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ABSTRACT
Multimedia content is dominating today’s Web information. �e
nature of multimedia user-item interactions is 1/0 binary implicit
feedback (e.g., photo likes, video views, song downloads, etc.), which
can be collected at a larger scale with a much lower cost than
explicit feedback (e.g., product ratings). However, the majority of
existing collaborative �ltering (CF) systems are not well-designed
for multimedia recommendation, since they ignore the implicitness
in users’ interactions with multimedia content. We argue that, in
multimedia recommendation, there exists item- and component-level
implicitness which blurs the underlying users’ preferences. �e
item-level implicitness means that users’ preferences on items (e.g.,
photos, videos, songs, etc.) are unknown, while the component-
level implicitness means that inside each item users’ preferences
on di�erent components (e.g., regions in an image, frames of a
video, etc.) are unknown. For example, a “view” on a video does not
provide any speci�c information about how the user likes the video
(i.e., item-level) and which parts of the video the user is interested
in (i.e., component-level). In this paper, we introduce a novel
a�ention mechanism in CF to address the challenging item- and
component-level implicit feedback in multimedia recommendation,
dubbed A�entive Collaborative Filtering (ACF). Speci�cally, our
a�ention model is a neural network that consists of two a�ention
modules: the component-level a�ention module, starting from any
content feature extraction network (e.g., CNN for images/videos),
which learns to select informative components of multimedia
items, and the item-level a�ention module, which learns to score
the item preferences. ACF can be seamlessly incorporated into
classic CF models with implicit feedback, such as BPR and SVD++,
and e�ciently trained using SGD. �rough extensive experiments
on two real-world multimedia Web services: Vine and Pinterest,
we show that ACF signi�cantly outperforms state-of-the-art CF
methods.
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1 INTRODUCTION
As we log into a multimedia Web service, e.g., Youtube, just like
other billions of users, we have billions of contents online ready to
view and share. Meanwhile, due to the advance of mobile devices,
millions of new images and videos are streaming into these websites.
Take Snapchat, one of the most popular video-based social App,
as an example. During the time of reading this paragraph, around
50 thousand video snippets are shared and 2.4 million videos are
viewed. Without a doubt, the dominating Web multimedia content
requires modern recommender systems, in particular those based
on Collaborative Filtering (CF), to si� through massive multimedia
contents for users in a highly dynamic environment.

CF analyzes relationships between users and interdependencies
among items, in order to identify new user-item associations [21,
23, 37]. In the context of multimedia recommendation, item
refers to di�erent kinds of multimedia contents consumed by
users, such as a video, a photo or a song. Most CF systems rely
on explicit user interests as input, e.g., star ratings of products,
which provide explicit feedback [19, 25, 38]. However, explicit
ratings are not always available in many applications. Due to
the large-scale and extreme diversity of multimedia contents [15],
inherent user-item interactions in multimedia recommendation
systems are mostly based on implicit feedback, such as “view”
of a video, “like” of a photo, “play” of a song, etc. As implicit
feedback lacks substantial evidence on which items user dislike
(i.e., negative feedback), existing CF methods [20, 21, 30] with
implicit feedback generally focus on how to tap the missing user-
item interactions into preference modeling. However, few methods
deeply explore the implicitness of users’ preferences. In particular,
we argue that there are two levels of implicit feedback inmultimedia
recommendation, which have been neglected by most existing CF
methods.

Item-Level Implicit Feedback. Each user is associated with a
set of items (i.e., positive feedback) via tracking their consumption
habits. However, a positive set of user feedback does not necessarily
indicate equal item preferences. �is phenomenon is extremely



prevailing in multimedia services as most of them are social-
oriented. For example, some images clicked as “like” may be
only due to the fact that they are taken by friends but are not of
users’ real interests. Even though for images consistent with users’
real interests, users’ preferences on them are not the same. Such
cases that the preference information on each item is not provided
are named as item-level implicitness. To be�er characterize users’
preference pro�le, the implicit feedback in the item-level requires
di�erent a�entions on the set of items. However, to the best of our
knowledge, existing CF models generally resort to either a constant
weight [23] or pre-de�ned heuristic weights [21], and thus the
conventional neighborhood context obtained by such a weighted
sum fails to model the item-level implicit feedback.

Component-Level Implicit Feedback. Feedback onmultimedia
content is typically at the whole item level. However, multimedia
content usually contains diverse semantics andmultiple components.
We use component-level implicitness to denote cases that feedback
for each component is not available. Take a video about a basketball
match as an example, the whole video contains multiple players
and abundant actions. A “play” feedback from a user on this video
does not necessarily indicate that the user likes the whole content
of the video, while it may be triggered by his interest in the last
part of the video which is about the �nal scores in the match.
�erefore, unlike traditional content-based CF methods that only
consider multimedia content as a whole [4, 12], we should model
user preferences with lower-level content components, e.g., image
features in di�erent locations [39] and video features of various
frames [6, 10, 41].

