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ABSTRACT
Existing recommender algorithms mainly focused on recommend-
ing individual items by utilizing user-item interactions. However,
li�le a�ention has been paid to recommend user generated lists
(e.g., playlists and booklists). On one hand, user generated lists
contain rich signal about item co-occurrence, as items within a list
are usually gathered based on a speci�c theme. On the other hand,
a user’s preference over a list also indicate her preference over
items within the list. We believe that 1) if the rich relevance signal
within user generated lists can be properly leveraged, an enhanced
recommendation for individual items can be provided, and 2) if
user-item and user-list interactions are properly utilized, and the
relationship between a list and its contained items is discovered,
the performance of user-item and user-list recommendations can
be mutually reinforced.

Towards this end, we devise embedding factorization models,
which extend traditional factorization method by incorporating
item-item (item-item-list) co-occurrence with embedding-based
algorithms. Speci�cally, we employ factorization model to capture
users’ preferences over items and lists, and utilize embedding-
based models to discover the co-occurrence information among
items and lists. �e gap between the two types of models is
bridged by sharing items’ latent factors. Remarkably, our proposed
framework is capable of solving the new-item cold-start problem,
where items have never been consumed by users but exist in user
generated lists. Overall performance comparisons and micro-level
analyses demonstrate the promising performance of our proposed
approaches.

CCS CONCEPTS
•Information systems → Recommender systems; •Human-
centered computing→ Collaborative �ltering;
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Playlist A

01 Song A

02 Song B

03 Song C

04 Song D

05 Song E

Playlist B

01 Song F

02 Song G

03 Song H

04 Song I

05 Song J

Playlist C

01 Song C

02 Song F

03 Song A

04 Song D

05 Song H

Figure 1: �e illustrations of 1) a user’s preference over
lists; 2) the user’s preference over items within lists; and 3)
relationships among items and lists.
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1 INTRODUCTION
Recommender systems have received great a�ention in recent
years owing to their ability in mitigating the information overload
problem. In the light of this, recommender systems have been
widely applied in multiple domains such as music [6, 7], image
[4, 5], restaurant [14], and mobile app [3, 21]. Existing studies on
recommender systems mainly focused on recommending individual
and independent items to users, and arousing several derived
research topics such as cold-start problem [2], implicit feedback
[1, 13], context-aware [11, 26], deep learning [34], and e�cient
hashing [29, 36]. However, traditional recommender systems
are speci�cally designed for optimizing user-item interactions
and are not optimized for some complex circumstances such
as recommending user generated lists, which are very popular
in various real-world scenarios such as lists of songs created
by listeners on Netease1, lists of books created by readers on
GoodReads2, and lists of products created by shoppers on Amazon3.

User generated lists are created by users and are exposed to
the public by default. Beyond the traditional searching process

* Corresponding author.
1h�ps://music.163.com
2h�ps://www.goodreads.com
3h�ps://www.amazon.com
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for isolated items, the list service o�ers a new way for users to
explore their desired group of items. Figure 1 illustrates a user’s
preference over lists and their contained items in the domain of
music. �e items are manually grouped into a list according to a
speci�c theme, which indicates the co-occurrence feature among
items. Meanwhile, as the list is composed of several items, the
preference over a list somehow signal one’s preference over the
contained items. �erefore, if users’ preferences over items and lists
are properly utilized and the relationship between the list and its
items is discovered, the recommendation performance of user-item
and user-list can be mutually reinforced.

Despite its value and signi�cance, jointly recommending user
generated lists and their contained items remains in its infancy
due to the following challenges: 1) Unlike the traditional item-
independent view, items within a list are gathered together based on
a common theme, which provides rich signal about the correlation
of items. However, how to capture and model the co-occurrence
relationship among items is a non-trivial task. 2) �e cold-start
problem is much heavier for item recommendation since there
are numerous items only exist in lists but are never consumed by
users (referred to as new-item cold-start). �us how to leverage co-
occurrence information among items from lists to alleviate the new-
item cold-start problem is of great interest. 3) A user’s preference
over a list also manifests her preference over items within the list,
and vice versa. �erefore, how to devise an uni�ed framework
to reinforce the recommendation performance of both user-item
and user-list is a valuable research issue. In summary, to be�er
serve users with a quality recommendation service, it is highly
desirable to develop techniques that comprehensively consider
the co-occurrence information among items, new-item cold-start
problem, and joint recommendation of items and lists.

To tackle these problems, we devise embedding factoriza-
tion models, which jointly factorize user-item (user-item-list)
interaction matrix and item-item (item-item-list) co-occurrence
matrix, where the co-occurrence matrix is derived from embedding-
based algorithms. In the �rst stage, we utilize lists as side-
information to harvest the item co-occurrence relationship. �e
co-occurrence information among items is obtained by using
word embedding method, whereby items are correlated within
a �xed-length window. Furthermore, user-item interaction matrix
and item-item co-occurrence matrix are factorized at the same
time. As a byproduct, the new-item cold-start problem can be
solved. In the second stage, we incorporate the list as a word into
the item-item co-occurrence matrix, and refer the newly created
matrix as item-item-list co-occurrence matrix. Moreover, user-item
interaction matrix, user-list interaction matrix, and item-item-list
co-occurrence matrix are factorized within a uni�ed framework.
�us, the recommendation performance of user-item and user-list
can be mutually enhanced. By conducting experiments on our
constructed real-world datasets, we demonstrate that our proposed
approaches yield signi�cant gains as compared with other state-of-
the-art methods.

