

Da Cao^{1,2}, Liqiang Nie³, Xiangnan He⁴, Xiaochi Wei⁵, Shunzhi Zhu², Shunxiang Wu¹, Tat-Seng Chua⁴

- 1. Xiamen University; 2. Xiamen University of Technology; 3. Shandong University;
 - 4. National University of Singapore; 5. Beijing Institute of Technology

Outline

- Background
- Proposed Method
- Experiments and Results
- Conclusion

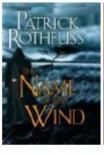
User Generated Booklists

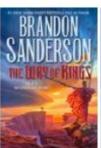
My Top 2013-2014 Romance Reads

100 books — 9 voters

Mental Hospital Novels

158 books — 491 voters







Most Interesting Magic System

1,393 books — 4,603 voters

Best French Literature

467 books — 907 voters

User Generated Playlists

Playlist A		C Playlist B			Playlist C			
01	•	Song A	01	\bigcirc	Song F	01	•	Song C
02	\bigcirc	Song B	02	\bigcirc	Song G	02	\bigcirc	Song F
03	•	Song C	03	•	Song H	03	•	Song A
04	•	Song D	04	\bigcirc	Song I	04	•	Song D
05	\bigcirc	Song E	05	\bigcirc	Song J	05	•	Song H

The illustrations of 1) a user's preference over lists; 2) the user's preference over items within lists; and 3) relationships among items and lists.

8/19/2017 4

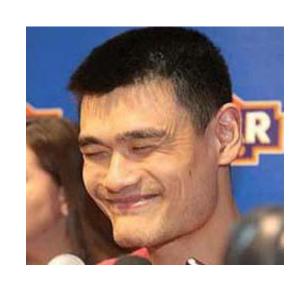
To the best of our knowledge

User generated list recommendation task

 Factorization approaches & embedding-based algorithms

Second

First



Challenges

- The relationship among items within a list
- New-item cold-start
- User-item and user-list recommendation

Outline

- Background
- Proposed Method
- Experiments and Results
- Conclusion

Proposed Method

- Bayesian Personalized Ranking [Rendle et al. 2009]
- Word Embedding as Matrix Factorization [Levy et al. 2014]
- Embedding Model for Sentences
- Utilizing Lists as Side-Information
- Jointly Recommending Items and Lists

Framework

Utilizing Lists as Side-Information (EFM-Side)

Personalized Ranking

Word Embedding as **Matrix Factorization**

Jointly Recommending Items and Lists (EFM-Joint)

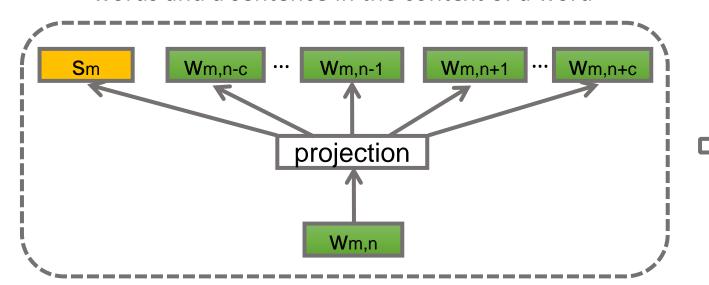
Bayesian Personalized Ranking **Embedding Model** for Sentences

8/19/2017

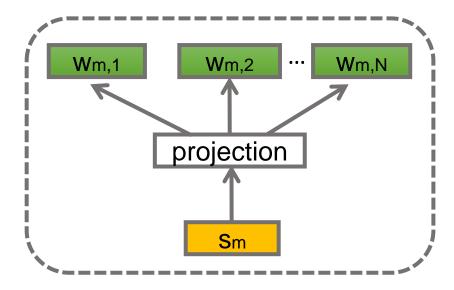
Bayesian

Sentence2vec

words and a sentence in the context of a word



words in the context of a sentence



$$PMI(i, j) = \log \frac{\#(i, j) \cdot \mathcal{D}}{\#(i) \cdot \#(j)}$$
 where $\#(i) = \sum_{j} \#(i, j), \#(j) = \sum_{i} \#(i, j),$ and $\mathcal{D} = \sum_{i, j} \#(i, j).$