However, directly modeling the item-level and component-level
implicit feedback to facilitate recommendation is non-trivial since
the ground-truth for the implicitness in each level is not available.
To address this problem, we propose a novel CF framework
dubbed A�entive Collaborative Filtering (ACF) for multimedia
recommendation, which can automatically assign weights to the
two levels of feedback in a distant supervised manner. ACF draws
on the latent factor model, by transforming both items and users
to the same latent factor space to make them directly comparable.
To incorporate the two levels of implicit feedback, a neighborhood-
based model is integrated to characterize users’ interest pro�le
through their historical behavior which is a weighted sum of items.
�e in�uence of two levels feedbacks is re�ected by the weights of
items in the neighborhood model. Speci�cally, in order to model
the item-level feedback, we propose a weighting function which is
a multi-layer neural network and takes the characteristics of both
user and item, as well as the multimedia content feature as input
(cf. Section 4.2). �e multimedia content feature in the item-level
is actually generated by assembling multiple components of the
item with a�entive weights. In particular, the component-level
a�ention is also a multi-layer neural network that takes user and
component features as input. �en, all the a�entive components
together compose a content feature vector, which is one of the
input of the item-level a�ention (cf. Section 4.3). ACF can be
e�ciently trained using Stochastic Gradient Decent (SGD) on large
user-item interactions of both images and videos (cf. Section
4.4). We evaluate ACF extensively on two real-world datasets that
represent a spectrum of di�erent media: Pinterest (images) and
Vine (videos). Experimental results show that ACF consistently

outperforms competing methods ranging from CF-based methods,
content-based methods [28, 35] and hybrid methods [9, 33] (cf.
Section 5).

Our contributions are summarized as follows:

• Wepropose a novel CF framework namedA�entive Collaborative
Filtering (ACF) to employ a�ention modeling in CF with implicit
feedback. To the best of our knowledge, this is the �rst
framework that is designed to tackle the implicit feedback in
multimedia recommendation.

• To address two levels of implicit feedback, we introduce two
a�ention modules, each is a neural network that can be
seamlessly incorporated into any neighborhood models with
e�cient end-to-end SGD training.

• �rough extensive experiments conducted on two real-world
datasets, we show that ACF consistently outperforms several
state-of-the-art CF methods with implicit feedback.

2 RELATEDWORK
2.1 Implicit Feedback
Recommendation with implicit feedback is also called the one-class
problem [27] because of the lack of negative feedback, where only
positive feedback (e.g., click, view) is available. Apart from the
positive feedback, the remaining data is a mixture of real negative
feedback and missing values. �erefore, it is hard to reliably infer
which item a user did not like from implicit feedback.

To cope with the problem of missing negative samples, several
approaches have been proposed which can be roughly classi�ed
into two categories: sample based learning [20, 27, 30] and whole-
data based learning [21, 23]. �e former samples negative feedback
from the missing data, while the la�er treats all the missing data as
negative. �erefore, sample-based approaches are more e�ective
while whole-data based approaches provide higher coverage.

Traditional whole-data basedmethods assume that all unobserved
events are negative samples and are equally weighted [23].
However, this may not be realistic, due to the fact that the
unobserved data may contain missing values which are false
negative. Towards this end, several recent e�orts [21, 27] focus
on the weighting scheme, taking the con�dence whether the
unobserved samples are indeed negative ones into consideration.
For example, certain nonuniform weighting schemes on the
negative samples, such as user-oriented [27] and item popularity-
oriented [21], have been proposed and proven to be more e�ective
than the uniform weighting scheme. However, one major limitation
of the non-uniformweightingmethod is that the weighting schemes
are de�ned based on assumptions proposed by the authors, which
may not be correct in the real data.

As can be seen, most of the existing e�orts till now focused on
the negative feedback sampling or weighting schemes to tackle
the problem of no negative feedback, while no much a�ention
has been paid on the two levels of implicit feedback—item-level
a�ention and component-level a�ention—which can be seen as
the weighting strategy on positive samples. To �ll up the empty in
positive sample weighting, we propose a novel a�entionmechanism
to weight positive implicit signal automatically based on the user-
item interaction matrix and the content of the item.



2.2 Multimedia Recommendation
�e signi�cance of multimedia recommendation has led to the
great a�ention from both the industry and academia [8, 16, 32, 36].
Most of the current state-of-the-art multimedia recommendation
techniques are based on the CF analysis [2, 4]. Although these
approaches work well for popular and frequently watched contents,
they are less applicable to fresh contents or tail contents with
few views, due to the sparsity of the data. �erefore, for these
items, CF analysis based solely on user-item interaction matrix
or co-views information may yield either low-quality suggestions
or no suggestions at all. To address the problem of tail contents,
researchers have developed hybrid approaches [33] that incorporate
the context and content of multimedia items with the CF model
for recommendation. For example, several e�orts have been
dedicated to conduct the video recommendation utilizing di�erent
context information, such as the multi-modal relevance [26, 34],
cross-domain knowledge [11, 14] and latent a�ributes feature [12,
44]. Moreover, [3, 4] have proposed hybrid approaches to video
recommendation, which combines the video content (topics mined
from video metadata, related queries, etc.) with the co-view
information. Another widely used strategy is using a latent factor
model for recommendation, and further predicting the latent factors
from multimedia contents to handle the cold start scenario [15, 33].
However, most of the exisitng methods failed to pay a�ention to
the two levels of implicitness in the multimedia recommendation,
which is the major concern of our work.