Our contributions are summarized as follows:

• We explore the promising yet challenging problem of
recommending user generated lists and their contained
items. To the best of our knowledge, this is the �rst work

that a�empts to solve this problem by reinforcing recom-
mendation approach with embedding-based algorithms.

• We present embedding factorization models that jointly
factorize user-item (user-item-list) interaction matrix and
item-item (item-item-list) co-occurrence matrix. �e new-
item cold-start problem can be well addressed, and the
user-item and user-list recommendation performance can
be mutually enhanced.

• Extensive experiments performed on our self-collected
datasets demonstrate the e�ectiveness of our proposed
approaches. Meanwhile, we have released the datasets and
our implementation to facilitate the research community
for further exploration4.

2 RELATEDWORK
�e development of recommender systems has long been divided
into two directions, namely, rating prediction and item recommen-
dation. Rating prediction on explicit feedback has dominated the
research community in the early stage of recommender systems,
primarily due to its simplicity onmodel optimization and evaluation
(as only observer data need to be considered [15, 16, 34]). However,
in real-world scenarios, interactions between users and items
are always in an implicit form, such as purchasing products
and listening music. Obviously, due to the one-class nature of
implicit data, rating prediction is no longer suitable, and the
research trends turn to item recommendation task. Various ranking
algorithms were designed to model implicit datasets, among which
Bayesian personalized ranking (BPR) [25] is a typical work. BPR
optimizes ranking performance through a general pair-wise ranking
function. Meanwhile, users’ preferences over items are inferred by
utilizing a negative sampling strategy. Other commonly used item
recommendation frameworks include point-wise regression [1, 39]
and graph-based models [12, 32].

�e aforementioned item recommendation techniques have
indeed improved the recommendation performance over individual
items. However, in practice, users are o�en exposed to a set of items
and the items are not independent. Along this line, a framework
for recommending relevant and diverse items was proposed [28],
which explicitly takes the coverage of user’s interests into account.
Another curiosity-based workwas introduced [37], which combines
relevance and curiosity in the recommendation process. Except for
the work considering the correlation among items, recommending
a list of several items instead of isolated items is another remarkable
direction. In [40], the authors de�ned the concept of bundle
recommendation, inwhich a bundle refers to a set of items that users
consider or consume together under a speci�c circumstance (e.g.,
limit total price, contextual in�uence, and product compatibility or
consistency). �e work of [27] aims to recommend a list of items
to users by optimizing the list’s click-trough rate. Although these
work recommends a list of items to users, users’ explicit preferences
over lists are ignored. �e closest work to ours is [23], in which
users’ previous interactions with both lists and individual items are
considered simultaneously. �e relationship between the list and its
contained items is built based on a linear combination. Distinct from
previous work, we treat a list as a sentence and items within the list

4h�ps://listrec.wixsite.com/efms

https://listrec.wixsite.com/efms
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as words. We then resort to word embedding algorithms to explore
the list recommendation problem from such a new perspective.

Word embedding models have gained great success in natural
language processing tasks, where words or phrases are mapped to
vectors of real numbers. As a seminal method for word embedding,
word2vec [24] is able to capture a large number of precise syntactic
and semantic word relationships. It has been shown that the
word2vec (skip-gram) is equivalent to perform implicit matrix
factorization [19]. As an extension to word2vec, paragraph2vec [18]
is later introduced, in which paragraph refers to variable-length
pieces of texts (e.g., sentences, paragraphs, and documents). It
is a two-step model, where word vectors and paragraph vectors
are obtained in the �rst and second phase, respectively. Inspired
by paragraph2vec, hierarchical neural language models [8] are
proposed by designing joint training models to obtain word vectors
and paragraph vectors simultaneously.

�ere have been some e�orts to tailor word embedding algo-
rithms for delivering e�ective recommendation. Grbovic et al. [10]
developed prod2vec models, in which a product is treated as a
word and the list of a user’s consumed products is regarded as a
sentence. �e recommendation is conducted by computing the
distance between the new product (word) and the list of user’s
consumed products (sentence). To further enhance the performance
of prod2vec, Vasile et al. [31] proposed to inject item metadata into
the prod2vec to regularize the item embedding. By utilizing the
skip-gram word2vec model and a pair-wise ranking loss, Liu et al.
[22] devised a two-step strategy to explore the context of locations
for personalized location recommendation. A co-factorization
model, CoFactor [20], was presented, which jointly decomposes
the user-item interaction matrix and the item-item co-occurrence
matrix by sharing items’ latent factors. CoFactor is inspired by the
word2vec model which can be interpreted as factorizing the word
co-occurrence matrix. Word embedding algorithms have shown
great ability in enhancing the recommendation performance for
individual items. �is work is orthogonal to the above mentioned
work, as we exploit the embedding-based techniques to tackle the
list recommendation task, which to our knowledge, has never been
explored before.

3 PRELIMINARIES
We �rst introduce the Bayesian-based ranking model, BPR, which is
designed for optimizing users’ preferences over pair-wise samples
(i.e., positive sample against negative or missing sample). We then
describe how the skip-gram word2vec model is translated into
factorizing a word-context matrix. Finally, the hierarchical neural
language model is introduced, which is devised for representing
sentences and their contained words.

