BiNE: Bipartite Network Embedding

Ming Gao
School of Data Science and Engineering
East China Normal University
Shanghai, China
mgao@dase.ecnu.edu.cn

Xiangnan He"

School of Computing
National University of Singapore
Singapore
xiangnanhe@gmail.com

ABSTRACT

This work develops a representation learning method for bipartite
networks. While existing works have developed various embedding
methods for network data, they have primarily focused on homo-
geneous networks in general and overlooked the special properties
of bipartite networks. As such, these methods can be suboptimal
for embedding bipartite networks.

In this paper, we propose a new method named BiNE, short for
Bipartite Network Embedding, to learn the vertex representations
for bipartite networks. By performing biased random walks pur-
posefully, we generate vertex sequences that can well preserve the
long-tail distribution of vertices in the original bipartite network.
We then propose a novel optimization framework by accounting
for both the explicit relations (i.e., observed links) and implicit
relations (i.e., unobserved but transitive links) in learning the ver-
tex representations. We conduct extensive experiments on several
real datasets covering the tasks of link prediction (classification),
recommendation (personalized ranking), and visualization. Both
quantitative results and qualitative analysis verify the effectiveness
and rationality of our BiNE method.
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1 INTRODUCTION

The bipartite network is a ubiquitous data structure to model the
relationship between two types of entities. It has been widely used
in many applications such as recommender systems, search engines,
question answering systems and so on. For example, in search
engines, queries and webpages form a bipartite network, where
the edges can indicate users’ click behaviors that provide valuable
relevance signal [1, 2]; in another application of recommender
systems, users and items form a bipartite network, where the edges
can encode users’ rating behaviors that contain rich collaborative
filtering patterns [3].

To perform predictive analytics on network data, it is crucial to
first obtain the representations (i.e., feature vectors) for vertices.
Traditional vector space methods such as the bag-of-words rep-
resentations capture too few semantics and are inefficient to deal
with large-scale dynamic networks in practical applications. Recent
advances in data mining and information retrieval have focused on
learning representations from data [4-7]. In particular, they embed
vertices into a low dimensional space, i.e., representing a vertex
as a learnable embedding vector. Based on the vertex embeddings,
standard machine learning techniques can be applied to address
various predictive tasks such as vertex labeling, link prediction,
clustering and so on.

To date, existing works have primarily focused on embedding
homogeneous networks where vertices are of the same type [4, 8—
10]. Following the pioneering work of DeepWalk [8], these methods
typically apply a two-step solution: first performing random walks
on the network to obtain a “corpus” of vertices, and then applying
word embedding methods such as word2vec [11] to obtain the
embeddings for vertices. Despite effectiveness and prevalence, we
argue that these methods can be suboptimal for embedding bipartite
networks due to two primary reasons:

(1) The type information of vertices is not considered. Distinct
from homogeneous networks, there are two types of vertices
in a bipartite network. Although edges exist between vertices
of different types only, there are essentially implicit relations
between vertices of the same type. For example, in the user-
item bipartite network built for recommendation, there exists
an implicit relation between users which can indicate their
preference in consuming the same item; and importantly, it
is recently reported that modeling such implicit relations can
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(a) YouTube (b) Random walk generator

Figure 1: The vertex distribution of (a) the real-world
YouTube dataset and (b) the corpus generated by the ran-
dom walk generator of DeepWalk. The generated corpus
does not show the desired power-law distribution due to the
improper design of the generator.

improve the recommendation performance [12]. However, exist-
ing network embedding methods modeled the explicit relation
(i.e., observed edges) only and ignored the underlying implicit
relations. While the corpus generated by random walks may
capture such high-order implicit relations to a certain extent,
we argue that a more effective way is to encode such implicit
relations into representation learning in an explicit manner.

(2) The generated corpus may not preserve the characteristics of
a bipartite network. To demonstrate this point, we plot the
frequency distribution of vertices in a real YouTube dataset!
in Figure 1(a). We can see that the vertices exhibit a standard
power-law distribution with a slope of —1.582. By contrast, we
plot the frequency distribution of vertices in a corpus generated
by DeepWalk in Figure 1(b). We find that the generated distribu-
tion differs significantly from the real distribution, and it cannot
be well described by a power-law distribution. We point out
that the failure of DeepWalk is due to the improper design of
the random walk generator, which is suboptimal for embedding
bipartite networks. Specifically, it generates the same number
of random walks starting from each vertex and constrains the
length of walks to be the same; this limits the capability of the
generator and makes it difficult to generate a corpus following
a power-law distribution — which is a common characteristics
of many real-world bipartite networks [13].

To our knowledge, none of the existing works has paid special at-
tention to embed bipartite networks. While a recent work by Dong
et al. [14] proposed metapath2vec++ for embedding heterogeneous
networks which can also be applied to bipartite networks, we argue
that a key limitation is that it treats the explicit and implicit rela-
tions as contributing equally to the learning. In real-world bipartite
networks, the explicit and implicit relations typically carry different
semantics. As such, they should be treated differently and assigned
to varying weights in learning the vertex embeddings. This can
be evidenced by existing recommendation works [15] that usually
assign varying weights on different sources of information to allow
a flexible tuning on the learning process.

In this work, we focus on the problem of learning vertex represen-
tations for bipartite networks. We propose BiNE (short for Bipartite

IThis YouTube dataset contains 1 million videos and 5 million links, which are down-
loaded from: http://socialnetworks.mpi-sws.org/data-imc2007.html
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Network Embedding), which addresses the aforementioned limita-
tions of existing network embedding methods. Below we highlight
two characteristics of our BiNE method.