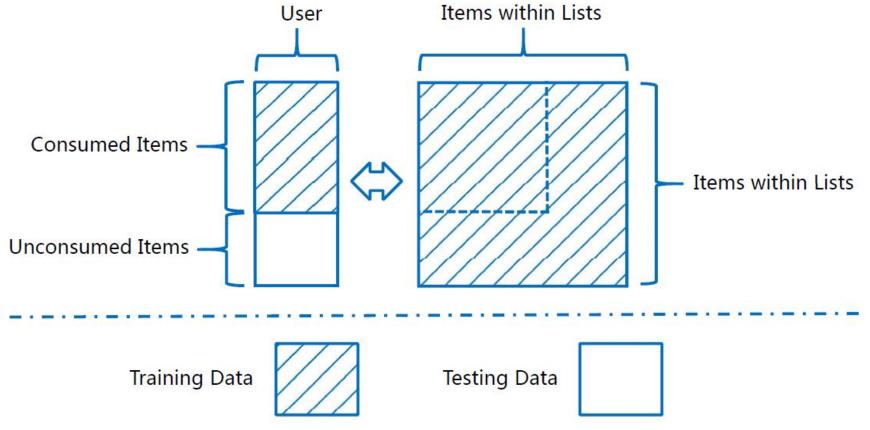
$$\mathcal{L}_{\text{EFM-Side}} = \sum_{(u,i,j)\in\mathcal{D}_T} \ln \sigma(\hat{x}_{uij}) + \lambda_s \sum_{(i,j,t)\in\mathcal{D}_S} \ln \sigma(\hat{m}_{ijt}) - \lambda_{\Theta} ||\Theta||$$

where \mathcal{D}_T is the training corpus for the user-item entry \hat{x}_{ui} ; \mathcal{D}_S is the training corpus for the item-item entry \hat{m}_{ij} ; λ_s balances the performance between BPR and word2vec's equivalent matrix factorization.

$$\mathcal{L}_{\text{EFM-Joint}} = \sum_{(u,i,j)\in\mathcal{D}_T} \ln \sigma(\hat{x}_{uij}) + \sum_{(u,i,j)\in\mathcal{D}_L} \ln \sigma(\hat{y}_{uij}) + \lambda_r \sum_{(i,j,t)\in\mathcal{D}_R} \ln \sigma(\hat{r}_{ijt}) - \lambda_{\Theta} ||\Theta||$$

where \mathcal{D}_T is the training corpus for the user-item entry \hat{x}_{ui} ; \mathcal{D}_L is the training corpus for the user-list entry \hat{y}_{ui} ; \mathcal{D}_R is the training corpus for the item-item-list entry \hat{r}_{ij} ; and λ_r balances the performance between BPR and the embedding model for sentences' equivalent factorization model.

New-Item Cold-Start



The illustration of the new-item cold-start problem where cold-start items only exist in lists and are never consumed by users.