3.1 Bayesian Personalized Ranking
BPR is a latent factor-based algorithm [25]. In BPR, each user u
is represented as a latent factor wu , and each item i is denoted
as a latent factor hi . �e predicted rating on item i by user u
is represented as x̂ui and is generated by the inner product of
the corresponding user latent factor and item latent factor, i.e.,
wu · hi . �e optimization criterion for BPR consists of a Bayesian
analysis and the prior probability for the model parameters, which

is represented as,

LBPR = lnp(Θ| >u )
= lnp(>u |Θ)p(Θ)

= ln
∏

(u,i, j)∈DB

σ (x̂ui j )p(Θ)

=
∑

(u,i, j)∈DB

lnσ (x̂ui j ) + lnp(Θ)

=
∑

(u,i, j)∈DB

lnσ (x̂ui j ) − λΘ | |Θ| |, (1)

where >u denotes the desired latent preference structure for the
user u; x̂ui j = x̂ui − x̂uj ; the observed subset DB of >u is used
as training data; σ = 1

1+e−x is the logistic sigmoid function; Θ
denotes all parameters (latent factors of users and items); and λΘ
is the model speci�c regularization parameter. BPR is suitable for
matrix factorization (MF) [16] and k-nearest-neighbor (KNN) [15].
When it comes to MF, the problem of predicting x̂ui can be seen
as the task of estimating a matrix X : U × I . �e estimation of X
is approximated by the matrix product of two low-rank matrices
W : |U | × k and H : |I | × k ,

X̂ :=WHt , (2)

where k is the dimensionality of the approximation. Meanwhile,
the prediction formula can be wri�en as,

x̂ui =< wu , hi >=
k∑
f =1

wuf · hi f . (3)

To optimize the criteria of BPR, a stochastic gradient descent
algorithm, LEARNBPR, is proposed which is based on bootstrap
sampling of training triples. �e model parameters for matrix
factorization are Θ = (W,H). �e optimization with LEARNBPR
only lies on ∂x̂ui j

∂θ .

3.2 Word Embedding as Matrix Factorization
�e skip-gram word2vec model [24] is a simpli�ed neural language
model without any non-linear hidden layers. A log-linear classi�er
is used to predict the surrounding words within a certain distance
based on the current one. To be precise, the object of the skip-gram
model is to maximize the log-likelihood,

LSG =
T∑
t=1

logP(wt−c : wt+c |wt ), (4)

where wt is the t th word in the sequence, and wt−c : wt+c
represents successive words (wt−c ,wt−c+1, ...,wt+c ) that act as
the context to the wordwt . Several sophisticated implementations
are designed for the skip-gram model, such as negative sampling
and hierarchical so�max.

Levy and Goldberg [19] demonstrated that the skip-gram with
negative-sampling word2vec model is implicitly factorizing a word-
context matrix, whose cells are the pointwise mutual information
(PMI) of the respective word and context pairs, shi�ed by a global
constant. Given a training corpus D and a word i , several words
are selected as the context words for word i according to a speci�c
strategy (e.g., the neighboringwords falling in the �x-sizedwindows
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words in the context of a sentence

words and a sentence in the context of a word

Figure 2: �e visualization of the embedding model for
sentences and their contained words.

centered at word i). �e number of times that a context word j
appears in the word i’s context is denoted as #(i, j). PMI between a
word i and its context j is de�ned as,

PMI(i, j) = log #(i, j) · D
#(i) · #(j) , (5)

where #(i) = ∑
j
#(i, j), #(j) = ∑

i
#(i, j), and D = ∑

i j
#(i, j). Levy and

Goldberg [19] further proposed to perform word embedding by
spectral dimensionality reduction (e.g., singular value decomposi-
tion) on the (sparse) shi�ed positive PMI (SPPMI) matrix,

SPPMI(i, j) = max{PMI(i, j) − logh, 0}, (6)
where h is a hyperparameter that controls the density of the SPPMI
matrix.

3.3 Embedding Model for Sentences
As an extension of the skip-gram word2vec model in Eq. (4), Le
and Mikolov [18] proposed the paragraph2vec model to obtain
the paragraph representation, which utilizes a two-phase strategy.
Hierarchical neural language models [8, 10] were further presented
to jointly represent sentences and their contained words. �e
training dataset is derived from the set of sentences G, which
comprised of sentences sm and their contained sequential words
sm = (wm1,wm2, ...,wmN ), where N denotes the sentence length.
As illustrated in [8], both skip-gram and continuous bag-of-word
models can be used in any level of the hierarchy. We thus resort
to utilize skip-gram in all levels of the hierarchy in order to make
it consistent with Section 3.2. �e architecture of such model is
illustrated in Figure 2. �e objective of the hierarchical model is to
maximize the log-likelihood of the streaming data,

LHM =
∑
д∈G
(

∑
wmn ∈sm

logP(wm,n−c : wm,n+c , sm |wmn )

+
∑
sm ∈д
(logP(wm1 : wmN |sm )), (7)

where c is the length of the training context for word sequences.

4 OUR PROPOSED APPROACHES
In this section, we present our embedding factorization models
for jointly recommending user generated lists and their contained
items. In the �rst stage, user generated lists are employed as
side-information to correlate items within them. Meanwhile,
the new-item cold-start problem can be solved, in which items
exist in lists but are new to users. In the second stage, both
user-item interactions and user-list interactions are considered,
user generated lists and their contained items are recommended
simultaneously.

4.1 Utilizing Lists as Side-Information
4.1.1 Exploring the Item Co-occurrence. Given the sparse user-

item interaction matrix X ∈ RU×I fromU users and I items, where
I items are from L lists, BPR decomposes it into the product of
user and item latent factors. User generated lists are considered
as side-information, which means users’ preferences over lists are
ignored in this stage but lists are utilized to correlate items within
them. LetM ∈ RI×J+ be the co-occurrence SPPMI matrix, where I
represents the number of items in lists and J represents the number
of context items5. �e lists are divided into shorter segments of
sequences according to the �xed-length window size c .mi j ∈ M is
computed according to Eq. (5) and Eq. (6). M is factorized into two
low-rank matrices H : |I | × k and C : |J | × k ,

M̂ := HCt , (8)

where k is the dimensionality of the approximation. �e task of the
recommendation is to provide the user with a personalized total
ranking >u of all items I , sorted according to the likelihood that
the user will be interested in each of them.