(1) To account for both the explicit relations and implicit relations,
we propose a joint optimization framework. For each relation,
we design a dedicated objective function; by sharing the vertex
embeddings, the objective functions for different relations rein-
force each other and lead to better vertex embeddings. Specifi-
cally, the modeling of the explicit relations aims to reconstruct
the bipartite network by focusing on observed links. For the
modeling of implicit relations, we aim to capture the high-order
correlations in the bipartite network. To avoid the explosive
growth of complexity in expanding a network, we similarly
resort to performing random walks and design the objective
function based on the generated corpora.

(2) To retain the properties of the bipartite network as many as
possible, we propose a biased and self-adaptive random walk
generator. Specifically, we set the number of random walks
starting from each vertex based on its importance, making the
vertex distribution in the generated corpus more consistent
with the original bipartite network. Moreover, instead of setting
a uniform length for all random walks, we allow a walk to
be stopped in a probabilistic way. Through this way, we can
generate vertex sequences of varying lengths, which is more
analogous to the sentences in natural language. Our empirical
study shows that our generator can generate corpus more close
to the distribution of the real-world networks.

The remainder of the paper is organized as follows. We first
review related work in Section 2. We formulate the problem in
Section 3, before delving into details of the proposed method in
Section 4. We perform extensive empirical studies in Section 5 and
conclude the paper in Section 6.

2 RELATED WORK

2.1 Network Representation Learning

Our work is related to vertex representation learning methods
on homogeneous networks, which can be categorized into two
types: matrix factorization (MF)-based and neural network-based
methods.

MF-based methods are either linear [16] or nonlinear [17] in
learning vertex embeddings. The former employs the linear trans-
formations to embed network vertices into a low dimensional em-
bedding space, such as singular value decomposition (SVD) and
multiple dimensional scaling (MDS) [16]. However, the latter maps
network vertices into a low dimensional latent space by utilizing
the nonlinear transformations, e.g., kernel PCA, spectral embedding
, marginal fisher analysis (MFA), and manifold learning approaches
include LLE and ISOMAP [17]. Generally speaking, MF-based meth-
ods have two main drawbacks: (1) they are usually computationally
expensive due to the eigen-decomposition operations on data matri-
ces, making them difficult to handle large-scale networks [18, 19];
(2) their performance are rather sensitive to the predefined proxim-
ity measures for calculating the affinity matrix.

Neural network-based methods are the state-of-art vertex rep-
resentation learning techniques. The pioneer work DeepWalk [8]
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and Node2vec [4] extend the idea of Skip-gram [11] to model ho-
mogeneous network, which is convert to a corpus of vertex se-
quences by performing truncated random walks. However, they
may not be effective to preserve both explicit and implicit relations
of the network. There are some follow-up works exploiting both
1st-order and 2nd-order proximities between vertices to embed
homogeneous networks. Specifically, LINE [20] learns two sepa-
rated embeddings for 1st-order and 2nd-order relations; SDNE [21]
incorporates both 1st-order and 2nd-order proximities to preserve
the network structure; and GraRep [22] further extends the method
to capture higher-order proximities. Besides capturing high-order
proximities, there are several proposals to incorporate side informa-
tion into vertex embedding learning, such as vertex labels [10, 23],
community information [24], textual content [25], user profiles [9],
location information [26], among others.

It is worth pointing out that the above mentioned methods are
designed for embedding homogeneous networks, for which there
is only one type of vertices. In addition, the “corpus” generated
by the truncated random walks may not capture the characteris-
tics of the network structure, such as the power-law distribution
of vertex degrees. Thus, these homogeneous network embedding
methods might be suboptimal for learning vertex representations
for a bipartite network.

Metapath2vec++ [14], HNE [27] and EOE [28] are representative
vertex embedding methods for heterogeneous networks. Although
they can be applied to bipartite network which can be seen as a
special type of heterogeneous networks, they are not tailored for
learning on bipartite networks. Specifically, HNE aims to integrate
content and linkage structures into the embedding process, and
Metapath2vec++ ignores the strength of the relations between ver-
tices and treats the explicit and implicit relations as equally. As
such, they are suboptimal for vertex representation learning for a
bipartite network.

2.2 Bipartite Network Modeling

As a ubiquitous data structure, bipartite networks have been mined
for many applications, among which vertex ranking is an active
research problem. For example, HITS [29] learns to rank vertices
by capturing some semantic relations within a bipartite network.
Co-HITS [1] incorporates content information of vertices and the
constraints on relevance into vertex ranking of bipartite network.
BiRank [3] ranks vertices by taking into account both the network
structure and prior knowledge.

Distributed vertex representation is an alternative way to lever-
age signals from bipartite network. Unlike the ranking task, it learns
a low dimensional representation of a vertex, which can be seen as
the “features” of the vertex that preserves more information rather
than simply a ranking score. Latent factor model (LFM), which
has been widely investigated in the field of recommender systems
and semantic analysis, is the most representative model. And a
typical implementation of LFM is based on matrix factorization [30—
32]. Recent advances utilize deep learning methods to learn vertex
embeddings on the user-item network for recommendation [33].
It is worth pointing out that these methods are tailored for the
recommendation task, rather than for learning informative vertex
embeddings. Moreover, they model the explicit relations in bipartite
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Figure 2: An example of the bipartite network structure

network only, which can be improved by incorporating implicit
relations as shown in [12, 15].