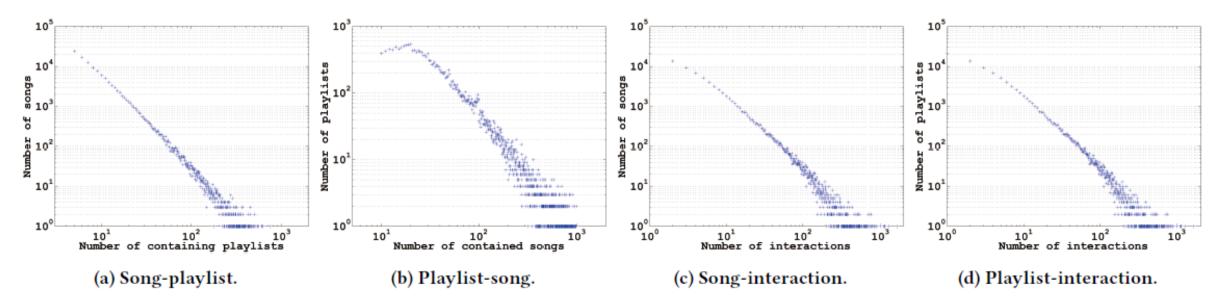
Outline

- Background
- Proposed Method
- Experiments and Results
- Conclusion

Statistics of the evaluation datasets

Dataset	User-song interaction#	User-list interaction#	User#	Song#	Playlist#	User-song density	User-list density
User-Song	1, 128, 065	0	18, 528	123, 628	22, 864	0.05%	0
User-Song-Playlist	1, 128, 065	528, 128	18, 528	123, 628	22, 864	0.05%	0.12%

Dataset statistics w.r.t. song and playlist



Research Questions

- (RQ1) Overall performance comparison w.r.t. individual item recommendation.
- (RQ2) New-item cold-start problem.
- (RQ3) Performance analysis w.r.t. items.
- (RQ4) Overall performance comparison w.r.t. item and list recommendation.
- (RQ5) Importance of items within a list.

Baseline Methods

- BPR [Rendle et al. 2009] (benchmark method)
- BPR-map [Gantner et al. 2010] (two-step model)
- LIRE [Liu et al. 2014] (list recommendation)
- CoFactor [Liang et al. 2016] (relationship among items)

Individual Items Recommendation (RQ1)

Overall performance comparison under the EFM-Side framework

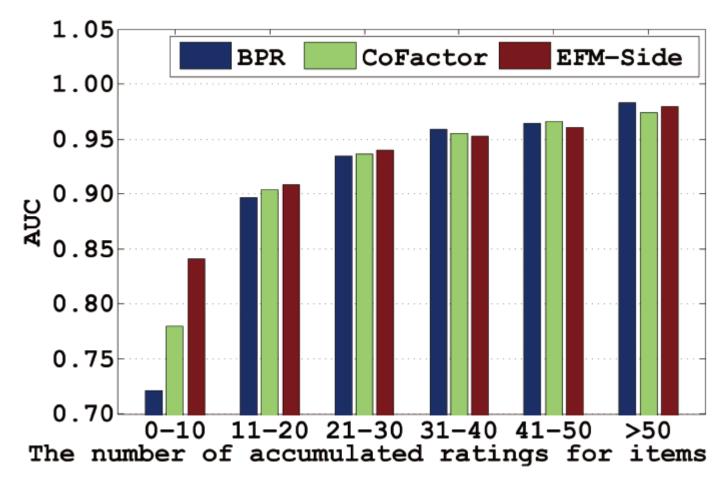
Methods	k=10		k=20		
Wiethous	AUC	p-value	AUC	p-value	
BPR	0.9101 ± 0.002	3.49 <i>e</i> -10	0.9149 ± 0.003	2.86 <i>e</i> -10	
CoFactor	0.9226 ± 0.003	5.09e-09	0.9221 ± 0.004	9.95 <i>e</i> -10	
EFM-Side	0.9357 ± 0.004	_	0.9418 ± 0.003	_	

New-Item Cold-Start Problem (RQ2)

Models comparison in handling the new-item cold-start problem

Methods	k=10		k=20		
Wiethous	AUC	p-value	AUC	p-value	
Random	0.4902 ± 0.002	1.14e-14	0.5019 ± 0.002	8.35 <i>e</i> -15	
BPR-map	0.7729 ± 0.003	8.30 <i>e</i> -12	0.7777 ± 0.003	2.25 <i>e</i> -12	
EFM-Side	0.8381 ± 0.004	_	0.8680 ± 0.003	_	

Performance Analysis w.r.t. Items (RQ3)



Micro-analysis w.r.t. items with different scale of accumulated ratings.