Both BPR and word2vec’s equivalent matrix factorization are
latent factor-based methods. �e main di�erence is that the former
factorizes user-item interaction matrix to capture users’ preferences
over items, while the la�er factorizes item-item co-occurrence
matrix to obtain the co-occurrence relationship among items. Items’
latent factors are shared across these two models. �erefore, we
propose a joint learning model to seamlessly sew them up,

LEFM−Side =
∑

(u,i, j)∈DT
lnσ (x̂ui j )

+ λs
∑

(i, j,t )∈DS

lnσ (m̂i jt ) − λΘ | |Θ| |, (9)

where DT is the training corpus for the user-item entry x̂ui ; DS
is the training corpus for the item-item entry m̂i j ; λs balances
the performance between BPR and word2vec’s equivalent matrix
factorization. �is is the embedding factorization model by utilizing
lists as side-information (denoted as EFM-Side). In fact, several co-
training models (e.g., collective matrix factorization [30] and multi-
relational matrix factorization [17]) have been proposed, which
co-factorize multiple matrices in the context of relational learning.
We can regard EPM-Side as a special case of MR-BPR [17], which
builds the co-occurrence relationship among items.

5In fact, the set of items in lists and the set of context items are the same.
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Figure 3: �e illustration of the new-item cold-start prob-
lem, where cold-start items only exist in lists and are never
consumed by users.

4.1.2 New-Item Cold-Start Problem. Apart from utilizing list as
side-information to boost recommendation performance, we expect
the new-item cold-start problem to be solved as well. In the new-
item cold-start scenario, the task is to recommend the items that
only exist in lists but are totally fresh to users. Figure 3 visualizes the
new-item cold-start problem. �e latent factors for users’ consumed
items are �nely learnt from user-item interactions. For unconsumed
items, their latent factors are adjusted by factorizing item-item co-
occurrence matrix. �erefore, users’ preferences over unconsumed
items are estimated from the inner products of users’ latent factors
and the unconsumed items’ latent factors. It is worth noting that
in addition to the new-item cold-start problem, EFM-Side can also
well handle warm-start scenarios where the initial few user-item
interactions become available.

4.2 Jointly Recommending Items and Lists
Suppose we haveU users, I items, and L lists, where I items are from
L lists. Beside the sparse user-item interactionmatrixX ∈ RU×I , the
sparse user-list interactionmatrixY ∈ RU×L is also available. Aswe
know, the sentence embedding model is an extension to skip-gram
word2vec, word2vec’s equivalent matrix factorization can thus
naturally expand to the embedding model for sentences. In Figure
2, the sentence is regarded as a word token to be embedded into the
word2vec model. Regarding the concept of window size, the lists are
further divided into shorter segments of sequences with the length
of c . �e sentence is appeared in the context of each word within it,
and each word within the sentence is also appeared in the context of
the sentence. �erefore, the co-occurrence SPPMI matrixM ∈ RI×J+
is further extended to R ∈ R |I

′ |× | J ′ |
+ , where |I ′ | represents the

number of items and lists, and |J ′ | represents the number of context
items and lists. Obviously, |I ′ | = |J ′ | = |I | + |J |. �e elements in R
are computed according to Eq. (5) and Eq. (6). Hence, we propose a
joint learning model to enhance the recommendation performance
of both item and list,

LEFM−Joint =
∑

(u,i, j)∈DT
lnσ (x̂ui j ) +

∑
(u,i, j)∈DL

lnσ (ŷui j )

+ λr
∑

(i, j,t )∈DR

lnσ (r̂i jt ) − λΘ | |Θ| |, (10)

Algorithm 1:�e Optimization for EFM-Side
1 Random initialize Θ;
2 repeat

// Factorize user-item interaction matrix

3 repeat
4 Draw (wu , hi , hj ) from DT ;
5 Θ← Θ + µ

(
e−x̂ui j

1+e−x̂ui j
· ∂x̂ui j∂Θ + λΘ · Θ

)
;

6 until convergence;
// Factorize item-item co-occurrence matrix

7 repeat
8 Draw (hi , cj , ct ) from DS ;
9 Θ← Θ + µ

(
λs

e−m̂i jt

1+e−m̂i jt
· ∂m̂i jt

∂Θ + λΘ · Θ
)
;

10 until convergence;
11 until convergence or max-iteration has been reached;

where DT is the training corpus for the user-item entry x̂ui ;
DL is the training corpus for the user-list entry ŷui ; DR is the
training corpus for the item-item-list entry r̂i j ; and λr balances the
performance between BPR and the embedding model for sentences’
equivalent factorization model. �is is the embedding factorization
model which jointly recommends lists and their contained items
(denoted as EFM-Joint).