3 PROBLEM FORMULATION

We first give notations used in this paper, and then formalize the
bipartite network embedding problem to be addressed.
Notations. Let G = (U, V, E) be a bipartite network, where U and
V denote the set of the two types of vertices respectively, and
E C U XV defines the inter-set edges. As shown in Figure 2, u; and
v;j denote the i-th and j-th vertex in U and V, respectively, where
i=1,2,..,|U|landj = 1,2, ..., |V|]. Each edge carries a non-negative
weight w;;, describing the strength between the connected vertices
u; and vj; if u; and v; are disconnected, the edge weight w;; is set
to zero. Therefore, we can use a |U| x |[V| matrix W = [w;j] to
represent all weights in the bipartite network.
Problem Definition. The task of bipartite network embedding
aims to map all vertices in the network into a low-dimensional
embedding space, where each vertex is represented as a dense em-
bedding vector. In the embedding space, both the implicit relations
between vertices of the same type and the explicit relations be-
tween vertices of different types should be preserved. Formally, the
problem can be defined as:
Input: A bipartite network G = (U, V, E) and its weight matrix W.
Output: A map function f : UUV — R¥, which maps each vertex
in G to a d-dimensional embedding vector.
To keep the notations simple, we use 0; and v; to denote the em-
bedding vectors for vertices u; and vj, respectively. As such, we
can present the embedding vectors of all vertices in the bipartite
network as two matrices U = [u;] and V = [vj].

4 BINE: BIPARTITE NETWORK EMBEDDING

A good network embedding should be capable of reconstructing the
original network well. To achieve this aim for a bipartite network,
we consider reconstructing the bipartite network from two per-
spectives — the explicit relations evidenced by the observed edges
and the implicit relations implied by the unobserved but transitive
links. We then learn vertex embeddings by jointly optimizing the
two tasks. This section presents our BiNE method along this line.

4.1 Modeling Explicit Relations

In a bipartite network, edges exist between vertices of two dif-
ferent types, providing an explicit signal on constructing the bi-
partite network. Similar to the modeling of 1st-order proximity
in LINE [20], we model explicit relations by considering the local
proximity between two connected vertices. The joint probability
between vertices u; and vj is defined as:

Pli,j) = — . )

e ijEE Wij (

where wj; is the weight of edge e;;. Obviously, if two vertices are
strongly connected with a larger weight, they will have a higher
probability to be co-occurred.
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Now we consider how to estimate the local proximity between
two vertices in the embedding space. The effectiveness and preva-
lence of word2vec inspire many works [4, 8, 20] to use inner product
to model the interaction between two entities. We follow this set-
ting, and use sigmoid function to transform the interaction value
to the probability space:

B, j) = !

1+ exp(—lfiT\7j) ’ @
where d; € R? and vj € R? are the embedding vectors of vertices
u; and vj, respectively.

With the empirical distribution of the co-occurring probability
between vertices and the reconstructed distribution, we can learn
the embedding vectors by minimizing their difference. We choose
the KL-divergence as the difference measure between distributions,
which can be defined as:

minimize O; = KL(P||P) = Z P(i, j)log({)(l:’]:))
ejj€E P(l’])
) (3)
o — Z wijlog P(i, j).

ejj€E
Intuitively, minimizing this t’)bjective function will make two ver-
tices that are strongly connected in the original network also close
with each other in the embedding space, which preserves the local
proximity as desired.

4.2 Modeling Implicit Relations

As illustrated in existing recommedation works [12, 15], both ex-
plicit and implicit relations are helpful to reveal different semantic
in bipartite networks. To be comprehensive, it is crucial to also
account for the implicit relation between two vertices of the same
type, even though they are not explicitly connected. Intuitively, for
two vertices of the same type, if there exists a path between them,
there should be certain implicit relation between them; the number
of the paths and their length indicate the strength of the implicit
relation. Unfortunately, counting the paths between two vertices
has a rather high complexity of an exponential order, which is infea-
sible to implement for large networks. To encode such high-order
implicit relations among vertices in a bipartite network, we resort
to the solution of DeepWalk. Specifically, the bipartite network is
first converted to two corpora of vertex sequences by performing
random walks; then the embeddings are learned from the corpora
which encodes high-order relations between vertices. In what fol-
lows, we first elaborate how to generate two quality corpora for a
bipartite network.

4.2.1 Constructing Corpus of Vertex Sequences. Itisacom-
mon way to convert a network into a corpus of vertex sequences by
performing random walks on the network, which has been used in
some homogeneous network embedding methods [4, 8]. However,
directly performing random walks on a bipartite network could
fail, since there is no stationary distribution of random walks on
bipartite networks due to the periodicity issue [34]. To address this
issue, we consider performing random walks on two homogeneous
networks that contain the 2nd-order proximity between vertices
of the same type. Following the idea of Co-HITS [1], we define the
2nd-order proximity between two vertices as:

U _ . vV _
Wi = Z Wik Wjks Wi; = Z WkiWkj- (4)
keV keU
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where w;; is the weight of edge e;;. Hence, we can use the |U| X
|U| matrix WU = [wg] and the |V| x |V| matrix WV = [w};] to
represent the two induced homogeneous networks, respectively.