2.3 Attention Mechanism
A�ention mechanism has been shown e�ective in various machine
learning tasks such as image/video captioning [7, 39, 40] and
machine translation [1]. Its success is mainly due to the reasonable
assumption that human recognition does not tend to process a
whole signal in its entirety at once; instead, one only focuses on
selective parts of the whole perception space when and where
as needed. Our component-level a�ention adopts the so� spatial
a�ention model in [39] for images and the so� temporal a�ention
model in [40] for videos. �e key idea of so� a�ention is to learn
to assign a�entive weights (normalized by sum to 1) for a set of
features: higher (lower) weights indicate that the corresponding
features are informative (less informative) for the end task.

In fact, the a�ention assumption is reasonable in many real-
world situations, not just in the domain of computer vision and
natural language processing. To the best of our knowledge, ACF
is the �rst a�ention-based CF model in the area of recommender
systems.

3 PRELIMINARIES
We begin with some notations. We denote a user-item interaction
matrix as R ∈ RM×N , whereM and N denote the number of users
and items, respectively. Speci�cally, we use Ri j to represent the
(i, j)-th entry of R. As for implicit feedback, Ri j = 1 indicates that
the i-th user has interacted with the j-th item and Ri j = 0 indicates
that there is no interaction between user i and item j in the observed
data. We use R = {(i, j)|Ri j = 1} to denote the set of user-item
pairs where there exist implicit interactions. �e goal of a CF model

with implicit feedback is to exploit the entire R to estimate R̂i j for
the unobserved interactions.

3.1 Latent Factor Models
Latent factor models map both users and items to a joint low-
dimensional latent space where the user-item preference score is
estimated by vector inner product. We will focus on models that are
induced by Singular Value Decomposition (SVD) on the user-item
ratings matrix. We denote user latent vectors as U = [u1, ..., uM ] ∈
RD×M and item latent vectors as V = [v1, ..., vN ] ∈ RD×N , where
D � min(M,N ) is the latent feature dimension. �e preference
score Ri j is estimated as:

R̂i j =< ui , vj >= uTi vj . (1)
�e objective is to minimize the following regularized squared loss
on observed ratings:

argmin
U,V

∑
(i, j)∈R

(Ri j − R̂i j )2 + λ(| |U| |2 + | |V| |2), (2)

where λ controls the strength of regularization, which is usually an
L2 norm to prevent over��ing. A�er we obtain the optimized user
and item vectors, recommendation is then reduced to a ranking
problem according to the estimated scores R̂i j .

However, applying SVD in implicit feedback domain raises
di�culties due to the high portion of unobservable data. Carelessly
treating the unobserved entries as negative samples in SVD may
introduce false negative samples in the training data.

3.2 Bayesian Personalized Ranking (BPR)
BPR is a well-known framework for addressing the implicitness in
CF [30]. Instead of point-wise learning as in SVD, BPR models a
triplet of one user and two items, where one of the items is observed
and the other one is not. Speci�cally, from the user-item matrix R,
if an item j has been viewed by user i , then it is assumed that the
user prefers this item over all the other unobserved items.

�e optimization objective for BPR is based on the maximum
posterior estimator. In particular, by applying the above latent
factor models, a widely used BPR model is given as:

argmin
U,V

∑
(i, j,k)∈RB

− lnσ (R̂i j − R̂ik ) + λ(| |U| |2 + | |V| |2), (3)

where σ is the logistic sigmoid function and λ is regularization
parameter. �e training data RB is generated as:

RB = {(i, j,k)|j ∈ R(i) ∧ k ∈ I\R(i)}, (4)
where I denotes the set of all items in the dataset and R(i)
represents the set of items that are interacted by the i-th user. �e
semantics of (i, j,k) ∈ RB is that user i is assumed to prefer item j
over k .

In this work, we use BPR as our basic learning model because of
its e�ectiveness in exploiting the unobserved user-item feedback.

4 ATTENTIVE COLLABORATIVE FILTERING
In this section, we will introduce our A�entive Collaborative
Filtering (ACF) model in detail. First, we present the general ACF
framework, elaborating the motivation of the model. We then
show the detailed formulations of the proposed item-level and



component-level a�entions. Note that in the following sections,
“item-” means video or image, and “component-” means the frame
in video or space region in images. Lastly we will go through the
optimization details of ACF.