4.3 Solutions
4.3.1 Optimization for EFM-Side. �e optimization procedure

for the loss function in Eq. (9) can be realized via the stochastic
gradient descent (SGD) strategy. A sophisticated SGD strategy
algorithm, called LEARNBPR, is proposed [25], which only considers
user-item interactions. As an extension to BPR, EFM-Side further
takes the item co-occurrence into account. We inherit the multi-
relational SGD strategy proposed in [17] to realize our designed
framework. Speci�cally, the optimization procedure is conducted
alternatively with respect to DT and DS . At each iteration of DT
and DS , a training instance is randomly sampled, and a gradient
descent step for all related parameters regarding the loss of the
training instance is performed. Algorithm 1 details the procedure.
�e derivative of the loss function presented in Eq. (9) is:

∂LEFM−Side(x̂ui j )
∂Θ

=
−e−x̂ui j
1 + e−x̂ui j

·
∂x̂ui j

∂Θ
− λΘ · Θ, (11)

∂LEFM−Side(m̂i jt )
∂Θ

=λs
−e−m̂i jt

1 + e−m̂i jt
·
∂m̂i jt

∂Θ
− λΘ · Θ. (12)

�e derivatives of x̂ui j and m̂i jt are,

∂x̂ui j

∂Θ
=


hi f − hj f i f θ = wuf ,

wuf i f θ = hi f ,
−wuf i f θ = hj f ,
0 else

(13)

∂m̂i jt

∂Θ
=


cj f − ct f i f θ = hi f ,
hi f i f θ = cj f ,
−hi f i f θ = ct f ,
0 else

(14)
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Table 1: Statistics of the evaluation datasets.

Dataset User-song interaction# User-list interaction# User# Song# Playlist# User-song density User-list density
User-Song 1, 128, 065 0 18, 528 123, 628 22, 864 0.05% 0

User-Song-Playlist 1, 128, 065 528, 128 18, 528 123, 628 22, 864 0.05% 0.12%

Algorithm 2:�e Optimization for EFM-Joint
1 Random initialize Θ;
2 repeat

// Factorize user-item interaction matrix

3 repeat
4 Draw (wu , hi , hj ) from DT ;
5 Θ← Θ + µ

(
e−x̂ui j

1+e−x̂ui j
· ∂x̂ui j∂Θ + λΘ · Θ

)
;

6 until convergence;
// Factorize user-list interaction matrix

7 repeat
8 Draw (wu , hi , hj ) from DL ;
9 Θ← Θ + µ

(
e−ŷui j

1+e−ŷui j
· ∂ŷui j∂Θ + λΘ · Θ

)
;

10 until convergence;
// Factorize item-item-list co-occurrence

matrix

11 repeat
12 Draw (hi , cj , ct ) from DR ;
13 Θ← Θ + µ

(
λr

e−r̂i jt
1+e−r̂i jt

· ∂r̂i jt∂Θ + λΘ · Θ
)
;

14 until convergence;
15 until convergence or max-iteration has been reached;

where f denotes the f th latent feature of the corresponding
latent factor. We alternatively factorize user-item interaction
matrix and item-item co-occurrence matrix until convergence or
the maximum number of iterations is reached. �e optimization
procedure applies to the new-item cold-start problem as well.

4.3.2 Optimization for EFM-Joint. �e optimization procedure
for EFM-Joint is similar to the one illustrated in Section 4.3.1. �e
main di�erence is that the user-list interaction matrix is considered
and the co-occurrence matrix is reconstructed which takes the list
into account. We thus still resort to conduct SGD optimization
alternatively with respect to DT , DL , and DR . Algorithm 2 details
the detailed procedure. �e derivative of the loss function presented
in Eq. (10) is,

∂LEFM−Joint(x̂ui j )
∂Θ

=
−e−x̂ui j
1 + e−x̂ui j

·
∂x̂ui j

∂Θ
− λΘ · Θ, (15)

∂LEFM−Joint(ŷui j )
∂Θ

=
−e−ŷui j
1 + e−ŷui j

·
∂ŷui j

∂Θ
− λΘ · Θ, (16)

∂LEFM−Joint(r̂i jt )
∂Θ

=λr
−e−r̂i jt
1 + e−r̂i jt

·
∂r̂i jt

∂Θ
− λΘ · Θ. (17)

�e derivatives of x̂ui j , ŷui j , and r̂i jt are,

∂x̂ui j

∂Θ
=


hi f − hj f i f θ = wuf ,

wuf i f θ = hi f ,
−wuf i f θ = hj f ,
0 else

(18)

∂ŷui j

∂Θ
=


hi f − hj f i f θ = wuf ,

wuf i f θ = hi f ,
−wuf i f θ = hj f ,
0 else

(19)

∂r̂i jt

∂Θ
=


cj f − ct f i f θ = hi f ,
hi f i f θ = cj f ,
−hi f i f θ = ct f ,
0 else

(20)

where f also denotes the f th latent feature of the corresponding
latent factor. �e factorizations for user-item interaction matrix,
user-list interactionmatrix, and item-item-list co-occurrencematrix
are alternatively conducted until convergence or max-iteration has
been reached.

5 EXPERIMENTS
In this section, we conduct extensive experiments on our self-
collected datasets to answer the following �ve research questions:
RQ1 How does our designed EFM-Side approach perform as

compared with other state-of-the-art competitors?
RQ2 How does EFM-Side perform in handling the new-item

cold-start problem?
RQ3 Does EFM-Side consistently outperform other algorithms

with respect to items with di�erenct scale of ratings?
RQ4 How is the recommendation performance of user-item and

user-list under the EFM-Joint framework?
RQ5 Are the items within a list equally important? Is EFM-Joint

able to �nd the most representative item within a list?