Now we can perform truncated random walks on the two ho-
mogeneous networks to generate two corpora for learning the
high-order implicit relations. As demonstrated in Figure 1, the cor-
pus generated by DeepWalk may not capture the characteristic of a
real-world network. To generate a corpus with a high fidelity, we
propose a biased and self-adaptive random walk generator, which
can preserve the vertex distribution in a bipartite network. We
highlight its core designs as follows:

o First, we relate the number of random walks starting from each
vertex to be dependent on its importance, which can be measured
by its centrality. For a vertex, the greater its centrality is, the more
likely a random walk will start from it. As a result, the vertex
importance can be preserved to some extent.

e We assign a probability to stop a random walk in each step. In
contrast to DeepWalk and other work [14] that apply a fixed
length on the random walk, we allow the generated vertex se-
quences have a variable length, in order to have a close analogy
to the variable-length sentences in natural languages.

Generally speaking, the above generation process follows the prin-
ciple of “rich gets richer”, which is a physical phenomena existing
in many real networks, i.e., the vertex connectivities follow a scale-
free power-law distribution [35].

The workflow of our random walk generator is summarized in
Algorithm 1, where maxT and minT are the maximal and minimal
numbers of random walks starting from each vertex, respectively.
DY (or DY) output by Algorithm 1 is the corpus generated from
the vertex set U (or V). The vertex centrality can be measured by
many metrics, such as degree centrality, PageRank and HITS [29],
etc., and we use HITS in our experiments.

Algorithm 1: WalkGenerator(W, R, maxT, minT, p)
Input

:weight matrix of the bipartite network W, vertex
set R (can be U or V), maximal walks per vertex
maxT, minimal walks per vertex minT, walk
stopping probability p

Output:a set of vertex sequences DR

1 Calculate vertices’ centrality: H = CentralityMeasure(W);

2 Calculate WR w.r.t. Equation (4);

3 foreach vertexv; € R do

4 | = max(H(v;) X maxT, minT);

5 fori=0toldo

6 L Dy, = BiasedRamdomWalk(WR,vi,p);

7 Add Dy, into DR;

8 return DR;

4.2.2 Implicit Relation Modeling. After performing biased
random walks on the two homogeneous networks respectively, we
obtain two corpora of vertex sequences. Next we employ the Skip-
gram model [11] on the two corpora to learn vertex embeddings.
The aim is to capture the high-order proximity, which assumes that
vertices frequently co-occurred in the same context of a sequence
should be assigned to similar embeddings. Given a vertex sequence
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S and a vertex u;, the context is defined as the ws vertices before
u; and after u; in S; each vertex is associated with a context vector
0; (or 51) to denote its role as a context. As there are two types of
vertices in a bipartite network, we preserve the high-order prox-
imities separately. Specifically, for the corpus DU, the conditional
probability to maximize is:

maximize Oy = I—[
u;eSASeDU uceCs(u;)

P(uclu;). (5)

where Cg(u;) denotes the context vertices of vertex u; in sequence
S. Similarly, we can get the objective function for corpus DV:

maximize O3 = 1_[ l_l

vjeSASeDV vceCs(vj)

P(vclvj). ©)

Following existing neural embedding methods [4, 8, 20], we pa-
rameterize the conditional probability P(uc|u;) and P(v¢|v;j) using
the inner product kernel with softmax for output:

exp (i 0.) exp (\7jT5c)
S exp (7 67) S exp (77 9%
where P(uc|u;) denotes how likely u. is observed in the contexts
of u;; similar meaning applies to P(v¢|v;). With this definition,
achieving the goal defined in Equations (5) and (6) will force the
vertices with the similar contexts to be close in the embedding space.
Nevertheless, optimizing the objectives is non-trivial, since each
evaluation of the softmax function needs to traverse all vertices of a
side, which is very time-costing. To reduce the learning complexity,
we employ the idea of negative sampling [11].

Pluclu;) = ,» Ploclvj) = ™

4.2.3 Negative Sampling. The idea of negative sampling is
to approximate the costly denominator term of softmax with some
sampled negative instances [36]. Then the learning can be per-
formed by optimizing a point-wise classification loss. For a center
vertex u;, high-quality negatives should be the vertices that are
dissimilar from u;. Towards this goal, some heuristics have been
applied, such as sampling from popularity-biased non-uniform dis-
tribution [11]. Here we propose a more grounded sampling method
that caters the network data.

First we employ locality sensitive hashing (LSH) [37] to block
vertices after shingling each vertex by its ws-hop neighbors with
respect to the topological structure in the input bipartite network.
Given a center vertex, we then randomly choose the negative sam-
ples from the buckets that are different from the bucket contained
the center vertex. Through this way, we can obtain high-quality and
diverse negative samples, since LSH can guarantee that dissimilar
vertices are located in different buckets in a probabilistic way [37].

Let N¢*(u;) denote the ns negative samples for a center vertex
u; in sequence S € DV, we can then approximate the conditional
probability p(uc|u;) defined in Equation (7) as:

plue, NEwiluy= [ PGlu, ®

ze{uc}UNZ® (u;)
where the probability P(z|u;) is defined as:
O'(ﬁiTG_’z), if z is a context of u;
P(zlu;) = ST ns
1- ;02,2 e NS ()
where o denotes the sigmoid function 1/(1 + e~*). By replacing

p(uclu;) in Equation (5) with the definition of p(uc, Ng*(ui)lui),
we can get the approximated objective function to optimize. The
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semantics is that the proximity between the center vertex and their
contextual vertices should be maximized, whereas the proximity
between the center vertex and the negative samples should be
minimized.