4.1 General Framework
ACF is a hierarchical neural network that models user’s preference
score with respect to the item in item-level and content in
component-level. Given a user i , an item l and them-th component
in item l , we use α(i, l) to denote user i’s preference degree in item
l and further β(i, l ,m) to denote user i’s preference degree in the
m-th component of item l . We use two a�ention sub-networks to
learn these two preference scores jointly. Speci�cally, we employ
component-level module to generate content representations for
each item and item-level module to obtain user representation.

Objective Function. In addition to explicitly parameterizing
each user i with ui , ACF also models users based on the set of items
R(i) that they interacted with. �erefore, each item l is associated
with two factor vectors. One is denoted by vl , which is the basic
item vector in latent factor model. �e other one, denoted by pl , is
the auxiliary item vector which is used to characterize users based
on the set of items they interacted with. �e representation of a
user i is through the sum: ui +

∑
l ∈R(i) α(i, l)pl .

ACF is optimized in the BPR pairwise learning objective [30]:
optimizing the pairwise ranking between the positive and non-
observable items:

arg min
U,V,P,Θ

∑
(i, j,k)∈RB

− lnσ
©­«ui +

∑
l ∈R(i)

α(i, l)pl
ª®¬
T

vj−

©­«ui +
∑

l ∈R(i)
α(i, l)pl

ª®¬
T

vk

 + λ(| |U| |2 + | |V| |2 + | |P| |2),
(5)

where set R(i) denotes the set of items that are interacted by the
i-th user and Θ is the parameters in a�ention network. α(i, l) is the
item-level a�ention module, which measures the preference degree
of user i to item l . Note that the component-level a�ention module
is also integrated into α(i, l).

Inference. A�er we obtain the optimized user, item and
auxiliary item vectors, i.e., U, V and P, as well as the parameters
of the a�ention networks, recommendation is then reduced to
a ranking problem among all the items in the dataset based on
estimated score R̂i j :

R̂i j =
©­«ui +

∑
l ∈R(i)

α(i, l)pl
ª®¬
T

vj . (6)

Relations to Neighborhood Models. Note that if we rewrite
Eqn. (6) as:

R̂i j =

latent f actor model︷︸︸︷
uTi vj +

∑
l ∈R(i)

α(i, l)pTl vj︸               ︷︷               ︸
neiдhborhood model

, (7)

Figure 1: �e architecture of our proposed Attentive
Collaborative Filtering framework. Our attention model
contains two level modules: component-level attention and
item-level attention (cf. Section 4.1).

where pTl vj can be viewed as the similarity measure function
between items in the neighborhood-based collaborative �ltering [24].
�e �rst part of Eqn. (7) corresponds to the latent factor model
and the second part corresponds to the neighborhood model.
Speci�cally, if we replace the a�ention weight α(i, l) with a
normalized weight 1

|R(i) | , our ACF model will degenerate into
SVD++ [25]; or, the weight is a heuristic function, ACF is similar to
FISM [24]. However, they failed to consider the two levels of implicit
feedback in recommendation, where a �xed weight assumes that all
the items contribute equally to the prediction. In fact, the weights
should be highly dependent to the user and the item content as we
will introduce in Section 4.2 and Section 4.3.

Figure 1 illustrates the work�ow of ACF. We start from the set of
items that are liked by the i-th user. First, for each item l , we access
the set of component features {xlm } (blue solid circles), where xlm
could be the image region feature at them-th spatial location [39]
or the frame feature of them-th frame in a video [41]. �en, the
component-level a�ention module, which is a sub-network, takes
the user latent vector ui and the feature xlm as input and output the
component-level a�entive weight β(l ,m) for them-th component
(dashed blue circles). �us, the �nal representation of the l-th
item content xl is calculated by the weighted sum

∑
β(l ,m)xlm

(�lled blue circles). A�er we have obtained xl , we can use the
item-level a�ention module by taking user latent vector ui , item
latent vector vl , auxiliary item latent vector pl , and the content
feature xl to calculate the item-level a�entive weight α(i, l) for
each neighborhood item (dashed green squares). �en, similar to
the component-level a�entions, we obtain the �nal neighborhood
vectors for user i by the weighted sum

∑
α(i, l)pl (�lled green



Algorithm 1: A�entive Collaborative Filtering
Input: User-item interaction matrix R. Each item l is

represented by a set of component features {xl∗}.
Output: Latent feature matrix U, V, P and parameters in

a�ention model Θ
1: Initialize U, V and P with Gaussian distribution. Initialize Θ

with xavier [17].
2: repeat
3: draw (i, j,k) from RB
4: For each item l in R(i):
5: For each componentm in {xl∗}:
6: Compute β(i, l ,m) according to Eqns. (10) and (11)
7: Compute xl according to Eqn. (12)
8: Compute α(i, l) according to Eqns. (8) and (9)
9: u′i ← ui +

∑
l ∈R(i) α(i, l)pl

10: R̂i jk ← u′ivj − u′ivk
11: For each parameter θ in {U,V, P,Θ}:

12: Update θ ← θ + η · ( exp−R̂i jk

1+exp−R̂i jk
· ∂R̂i jk

∂θ + λ · θ ).