Jointly Recommend Items and Lists (RQ4)

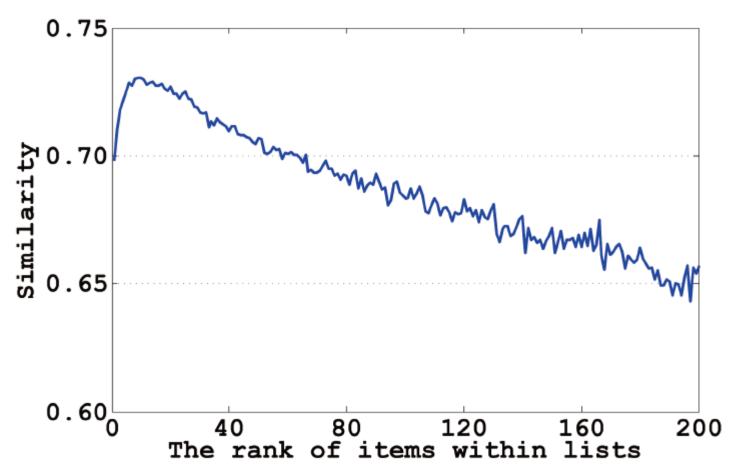
Overall performance comparison under the EFM-Joint framework w.r.t. item recommendation.

Methods	k=10		k=20		
Wiethous	AUC	p-value	AUC	p-value	
BPR	0.9104 ± 0.003	4.30 <i>e</i> -10	0.9175 ± 0.002	3.49 <i>e</i> -10	
LIRE	0.9194 ± 0.003	2.73e-09	0.9218 ± 0.004	7.28 <i>e</i> -10	
CoFactor	0.9231 ± 0.004	8.28 <i>e</i> -09	0.9245 ± 0.003	1.25 <i>e</i> -09	
EFM-Joint	0.9347 ± 0.003	_	0.9431 ± 0.003	1	

Overall performance comparison under the EFM-Joint framework w.r.t. list recommendation.

Methods	k=10		k=20		
Wicthous	AUC	p-value	AUC	p-value	
BPR	0.8593 ± 0.002	9.56e-10	0.8729 ± 0.003	2.07 <i>e</i> -09	
LIRE	0.8675 ± 0.004	8.00 <i>e</i> -09	0.8818 ± 0.003	4.73 <i>e</i> -08	
CoFactor	0.8605 ± 0.003	1.22 <i>e</i> -09	0.8738 ± 0.004	2.59 <i>e</i> -09	
EFM-Joint	0.8792 ± 0.003	_	0.8893 ± 0.004	_	

Importance of Items within a List (RQ5)



The similarity between the list and its contained items.

Outline

23

- Background
- Proposed Method
- Experiments and Results
- Conclusion

- The relationship among items within a list
- New-item cold-start
- User-item and user-list recommendation

Website https://listrec.wixsite.com/efms

Embedding Factorization Models for Jointly Recommending User Generated Lists and Their Contained Items

Abstract

Existing recommender systems mainly focused on recommending individual items by utilizing user-item interactions. However, little attention has been paid to recommend user generated lists (e.g., playlists and booklists). On one hand, user generated lists contain rich signal about item co-occurrence, as items within a list are usually gathered based on a specific theme. On the other hand, user's preferences over a list also indicate his/her preferences over items within the list, and vice versa. We believe that 1) if the rich relevance signal within user generated lists can be properly leveraged, a better recommendation for individual items can be provided, and 2) if user-item and user-list interactions are properly utilized, and the relationship between a list and its contained items is discovered, the performance of user-item and user-list recommendations can be mutually reinforced.

Thanksgiving

Da Cao Assistant Professor in Hunan University caoda@hnu.edu.cn; caoda0721@gmail.com