Following the similar formulations, we can get the counterparts
for the conditional probability p(vc|v;), the details of which are
omitted here due to space limitation.

4.3 Joint Optimization
To embed a bipartite network by preserving both explicit and im-
plicit relations simultaneously, we combine their objective functions
to form a joint optimization framework.
maximize L = alog Oz + flog O3 — yO;. 9)

where parameters @, ff and y are hyper-parameters to be specified to
combine different components in the joint optimization framework.

To optimize the joint model, we utilize the Stochastic Gradient
Ascent algorithm (SGA). Note that the three components of Equa-
tion (9) have different definitions of a training instance. To handle
this issue, we tweak the SGA algorithm by performing a gradient
step as follows:
Step I: For a stochastic explicit relation, i.e., an edge e;; € E, we
first update the embedding vectors w; and v; by utilizing SGA to
maximize the last component L; = —yO;. We give the SGA update
rule for u; and v; as follows:

6= W+ Mywll - o V)]V (10)
Vi o= Vi Aywill - o)) i (1)
where A denotes the learning rate.
Step II: We then treat vertices u; and v; as the center vertex; by
employing SGA to maximize objective functions Ly = alog Oz and
L3 = flog O3, we can preserve the implicit relations. Specifically,

given the center vertex u; (or v;) and its context vertex u, (or vc),
we update their embedding vectors u; (or v;) as follows:

; i+ A all(z, ui) - o(d;7 )] - 6, }(12)
z€{uc JUNZ®(u;)

Vi o= i+ PlI(z,v)) - o(¥;" 82)] - 92 )13)
ze{v JUNZ*(v;))

where I(z,u;) is an indicator function that determines whether
vertex z is in the context of u; or not; similar meaning applies
to I(z, v;). Furthermore, the context vectors of both positive and
negative instances are updated as:

0: = 60:+Malllzw)-o@i'02)] &} (14)
9 = S+ Apllzv) - oW 9]V (15)
We summarize the learning process in Algorithm 2. To be specific,
lines 1-2 initialize all embedding vectors and context vectors; lines
3-4 generate the corpus of vertex sequences; lines 8 and 12 perform

negative sampling; lines 9-10 and 13-14 employ SGA to learn the
embeddings.

4.4 Discussions

Pre-training. The joint objective function of BiNE in Equation (9)
is non-convex, so initialization plays an important role to find a
good solution. We pre-train Equation (3) to get the initial vertex
embeddings.
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Algorithm 2: Training algorithm of BiNE

:bipartite network G = (U, V, E), weight matrix of
the bipartite network W, window size ws, number
of negative samples ns, embedding size d, maximal
walks per vertex maxT, minimal walks per vertex
minT, walk stopping probability p

Output: vertex embeding matrices U and V

Input

1 Initialize embedding vectors u; and vj;

2 Initialize context vectors 0_;- and 19_;-;

3 DU = WalkGenerator(W, U, maxT, minT, p);

s DV = WalkGenerator(W, V, maxT, minT, p);

s foreach edge (u;,vj) € E do

6 Update u; and v; using Equations (10) and (11);

7 foreach (u;, uc) in the sequence S € DV do
8 Negative sampling to generate N¢*(u;);
9 Update u; using Equation (12);

10 Update 0_; using Equation (14) where

| z€{uc UNG (wp);

1 foreach (v}, v.) in the sequence S € DV do
12 Negative sampling to generate N¢*(v;);
13 Update v} using Equation (13);

14 Update 3—; using Equation (15) where

2 € {ve} UNDS(v))

15 return Vertex embeding matrices U and V

Computational Complexity Analysis. The corpus generation
and joint model optimization are two key processes of BiNE. How-
ever, the complexity of generating corpus will be increased if WY
or WY becomes dense. To avoid processing the dense matrix, an al-
ternative way is to walk two steps in the original bipartite network.
Suppose that vc is the visitation count of vertex v in the generated
corpus. The context size is therefore vc - 2ws. It may be a big value
for vertices having high degrees, yet we only randomly select a
small batch of the contextual vertices, e.g., bs (bs < vc). Thus, the
complexity of algorithm is O(2|E| - bs - 2ws - (ns + 1)), where ns is
the number of negative samples. To some extent, all the contextual
vertices of a center vertex can be trained in each iteration by setting
a proper bs, because the center vertex will be visited more than
once when traversing all edges.

5 EXPERIMENTS

To evaluate the vertex embeddings learned by BiNE, we employ
them to address two representative applications of bipartite network
mining — link prediction and recommendation. Link prediction is
usually approached as a classification task that predicts whether
a link exists between two vertices, and recommendation is a per-
sonalized ranking task that aims to provide items of interest for a
user. Through empirical evaluation, we aim to answer the following
research questions:
RQ1 How does BiNE perform compared with state-of-the-art net-
work embedding methods and other representative baselines
of the two applications?
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RQ2 Is the modeling of implicit relations helpful to learn more
desirable representations for bipartite networks?

RQ3 Can our proposed random walk generator contribute to
learning better vertex representations?

RQ4 How do the key hyper-parameters affect the performance of
BiNE?

In what follows, we first introduce the experimental settings, and

then answer the above research questions in turn. Furthermore, we

perform a case study, which visualizes a small bipartite network,

to demonstrate the rationality of BiNE.