13: until convergence
14: return U, V, P and Θ.

squares). Lastly, combined with the basic user latent vector, we
can use stochastic gradient descent to optimize the BPR pairwise
learning objective (cf Eqn. (5)).

4.2 Item-Level Attention
�e goal of the item-level a�ention is to select items that
are representative to users’ preferences and then aggregate the
representation of informative items to characterize users. Given
the basic user latent representation ui , the neighborhood item latent
vector vl , the neighborhood auxiliary item vector pl , and the item
content feature xl (detailed in the next section), we use a two-layer
network to compute the a�ention score a(i, l) as,
a(i, l) = wT

1 ϕ(W1uui +W1vvl +W1ppl +W1xxl + b1) + c1. (8)
where the matrices W1∗ and bias b1 are the �rst layer parameters,
and the vector w1 and bias c1 are the second layer parameters;
ϕ(x) =max(0,x) is the ReLU function, which was found be�er than
a single layer perceptron with a hyperbolic tangent nonlinearity.

�e �nal item-level weights are obtained by normalizing the
above a�entive scores using So�max, which can be interpreted as
the contribution of the item l to the preference pro�le of user i:

α(i, l) = exp (a(i, l))∑
n∈R(i) exp (a(i,n))

. (9)

4.3 Component-Level Attention
Multimedia items contain complex information while di�erent
users may like di�erent parts of contents in the same multimedia
item. Each multimedia item l may be encoded into a variable-sized
set of component features {xl∗}. We use |{xl∗}| to denote the size of
the set and xlm to denote the feature of them-th component in the
set. Unlike conventional content-based CF models that generally
adopt average pooling [6, 33] for extracting a uni�ed representation,
the goal of component-level a�ention is to assign components

a�entive weights that are consistent with user preference, and then
apply the weighted sum to construct the content representation.

Similar to the item-level a�ention, the component-level a�ention
score for them-th component xlm of item l from user i is also a
two-layer network:

b(i, l ,m) = wT
2 ϕ(W2uui +W2xxlm + b2) + c2, (10)

where the matrices W2∗ and bias b2 are the �rst layer parameters,
and the vector w2 and bias c2 are the second layer parameters;
ϕ(x) =max(0,x) is the ReLU function. �en, the �nal component-
level a�ention is normalized as:

β(i, l ,m) = exp (b(i, l ,m))∑ | {xl∗ } |
n=1 exp (b(i, l ,n))

. (11)

A�er we obtain the component-level a�ention β(i, l ,m), the
content representation of item l with the encoded preference of
user i is calculated as the following weighted sum:

xl =
| {xl∗ } |∑
m=1

β(i, l ,m) · xlm , (12)

4.4 Algorithm
A stochastic gradient descent algorithm based on bootstrap
sampling of training triples is proposed to solve the network. �e
steps for training the model are summarized in Algorithm 1.

For notational simplicity, we divide ACF into three steps: 1)
subroutine ACFcomp runs from Line 5 to Line 7. Note that the
component can be image region features for image or video frame
feature for video; 2) subroutine ACFitem runs from Line 4 to Line
9; and 3) subroutine BPR-OPT runs back propagation with respect
to Eqn. (5). Due to space limit, we use Θ to denote the set of
parameters in item-level a�ention and component-level a�ention,
and R̂i jk to denote R̂i j − R̂ik . Note that Line 12 are the gradients of
the model parameters updated using chain rules. To optimize the
objective function, we employ stochastic gradient descent (SGD)
— a universal solver for optimizing neural network models. At
each time, it randomly selects a training instance and updates each
model parameter towards the direction of its negative gradient.

Note that if more computational resources are available, we
can also achieve end-to-end CNN module �ne-tuning. We will
investigate whether we can train more powerful visual features
using user-item implicit feedback in future.

5 EXPERIMENTS
In this section, wewill conduct experiments to answer the following
research questions:

• RQ1 Does ACF outperform state-of-the-art recommendation
methods?

• RQ2 How do the proposed item-level and component-level
a�entions perform?

We will �rst present the experimental se�ings, follow by
answering the above two research questions, and end with some
illustrative examples.



5.1 Experimental Settings
Datasets. We experimented with two publicly accessible datasets:
Pinterest1 and Vine [5]. �e characteristics of the two datasets are
summarized in Table 1.

Table 1: Statistics of the evaluation datasets.

Dataset Interaction# Item# User# Sparsity
Pinterest 1,091,733 14,965 50,000 99.85%
Vine 125,089 16,243 18,017 99.96%

1. Pinterest. �is implicit feedback dataset is constructed
by [15] for evaluating image recommendation. Due to the large
volume and high sparsity of this dataset, for instance, over 20%
of users have only one pin, we �lter the dataset by retaining
the top 15, 000 popular images and sampling 50, 000 users who
have interactions on the 15, 000 images. �is results in a subset
of data that contains 50, 000 users, 14, 965 images and 1, 091, 733
interactions. Each interaction denotes whether the user has pinned
the image to his/her own board.