5.1 Experimental Settings
5.1.1 Datasets Construction. We constructed the dataset by

crawling data from Netease Cloud Music, which enables consumers
to select their desired independent songs or user generated playlists
via entering keywords or browsing from genres. We further
processed the dataset by retaining playlists possessing at least 10
songs, songs appearing at least in 5 playlists, and users consuming at
least 10 songs and 10 playlists. Based on these criteria, we ultimately
obtained 18, 528 users, 123, 628 songs, 22, 864 playlists, 1, 128, 065
user-song interactions, and 528, 128 user-playlist interactions. In
the experiments of evaluating EFM-Side, user-playlist interactions
were erased and we denoted this dataset as User-Song. Meanwhile,
in the experiments on EFM-Joint, user-playlist interactions were
considered and we denoted this dataset as User-Song-Playlist.
Statistics of these two datasets are summarized in Table 1.
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(b) Playlist-song.
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(c) Song-interaction.
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(d) Playlist-interaction.

Figure 4: Dataset statistics w.r.t. song and playlist.

To gain insights into the data with respect to songs and playlists,
we performed some statistical analysis. We plo�ed the song and
playlist distributions with respect to the number of containing
playlists and the number of contained songs in Figure 4a and
4b (log-log plot), respectively. As we can see, both songs and
playlists show a long-tail distribution — most songs appeared in
few playlists, and only a small proportion of playlists have many
songs. �e distributions of songs and playlists with di�erent scales
of interactions are revealed in Figure 4c and 4d, which also show a
long-tail distribution. �is is consistent with most recommendation
benchmarks, such as the Nex�ix [15] and Yelp [14] datasets, and
highlights the sparsity challenge faced by recommender systems.

In our experiments, we used two di�erent strategies to generate
the training, validation, and testing sets for di�erent evaluation
se�ings. 1) In the overall performance comparisons for EFM-
Side and EFM-Joint, the original User-Song and User-Song-Playlist
datasets were divided into three disjoint sets respectively, with
80%, 10%, and 10% randomly selected interactions for training,
validation and testing, respectively. 2) In the new-item cold-start
problem handling, 80% of songs were randomly selected and their
corresponding user-song interactions were utilized for training, 10%
of songs were randomly selected and their user-song interactions
were used for validation, and the remaining 10% of songs and their
user-song interactions were used for testing.

5.1.2 Evaluation Metrics. As practical recommender systems
usually generate a ranked list of items for a given user, we evaluate
the ranking performance. AUC [25], the area under the ROC curve,
is a commonly used metric for evaluating the quality of a ranking
list. Let the disjoint training and testing sets be Strain and Stest,
respectively. �e average AUC can be computed as,

AUC = 1
|U |

∑
u

1
|E(u)|

∑
(i, j)∈E(u)

δ (x̂ui > x̂uj ), (21)

where δ (x̂ui > x̂uj ) is an indicator function which returns 1 if
x̂ui > x̂uj is true, and 0 otherwise. �e evaluation pair for each
user u is,

E(u) := {(i, j)|(u, i) ∈ Stest ∧ (u, j) < (Stest ∪ Strain)} . (22)

A higher value of AUC indicates be�er performance for ranking
performance. �e �oor of AUC from random guess is 0.5 and the
best result is 1.

5.1.3 Baseline Methods. To justify the e�ectiveness of our
proposed EFM-Side and EFM-Joint methods, we compared with the
following state-of-the-art algorithms.
BPR [25]. �is is a sampling-based algorithm that optimizes
the pair-wise ranking between observed instances and sampled
negative instances. It optimizes parameters by SGD, and is used in
the experiments for benchmarking the overall performance of both
EFM-Side and EFM-Joint.
BPR-map [9]. �is is a two-step model, where the latent factors
for the entities in the auxiliary domain are obtained in the �rst step
and the latent factors for other entities in the target domain are
acquired in the second step. It is mainly designed for mitigating
the cold-start issue in the target domain. It would be used in the
experiment for new-item cold-start problem.
LIRE [23]. �is method considers users’ previous interactions
with both individual items and user generated lists. It weights
items within lists based on both position of items and personalized
list consumption pa�ern. It also applies the BPR framework for
optimization, and is a strong competitor in jointly recommending
lists and their contained items.
CoFactor [20]. �is is a joint learning model that combines
recommendation algorithm with word embedding model. �e co-
occurrence relationships among items (lists) are discovered from
users’ consumed sequential items (lists). It would be deployed in
overall performance comparisons for both EFM-Side and EFM-Joint.

All hyper-parameters and learning rates of aforementioned
approaches were carefully tuned on the validation set by grid search.
We repeated every experiment for 5 times to report the average
results. We also conducted the paired two-sample t-test based on
the 5 times experiment results. We used Python for our algorithm
implementations. All the experiments were conducted over a server
equipped with Intel(R) Core(TM) i7-6700 CPU at 4.00 GHz on 32G
RAM, 8 cores and 64-bit Windows 7 operating system.

5.2 Individual Items Recommendation (RQ1)
To demonstrate the overall e�ectiveness of our proposed EFM-
Side as introduced in Section 5.1.3, we compared the EFM-Side
with state-of-the-art item recommendation approaches BRP and
CoFactor. Users’ interactions with lists were ignored in this stage.
EFM-Side acquires the co-occurrence relationships among items
from user generated lists, while CoFactor obtains them from user
consumed item sequences.
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Table 2: Overall performance comparison under the EFM-
Side framework.

Methods k=10 k=20
AUC p-value AUC p-value

BPR 0.9101 ± 0.002 3.49e-10 0.9149 ± 0.003 2.86e-10
CoFactor 0.9226 ± 0.003 5.09e-09 0.9221 ± 0.004 9.95e-10
EFM-Side 0.9357 ± 0.004 – 0.9418 ± 0.003 –

Table 3: Models comparison in handling the new-item cold-
start problem.