5.1 Experimental Settings

5.1.1 Dataset. (1) For the link prediction task, we use two un-
weighted bipartite networks constructed from Wikepedia and Ten-
cent, respectively. Specifically, the Wikipedia dataset is publicly
accessible?, which contains the edit relationship between authors
and pages; the Tencent dataset records the watching behaviors
of users on movies in QQlive® in one month’s time. (2) For the
recommendation task, we use three weighted bipartite networks
constructed from DBLP, MovieLens, and VisualizeUs. Specifically,
the DBLP dataset* contains the publish network of authors on
venues, where the edge weight indicates the number of papers
published on a venue by an author. The MovieLens dataset > has
been widely used for evaluating movie recommender systems [33],
where the edge weight denotes the rating score of a user on an
item. The VisualizeUS dataset® contains the picture tagging net-
work between pictures and tags, where the edge weight denotes the
number of times a tag has been tagged on an image. The statistics
of our experimented datasets are summarized in Table 1.

Note that our experimented datasets cover a wide range of ap-
plications based on bipartite networks, which can test the univer-
sality of our BiNE method. Moreover, we have purposefully chosen
weighted networks for the recommendation task, so as to study
BiNE’s ability in embedding weighted bipartite networks.

Table 1: Statistics of bipartite networks and metrics adopted
in experimets for different tasks.

Recommendation
undirected, weighted
F1, NDCG, MAP, MRR

Task Link Prediction
Type undirected, unweighted
Metric AUC-ROC,AUC-PR

Name Tencent Wikipedia | VisualizeUs | DBLP | MovieLens
|U] 14,259 15,000 6,000 | 6,001 69,878
V| 1,149 3,214 3,355 1,308 10,677
|E| 196,290 172,426 35,639 | 29,256 | 10,000,054
Density 1.2% 0.4% 0.2% 0.4% 1.3%

5.1.2 Evaluation Protocols. (1) To evaluate the link predic-
tion task, we apply the same protocol as the node2vec paper [4].
Specifically, for the Wikepedia dataset, the observed links are treated
as positive instances, and we randomly sample an equal number of
vertex pairs that are not connected as the negative instances. For
the Tencent dataset, positive instances include user-movie pairs
where the user has watched the movie for more than 5 minutes,
otherwise, it is treated as an negative instance. For both datasets,

Zhttp://konect.uni-koblenz.de/networks/wikipedia_link_en
Shttps://v.qq.com/

*http://dblp.uni-trier.de/xml/
Shttp://grouplens.org/datasets/movielens/
®http://konect.uni-koblenz.de/networks/pics_ti
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we randomly sample 60% instances as the training set, evaluating
performance on the remaining 40% of testing set. Following the
previous work [38], we employ two metrics, area under the ROC
curve (AUC-ROC) and Precison-Recall curve (AUC-PR), to evaluate
the link prediction performance. (2) For the recommendation task,
we adopt the same setting for all the three datasets. We randomly
sample 60% edges as the training data, using the remaining 40%
edges as the ground-truth for testing. For each user, we rank all
items in her testing set and evaluate the ranking list with four
IR metrics: F1, Normalized Discounted Cumulative Gain (NDCG),
Mean Average Precision (MAP), and Mean Reciprocal Rank (MRR).
We truncate the ranking list at 10 to study the performance of
top-10 recommendation. For each metric, we compute the average
score for all users, and perform one-sample paired t-test on it. To
avoid overfitting, we generate 10 folds of train-test split, tuning
hyper-parameters on the first fold only for each method. We use
the optimal hyper-parameter setting and report the average perfor-
mance of all folds (i.e., the score of each metric and the p-value of
t-test).

5.1.3 Baselines. We compare BiNE with three types of base-

lines:
(1) Network Embedding Methods. Similar to BiNE, this set of

methods also learn vertex embeddings and are representative of

state-of-the-art network embedding methods. For each method,

we use the released implementations of the authors for our
experiments.

e DeepWalk [8]: As a homogeneous network embedding method,

DeepWalk performs uniform random walks to get a corpus

of vertex sequences. Then the word2vec is applied on the

corpus to learn vertex embeddings.

LINE [20]: This approach optimizes both the 1st-order and

2nd-order proximities in a homogeneous network. We use

the LINE(1st+2nd) method which has shown the best results
in their paper.

Node2vec [4]: This method extends DeepWalk by perform-

ing biased random walks to generate the corpus of vertex

sequences. The hyper-parameters p and q are set to 0.5 which
has empirically shown good results.

Metapath2vec++ [14]: This is the state-of-the-art method for

embedding heterogeneous networks.The meta-path scheme

chosen in our experiments are “IUI” (item-user-item) and

“IUI"+“UIU” (user-item-user), and we only report the best

result between them.

(2) To benchmark the link prediction task, we also compare with
a set of methods that are specifically designed for the task.
We apply several indices proposed in [38], including Common
Neighbors (CN), Jaccard Coefficient (JC), Absent Links (AL),
Adamaic/Adar (AA), Katz Index (Katz), and Preferential Attach-
menthave (PA).

(3) We compare with several competitive methods’ that are de-
signed for the top-K item recommendation task.

e BPR [31]:This method optimizes the matrix factorization
(MF) model with a pairwise ranking-aware objective. This
method has been widely used in recommendation literature
as a highly competitive baseline [33].

