Foundation, Prime Minister's Office, Singapore under its IRC@SG Funding Initiative.