2. Vine. �is video dataset [6, 45] is crawled from Vine, a micro-
video sharing social network. �e crawling starts with a set of
active users. �en the breadth-�rst crawling strategy is adopted
to expand the seed users by crawling their followers. Totally, the
dataset contains 98, 166 users and their interactions on 1, 303, 242
micro-videos. An interaction denotes whether the user has posted
or re-posted the video. To evaluate the recommendation task, we
�ltered the dataset by retaining users with at least 4 interactions.
�is results in a subset of data that contains 18, 017 users, 16, 243
videos and 125, 089 interactions.
Evaluation Protocols. To evaluate the performance of item
recommendation, we adopted the leave-one-out evaluation, which
has been widely used in literature [21, 30]. For each user, we
held-out his/her latest interaction as the test set and utilized the
remaining data for training. As we mentioned in Section 3.1, the
recommendation task is reduced to a ranking problem based on the
estimated score. To assess the ranked list with the ground-truth
item that user has actually consumed, we adopt Hit Ratio (HR) and
Normalized Discounted Cumulative Gain (NDCG) [13], where HR
measures whether the ground truth item is present on the ranked
list and NDCG accounts for the position of hit [19]. We report
the average score for all test users. If not speci�cally speci�ed, we
truncate the ranked list at 100 among all the items for both metrics.
Baselines. We compared ACF with the following methods. Note
that all model-based CF models are learned by optimizing the same
pairwise ranking loss of BPR (cf Eqn. (3)) for a fair comparison.
CF-based Methods:
• UCF [46]. User-based collaborative �ltering analyzes the user-

item matrix to compute the similarities between users and then
recommends items to people with similar tastes and preference.

• ItemKNN [31]. �is is a standard item-based CF for which
we adopted Cosine similarity to measure the similarity among
items and followed the se�ing of [23] to adapt it for implicit
data.

• BPR [30]. �is method optimizes the latent factor model
with a pairwise ranking loss, which is tailored to learn from

1h�ps://goo.gl/LjMoYa

implicit feedback. It is a highly competitive baseline for item
recommendation, which is also the basic learning scheme of
our model (cf. Section 3.2).

• SVD++ [25]. SVD++ is a merged model of latent factor and
neighborhood models, in which a second set of item factors
is added, to model the item-item similarity, which is also a
special case of our model when the item-level a�ention scheme
is replaced by the average pooling.

Content-based Methods:

• CBF [28]. Content-based �ltering generates a user feature
vector by averaging all the item features interacted with
the user and then recommend items based on the similarity
between the item features and the user features.

Hybrid Methods:

• SVDFeature [9]. SVDFeature is a generic model for feature-
based collaborative �ltering, which incorporates di�erent
features that directly a�ect users’ preferences over items with
CF. In this paper we use the item visual feature as raw features
to feed into SVDFeature.

• Deep Hybrid [33]. Deep content-based method decomposes
the user-itemmatrix into latent user and item vectors by matrix
factorization (MF) and uses convolution neural network to
regress multimedia content to the item latent vectors. In this
paper, we use the SVD++ framework to learn the latent vectors
for a fair comparison and use CNN [18] to regress the visual
representations of multimedia items to the latent vectors.

Feature Extraction. We adopted the widely-used architectures
ResNet-152 [18] to extract visual features for both images and
frames of videos.
• Image. As we mentioned before, di�erent users may be

interested in di�erent parts/components of the same image;
in the context of image recommendation, the “components”
of an image is considered in spatial level as the “regions” of
the image. We use the res5c layer feature map in the ResNet-
152 architecture to construct the component-level features.
Speci�cally, for each image, the 7× 7× 2048 feature map can be
seen as 49 feature vectors of 2048-D for the 49 di�erent regions
in the image.

• Video. For each video, the component-level visual features
are decomposed into the frame level. �e frame feature can be
obtained through the same way as that for the image feature
based on the feature map. To simplify the process, we use
the output of pool5 layer in ResNet-152, which is actually the
mean pooling of the feature maps, as the feature vector for
each frame.

Parameter Settings. For models that are based on MF, we
randomly initialized model parameters with a Gaussian distribution
(with a mean of 0 and standard deviation of 0.01), optimizing the
model with stochastic gradient descent (SGD). We tested the batch
size of [256, 512], the latent feature dimension of [32,64,128], the
learning rate of [0.001, 0.005, 0.01, 0.05, 0.1] and the regularizer of
[0.00001, 0.0001, 0.001, 0.01, 0.1, 0]. As the �ndings are consistent
across the dimension of latent vectors, if not speci�ed, we only
show the results of D = 128, a relatively large number that returns
good accuracy.

https://goo.gl/LjMoYa
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(d) Vine-NDCG@100

Figure 2: Performance of HR@100 and NDCG@100 w.r.t. the number of predictive factors on two datasets.
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(d) Vine-NDCG@K

Figure 3: Performance of Top-K item recommendation where K ranges from 10 to 100 on two datasets.
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(d) Vine-NDCG@100

Figure 4: Performance of HR@100 and NDCG@100 w.r.t. the number of items per user on two datasets.