Methods k=10 k=20
AUC p-value AUC p-value

Random 0.4902 ± 0.002 1.14e-14 0.5019 ± 0.002 8.35e-15
BPR-map 0.7729 ± 0.003 8.30e-12 0.7777 ± 0.003 2.25e-12
EFM-Side 0.8381 ± 0.004 – 0.8680 ± 0.003 –

Experimental results are shown in Table 2. We have the
following observations: 1) Our EFM-Side achieves the AUC of
0.9357 and 0.9418 when k = 10 and k = 20, respectively. It
shows substatial improvements over BPR, CoFactor of 2.81%, 1.42%
when k = 10, and 2.94%, 2.14% when k = 20. All the p-values
between our model and each of the baselines are much smaller than
0.05, indicating that the improvements are statistically signi�cant.
�is validates that the accuracy of EFM-Side can be strengthened
through harvesting co-occurrence relationships among items from
user generated lists. 2) �e performance of CoFactor is superior
to that of BPR. CoFactor does not take advantage of any extra
information, but the co-occurrence relationships among items can
still be uncovered from user consumed item sequences. �e cost is
some additional computation. 3) EFM-Side achieves preferable
results as compared with CoFactor, which illustrates that the
co-occurrence relationships among items generated from user
generated lists are more useful as compared with that of user
consumed item lists.

5.3 New-Item Cold-Start Problem (RQ2)
As introduced in Section 4.1.2, the new-item cold-start problem
refers to recommend items that are never consumed by users but
exist in user generated lists. We compared the performance of
EFM-Side with that of 1) Random and 2) BPR-map. Random is
the worst result for ranking performance, which randomly selects
items for recommendation. For the new-item cold-start scenario,
if we know nothing about the new items, the random guess is the
most reasonable results. BPR-map utilizes a two-step strategy to
cope with the cold-start problem. In the �rst step of BPR-map, the
latent factors of items are obtained by factorizing the item-item
co-occurrence matrix. In the second step, user personalized ranking
are optimized by �xing item latent factors, which are obtained in
the �rst stage, and adjusting user latent factors.

Results are displayed in Table 3. We observed: 1) EFM-Side
achieves the AUC of 0.8381 and 0.8680 when k = 10 and k = 20,
respectively, which gains improvements over Random, BPR-map at
70.97%, 8.43% when k = 10, and 72.94%, 11.61% when k = 20. �e
paired two-sample t-test also supports the conclusion of signi�cant
improvements. Experimental results demonstrate the e�ectiveness
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Figure 5: Micro-analysis w.r.t. items with di�erent scale of
accumulated ratings.

of EFM-Side in handling the new-item cold-start problem. 2) �e
random guess for the new-item cold-start scenario is around 0.5
with respect to AUC. In fact, the performance of both BPR-map and
EFM-Side signi�cantly exceeds the bo�om line, which illustrates
the e�ectiveness of these methods in handling the new-item cold-
start problem. 3) EFM-Side consistently outperforms BPR-map
with respect to di�erent sizes of latent factors. �e main di�erence
between BPR-map and EFM-Side is that BPR-map utilizes a two-
step process while EFM-Side employs a joint learning strategy.
�e latent factors separately obtained from the factorization of
item-item co-occurrence matrix and the factorization of user-
item interaction matrix belong to two di�erent spaces. EFM-Side
connects these two di�erent semantic spaces by sharing common
item latent factors, which obviously outperforms the suboptimal
two-step approach.

5.4 Performance Analysis w.r.t. Items (RQ3)
�e data sparsity problem is extremely serious as revealed in
Figure 4c. Moreover, we know EFM-Side overall outperforms other
algorithms from the results illustrated in Section 5.2, but we are not
sure whether EFM-Side is consistently superior to other competitors
with respect to items with di�erent scales of accumulated ratings.
In order to answer this question, we further disposed the results
obtained in Section 5.2 by selecting items whose number of training
ratings is located in speci�c range (i.e., 1-10, 11-20, …, > 50).

�e performance of various methods is shown in Figure 5. We
have the following observations: 1) EFM-Side outperforms BPR and
CoFactor for sparse items (i.e., accumulated ratings of 1-10, 11-20,
and 21-30). EFM-Side considers the co-occurrence information
among items, which has a great e�ect on alleviating the data
sparsity problem when the item has only a few ratings. 2) With
the increasing of the number of training ratings for items, the
performance of BPR, CoFactor, and EFM-Side is ge�ing closer. �is
is because that when enough ratings are obtained for the items, the
latent factors of items can bewell learnt evenwithout co-occurrence
information among items.
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Table 4: Overall performance comparison under the EFM-
Joint framework w.r.t. item recommendation.

Methods k=10 k=20
AUC p-value AUC p-value

BPR 0.9104 ± 0.003 4.30e-10 0.9175 ± 0.002 3.49e-10
LIRE 0.9194 ± 0.003 2.73e-09 0.9218 ± 0.004 7.28e-10

CoFactor 0.9231 ± 0.004 8.28e-09 0.9245 ± 0.003 1.25e-09
EFM-Joint 0.9347 ± 0.003 – 0.9431 ± 0.003 –

Table 5: Overall performance comparison under the EFM-
Joint framework w.r.t. list recommendation.