"We use the implementations from LibRec: https://www.librec.net/
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o RankALS [39]: This method also optimizes the MF model for
the ranking task, by towards a different pairwise regression-
based loss.

e FISMauc [40]: Distinct to MF, factored item similarity model
(FISM) is an item-based collaborative filtering method. We
employ the AUC-based objective to optimize FISM for the
top-K task.

Table 2: The search range and optimal setting (highlighted
in red) of hyper-parameters for our BiNE method.

Parameter Meaning Test values
ns number of negative samples | [1, 2, 4, 6, 8, 10]
ws size of window [1,3,5,7,9]
p walk stopping probability [0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5]
B trade-off parameter [0.0001, 0.001, 0.01, 0.1, 1]
Y trade-off parameter [0.01, 0.05, 0.1, 0.5, 1, 5]

5.1.4 Parameter Settings. We have fairly tuned the hyper-
parameters for each method. For all network embedding methods,
we set the embedding size as 128 for a fair comparison. For the
recommendation baselines, we tuned the learning rate and latent
factor number since they impact most on the performance; other
hyper-parameters follow the default setting of the LibRec toolkit.
For our BiNE, we fix the loss trade-off parameter « as 0.01 and tune
the other two. The minT and maxT are respectively set to 1 and 32,
which empirically show good results. We test the learning rate A of
[0.01,0.025, 0.1]. And the optimal setting of learning rate is 0.025 for
the VisualizeUs/DBLP dataset and 0.01 for others. The search range
and optimal setting (highlighted in red font) of other parameters
are shown in Table 2. Note that besides y is set differently — 0.1 for
recommendation and 1 for link prediction — other parameters are
set to the same value for both tasks.

5.2 Performance Comparison (RQ1)

Table 3: Link prediction performance on Tencent and
Wikipedia.

Alsorithm Tencent Wikipedia

& AUC-ROC [ AUC-PR | AUC-ROC [ AUC-PR
CN 50.63% | 65.66% 86.85% |  90.68%
Jc 51.49% | 66.18% 63.90% |  73.04%
AA 50.63% | 65.66% 87.37% | 91.12%
AL 50.44% | 65.70% 90.28% | 91.81%
Katz 50.90% | 65.06% 90.84% | 92.42%
PA 55.60% | 68.99% 90.71% |  93.37%
DeepWalk 57.62% | 71.32% 89.71% |  91.20%
LINE 59.68% |  73.48% 91.62% |  93.28%
Node2vec 59.28% | 72.62% 89.93% |  91.23%
Metapath2vec++ 60.70% 73.69% 89.56% 91.72%
BiNE | 60.98%"* [ 73.77%™ [ 92.91%"" | 94.45%"" |

** indicates that the improvements are statistically significant for p < 0.01
judged by paired t-test.

5.2.1 Link Prediction. In this task, embedding vectors given
by BiNE are treated as feature vectors of a logistic regression clas-
sifier. Specifically, given a vertex pair (u;, v;), we feed their em-
bedding vectors u; and v; into the classifier, which is trained on
observed links of the bipartite network. Table 3 illustrates the per-
formance of baselines and our BiNE, where we have the following
key observations:


https://www.librec.net/
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Table 4: Performance comparison of Top-10 Recommendation on VisualizeUs, DBLP, and MovieLens.

Alsorithm VisualizeUs DBLP Movielens

8 F1@10 | NDCG@10 [ MAP@10 [ MRR@10 | F1@10 | NDCG@10 | MAP@10 | MRR@10 | F1@10 [ NDCG@10 | MAP@10 | MRR@10
BPR 6.22% 9.52% 551% 13.71% 8.95% 18.38% 13.55% 22.25% | 8.03% 7.58% 2.23% 40.81%
RankALS 2.72% 3.29% 1.50% 3.81% 7.62% 11.50% 7.52% 1487% |  8.48% 7.95% 2.66% 38.93%
FISMauc 10.25% 15.46% 8.86% 16.67% 9.81% 13.77% 7.38% 1451% | 6.77% 6.13% 1.63% 34.04%
DeepWalk 5.82% 8.83% 4.28% 12.12% 8.50% 24.14% 19.71% 3153% | 3.73% 3.21% 0.90% 15.40%
LINE 9.62% 13.76% 7.81% 14.99% 8.99% 14.41% 9.62% 17.13% | 6.91% 6.50% 1.74% 38.12%
Node2vec 6.73% 9.71% 6.25% 13.95% 8.54% 23.89% 19.44% 3111% | 4.16% 3.68% 1.05% 18.33%
Metapath2vecs++ 5.92% 8.96% 5.35% 13.54% 8.65% 25.14% 19.06% 3197% | 4.65% 439% 1.91% 16.60%
| BiNE [ 13.635" [ 24505 [ 1646%"" | 34.23%" [ 1137%" | 26.19%"" | 2047%" [ 3336%" [9.14%" |  9.02%" | 3.01%" [ 4595%"

** indicates that the improvements are statistically significant for p < 0.01 judged by paired t-test.

o The neural network-based methods outperform the indices pro-
posed in [38] significantly. This is due to the factors that: (1)
one index proposed in [38] only emphasizes one kind of network
topological structure, rather than the global structure; (2) the neu-
ral network-based methods predict the links in a data-dependent
supervised manner, which is more advantageous.

o Metapath2vec++ and BiNE are significantly better than other neu-
ral network-based methods. This points to the positive effect of
modeling both explicit and implicit relations into the embedding
process.

o BiNE outperforms Metapath2vec++ significantly and achieves
the best performance on both datasets in both metrics. This im-
provement demonstrates the effectiveness of our modeling of
explicit and implicit relations in different ways, whereas Meta-
path2vec++ simply treats them as contributing equally to the
learning.