5.2 Model Comparison (RQ1)
Figure 2 shows the performance of HR@100 and NDCG@100 with
respect to the number of latent factors. Due to the poor performance
of UCF and CBF, they are omi�ed in Figure 2 to be�er highlight
the performance di�erences among the rest of methods. From the
�gure, we can observe that:

(1) Our proposed method achieves the best performance on both
datasets, signi�cantly outperforming the state-of-the-art MF and
Hybrid methods (on average, the relative improvement over the
best baseline SVD++ is 5.19%).

(2) Although the Vine dataset is more sparse than Pinterest, the
performance is much be�er. �e reason may be that the set of
videos and users in Vine is constructed from the set of densely
connected users, in which the user-item pa�ern is more strong.
�is is also the reason why the performance of ItemKNN on Vine is

closer to that of the other MF methods, since the neighborhood CF
method, such as ItemKNN, could achieve acceptable performance
based on the strong pa�ern.

(3) With the increase of the number of latent factors, the
performance improvement of ACF compared with other baseline
methods also increases. �e reason may be that the visual features
are more informative, which require relatively larger hidden
dimension to incorporate the visual information.

Figure 3 shows the performance of Top-K recommended lists
where the ranking position K ranges from 10 to 100. As can
be seen, ACF demonstrates consistent improvements over other
methods across all positions, and we further conducted the one-
sample paired t-tests, to verify that all improvements are statistically
signi�cant for p < 0.05.



Table 2: E�ect of attention mechanism on item and
component (comp) level. AVG represents the average
pooling strategy and ATT represents the attention
mechanism. ∗ denotes the statistical signi�cance for
p < 0.05.

Model Level Pinterest Vine

ACF

Item Comp HR NDCG HR NDCG
AVG – 31.95% 8.12% 60.54% 18.20%
ATT AVG 33.21% 8.42% 62.81% 18.75%
ATT ATT 33.78%∗ 8.55%∗ 63.65%∗ 19.03%∗

5.3 Model Analysis: Performance over Users of
Di�erent Sparsity Levels (RQ1)

Recall that our model characterizes each user based on the set of
items the user has interacted with. To investigate the performance
of our model over users of di�erent sparsity levels, we show the
performance with respect to the number of items a user has in
Figure 4. Note that we did not re-train the model with di�erent sets
of users, instead we divide the test set into di�erent groups by the
number of items per user. From Figure 4, we observe that:

(1) Our model ACF with a�ention mechanisms of item-
and component-level information consistently outperforms other
baseline methods for all the number of item se�ings. It
demonstrates the robustness and �exibility of ACF on di�erent
datasets.

(2) We also found that when the number of items per user is
relatively small, ACF performs much be�er than the other methods,
which indicates that the a�ention mechanism could improve the
recommendation quality when there is insu�cient training data
for each user.

5.4 Model Ablation: E�ect of Attention
Mechanisms at Item- and
Component-Level (RQ2)

To get a be�er understanding of the proposed ACF model, we
further evaluate the key components of ACF— a�entionmechanism
at item and component level. Table 2 shows the e�ect of a�ention
mechanism at item- or component-level respectively. Note that (1)
when we do not consider both the two levels of a�entions, which
means a normalized constant weight is used for neighborhood
nodes in Eqn. (7), our model degenerates to SVD++ and (2) when
we consider only the item-level a�ention, the item content feature
at the item-level a�ention is the whole image/video feature which
is the average of component features in the item. From the table,
we can observe that:

(1) When the a�ention mechanism is applied at both the
item- and the component-level, the performance for multimedia
recommendation is improved as compared with utilizing average
pooling in each level. �e good performance of a�ention
mechanism shows that the characteristics of users, items and
visual contents are re�ected at both levels. �e contribution of
collaborative information of users and items and the visual content
will be evaluated in the next section.

Table 3: E�ect of user, item and content attention
mechanisms. U, V and P represents the user, item, and the
auxiliary item information in Eqn. (5) respectively, and X
indicates the content information of the item in Eqn. (8). ∗
denotes the statistical signi�cance for p < 0.05.

Model A�ention Type Pinterest Vine
HR NDCG HR NDCG

ACF

None 31.95% 8.12% 60.54% 18.20%
U+V 32.17% 8.31% 61.68% 18.36%
U+P 32.69% 8.34% 62.37% 18.65%

U+V+P 32.96% 8.32% 62.60% 18.71%
U+V+P+X 33.78%∗ 8.55%∗ 63.65%∗ 19.03%∗

(2) �e a�ention mechanism at item-level contributes more for
our model as compared to that at component-level. �is may be
due to the fact that the item-level a�ention mechanism can capture
the representative items among all user’s interactions, while the
component-level a�ention mechanism may only work in complex
items with rich contents. For example, as for some micro-videos on
Vine, the visual content is highly related to a single theme and the
di�erence among frames is not signi�cant. In such situation, the
component-level a�entive network could give similar weights to
frames, which may weaken the e�ect of component-level a�ention.