Methods k=10 k=20
AUC p-value AUC p-value

BPR 0.8593 ± 0.002 9.56e-10 0.8729 ± 0.003 2.07e-09
LIRE 0.8675 ± 0.004 8.00e-09 0.8818 ± 0.003 4.73e-08

CoFactor 0.8605 ± 0.003 1.22e-09 0.8738 ± 0.004 2.59e-09
EFM-Joint 0.8792 ± 0.003 – 0.8893 ± 0.004 –

5.5 Jointly Recommend Items and Lists (RQ4)
In the EFM-Joint framework, the recommendation performance
of items and lists can be mutually reinforced. We compared the
performance of EFM-Joint with other state-of-the-art algorithms: 1)
BPR; 2) LIRE; and 3) CoFactor. LIRE treats the list as a combination
of items, and user preferences over items and lists are mutually
reinforced. CoFactor discovers the co-occurrence among items and
lists from users’ interactions with both items and lists.

�e comparison results are illustrated in Table 4 and Table 5.
We can observe that: 1) Regarding to the item recommendation
performance, EFM-Joint achieves the AUC of 0.9347 and 0.9431
whenk = 10 andk = 20, which gains improvements over BPR, LIRE,
CoFactor at 2.67%, 1.66%, 1.26% when k = 10, and 2.79%, 2.31%,
2.01% when k = 20. When it comes to the list recommendation,
EFM-Joint obtains the AUC of 0.8792 and 0.8893 when k = 10 and
k = 20, which shows improvements over BPR, LIRE, CoFactor at
2.32%, 1.35%, 2.17% when k = 10, and 1.88%, 0.85%, 1.77% when
k = 20. �e improvements are statistically signi�cant. EFM-Joint
consistently outperforms other competitors in the recommendation
performance of both item and list, which demonstrates the e�ec-
tiveness of our proposed joint learning framework. 2) LIRE beats
CoFactor in the list recommendation, but lags behind in the item
recommendation. LIRE is able to utilize the relationship between
a list and its contained items. �e recommendation performance
of item can strengthen that of list. �is is why LIRE outperforms
CoFactor in the list recommendation. However, the co-occurrence
relationships among items are ignored in LIRE, but are incorporated
in CoFactor. �is is why CoFactor outperforms LIRE in the item
recommendation. 3) �e recommendation performance of BPR
and CoFactor in the list recommendation are quite similar. User’s
consumption process over items always show sequential feature,
but the sequential feature is not that much obvious in the list
consumption process (a user always consumes the list individually).
�e co-occurrence relationships among lists is not that much
signi�cant. �is is why CoFactor does not show great improvement
over BPR.

0 40 80 120 160 200
0.60

0.65

0.70

0.75

The rank of items within lists

S
im

ila
rit

y

Figure 6: �e similarity between the list and its contained
items.

5.6 Importance of Items within A List (RQ5)
As discussed in word embedding algorithms [18, 24], the syntactic
analogies and the semantic analogies of words and sentences can
be found by computing the cosine distance among them. Once we
have obtained the embedding representations of both items and
lists, we can compute the similarity (the similarity is equal to 1 -
distance) between a list and its contained words. In our datasets, we
only know the rank of each item within a list, but we are not sure
whether the items within a list are equally important. To answer
this question, we explored the similarity between the embedding
representation of a list and the embedding representations of its
contained items. If the similarity between a list and an item is
relatively high, it shows the item is relatively representative and
important for the list.

In our datasets, the minimum and maximum length of lists is
10 and 996, respectively. �e average length of lists is 77.8. Figure
6 shows the average similarity results between lists and their top
200 ranked items. As can be seen, the similarity increases �rst
and then decreases, and reaches its maximum when the rank of
item is around 10. �is �nding is relatively novel. First of all,
the most representative item within a list is not ranked in the top
of the list but in around the 10th position. It is mainly because
when a user browses a list, his/her a�ention concentrates on items
around the 10th position and then decides whether to favour the
list. Meanwhile, the similarity between the list and its contained
items gradually decreases when the rank of item increases beyond
10. �is is mainly because the user’s a�ention gradually faded with
the increasing rank of items within the list.

6 CONCLUSION AND FUTUREWORK
�is paper presents novel embedding factorization models for
jointly recommending user generated lists and their contained
items. Our methods nicely combine factorization models and
embedding-based algorithms. Particularly, EFM-Side employs the
list as side-information to discover the co-occurrence relationships
among items. As a byproduct, it is capable of solving the new-
item cold-start problem, where items are not yet consumed by
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users but exist in lists. By utilizing user interactions with item
and list simultaneously, the recommendation performance of user-
item and user-list can be mutually reinforced under the EFM-
Joint framework. To validate the e�ectiveness of our proposed
approaches, we constructed two benchmark datasets. Experiment
results over these two datasets have demonstrated the e�ectiveness
of our work. We also performedmicro-analysis to showwhether the
items within a list are equally important, and whether EFM-Joint is
able to �nd the most representative item in a list.

In future, we plan to extend our work in the following three
directions: 1) Modeling the sequential feature in user generated
sequential behaviors. Although the sequential behavior is ignored
in user generated lists, sequential feature is extremely important
in some real-world scenarios (e.g., music listening behavior and
visiting tourist a�ractions). 2) Realizing the item and list recom-
mendation in an online se�ing [14, 38]. Users’ personal interests
evolve over time, so do the content of user generated lists and
their contained items. As it is computationally prohibitive to re-
train a recommender model online, it would be helpful to utilize
users’ reviews to capture the dynamic changes in an online learning
manner. 3) Modeling multi-modal data. �e current social web has
been overwhelmed with user-generated images and videos. With
recent advances on image understanding [33, 35], it is interesting
to develop semantic list recommendation methods for multi-media
objects.
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