5.5 Model Ablation: E�ect of User, Item and
Content Information (RQ2)

Recall that to generate the a�ention weights α and β in Eqn. (8)
and Eqn. (10), we incorporate di�erent information sources, such as
collaborative information of users (U) and items (V and P), and the
visual content (X). To evaluate the contribution of each information
source to the a�ention mechanism, we conducted experiments
based on di�erent combination of these sources as shown in Table 3.
Note that since the number of all combinations is too large, we
omit the ones without user information, which perform the worst
among all combinations. From the table, we can observe that:

(1) �e information of both user and item contributes to our
model as compared to a constant weight model. It demonstrates
that our a�ention mechanism can utilize the characteristics of each
user and item to improve the performance of the recommendation
task.

(2) �e information of users is more e�ective than the items to
improve recommendation performance. Hence, the discrimination
of user preference is more discriminative than item characteristics,
which is consistent with the previous �nding that item-level
a�ention is more important than component-level a�ention.
Another interesting �nding is that the auxiliary item latent vector P
is more e�ective than V. �is may be due to the di�erent functions
of the two vectors, that V is used to represent the item itself while
P is proposed to characterize the user from the perspective of items.
�erefore, when combining with user vector U to calculate the
a�ention weight, P performs be�er since they are in the same
domain.



Figure 5: Visualization results on item-level attention and component-level attention from each dataset. For the item-level,
the value under each item represents the attention weight of the item. While for the component-level, we use a heat map to
represent the attention value, in which the darker the color is, the lower its represented attention value is (cf. Section 5.6).

5.6 Attention Visualization
We provide qualitative examples in Figure 5 for the be�er
understanding of our a�ention model. In particular, Figure 5(a)
and 5(b) show the item-level a�ention weights with respect to the
items users liked in Vine and Pinsterest datasets, respectively. As
can be seen from Figure 5(a), user 1 seems to have a preference
for “cartoon” videos as he/she liked four related videos (except
the 4-th one), while user 2 tends to prefer videos about “animals”.
Accordingly, we observe that the corresponding item-level a�ention
weights depict these facts well. Speci�cally, the item-level a�ention
weights of user 1 of the “cartoon” videos are much higher compared
to that of the 4-th video. In addition, we �nd that for the same user,
similar videos would share close a�ention weights, as the �rst
4 videos liked by user 2 are all about “animals” and hence share
similar weights. �ese observations suggest that our model is able
to capture user preferences via the item-level a�ention.

In addition, we also investigate the component-level a�ention
visualization on both datasets. Figure 5(c) shows users’ frame
a�ention over videos from Vine and Figure 5(d) presents users’
spatial a�ention over images from Pinterest. As shown in
Figure 5(c), users can show di�erent interest in di�erent frames
of the same videos. �is may be a�ected by the content of the
frame and the taste of the user. However, for each video example
in Figure 5(c), the a�ention weights of frames are not that di�erent
since there is no much visual di�erence among them. For the
spatial a�ention shown in Figure 5(d), we observe that users 1 and

2 share much similar a�ention pa�ern for the �rst image, which
only contains a simple object (i.e., the “po�ed landscape”). From the
second image that generally consists of two objects—a “pig” and a
pair of red “boots”—we can see that users 1 and 2 are then a�racted
by di�erent parts, i.e., the “boots” and the “pig” parts. �is implies
that users can be interested in di�erent regions of images with rich
semantics. User 1 gives high a�ention weight to the “boots” part
may due to the fact that she has liked many fashion-related images
that contain red “boots”. To further validate this point, we took
a new image as an testing sample and visualized users 1 and 2’s
a�entions. As can be seen, user 1 focuses more on the red �owers
while user 2 is more interested in the “pig”.

6 CONCLUSIONS
In this paper, we have proposed an A�entive Collaborative Filtering
(ACF) model to address the implicit feedback in multimedia
recommendation. We argue that there are two types of implicit
feedback: item-level and component-level, which are usually
neglected in conventional methods. To this end, we introduced
the item- and component-level a�ention model to assign a�entive
weights for inferring the underlying users’ preferences encoded
in the implicit user feedback. ACF can be e�ciently trained
by employing SGD. To the best of our knowledge, ACF is the
�rst model that exploits an a�ention mechanism in CF with
implicit feedback. We conducted the extensive experiments on
two real-world multimedia social networks: Vine and Pinterest,



and demonstrated that ACF can consistently outperform the state-
of-the-art CF models in multimedia recommendation. Since ACF is
a generic a�ention-based CF framework, we plan to extend ACF
in various CF models such as factorization machines [29], and the
recently proposed Neural CF [20] and Discrete CF [43]. Moreover,
we would explore higher-order component-level a�entions such as
relationships between objects [22, 42].
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