5.2.2 Recommendation. We adopt the inner product kernel
u; T‘?j to estimate the preference of user u; on item v;, and evaluate
performance on the top-ranked results. Table 4 shows the perfor-
mance of baselines and our BiNE, where we have the following key
observations:

o BiNE outperforms all baselines on all datasets, and the improve-

ments are more significant on VisualizeUs — the most sparse

dataset among the three. This sheds lights on the benefit of pre-
serving both explicit and implicit relations in a bipartite network.

Although Metapath2vec++ also preserves both explicit and im-

plicit relations, we did not observe consistently good results since

it ignores the weights and treats the two types of relations as
equally.

BiNE outperforms LINE significantly. The suboptimal perfor-

mance of LINE are twofold: (1) although LINE preserves both

1st-order and 2nd-order relations to learn network embeddings,

it ignores further higher-order proximities among vertices; (2)

LINE learns two seperated embeddings for 1st-order and 2nd-

order relations and concatenates them via post-processing, rather

than optimizing them in a unified framework. As such, it reveals
that: (1) only 2nd-order relations are insufficient for learning
vertex embeddings for a bipartite network; (2) it is necessary to
build a joint model to capture both explicit and implicit relations.
These are the two featured designs of our BiNE.

5.3 Utility of Implicit Relations (RQ2)

To demonstrate the effectiveness of integrating explicit and im-
plicit relations, we compare BiNE with its variant that removes the

Table 5: BiNE with and without implicit relations.

Without Implicit With Implicit
Relations Relations
Link Prediction
Dataset AUC-ROC | AUC-PR | AUC-ROC | AUC-PR
Tencent 59.78% 73.05% 60.98%"* 73.77%"*
WikiPedia 91.47% 93.73% 92.91%"* 94.45%"*
Recommendation
Dataset MAP@10 | MRR@10 | MAP@10 | MRR@10
VisualizeUS 7.91% 15.65% 16.46%"* 34.23%"
DBLP 20.20% 32.95% 20.47%"* 33.36%""
MovieLens 2.86% 43.98% 3.01%** 45.95%**

** indicates that the improvements are statistically significant for p < 0.01
judged by paired t-test.

modeling of implicit relations. We only show the performance on
MAP@10 and MRR@10 on recommendation due to space limitation.
From Table 5, we can find that the largest absolute improvements of
BiNE with implicit relations are 1.44% and 18.58% for link prediction
and recommendation, respectively. It indicates that our proposed
way of modeling high-order implicit relations is rather effective to
complement with explicit relation modeling.

10° —
s %o maxT : 32| |
104 minT: 1
2 10%r p:0.15
2 10°
g 102t slope = -1.5374
F+ 1
10°F
100+ -

-1 L L L L L L
1010'1 10°10' 10? 10% 10* 10° 10° 107
Vertices Visitation Count
Figure 3: Distribution of vertices in the biased and self-
adpative random walk generator.

5.4 Random Walk Generator (RQ3)

We design a new random walk generator for BiNE to preserve
properties of bipartite networks in the generated corpora as much
as possible, such as the importance and distribution of vertices. To
guarantee comparability with Figure 1, we also use the YouTube’s
video network as the input of our random walk generator and show
distribution of vertices. As shown in Figure 3, our random walk
generator almost generates a standard power-law distribution with
a slope —1.537 which is very close to that of the original network
(—1.58186).



BiNE: Bipartite Network Embedding

Table 6: BiNE with different random walk generators.

Uniform Random Biased and Self-adaptive
Walk Generator Random Walk Generator
Link Prediction

Dataset AUC-ROC | AUC-PR | AUC-ROC AUC-PR
Tencent 59.75% 73.06% 60.98%** 73.77%**
WikiPedia 88.77% 91.91% 92.91%** 94.45%**

Recommendation

Dataset MAP@10 | MRR@10 | MAP@10 | MRR@10
VisualizeUS 15.93% 33.66% 16.46%** 34.23%*"
DBLP 11.79% 23.41% 20.47%** 33.66%*
MovieLens 2.91% 46.12% 3.04%** 46.20%"*

** indicates that the improvements are statistically significant for p < 0.01
judged by paired t-test.

We also compare the performance of BiNE under two settings
— use or not use our proposed random walk generator. As shown
in Table 6, the biggest absolute improvements of BiNE using our
proposed random walk generator are 4.14% and 10.25% for link
prediction and recommendation, respectively. It indicates that the
biased and self-adaptive random walk generator contributes to
improving the vertex embeddings.

Note that we change the default value of maxT to 128 for this
empirical study on Movielens dataset. This is due to the factor
that Movielens is the biggest and densest bipartite network data
compared to the others. The default value of maxT may be too small
to fully preserve the implicit relations. This indicates that maxT
should be specified to a large number for a large-scale network.

5.5 Hyper-parameter Studies (RQ4)

Due to space limitation, we only investigate the impact of the hyper
parameters f, y (n.b., we fix « = 0.01) since parameters f, and y
play crucial roles to balance the impacts of the explicit relations (y)
and implicit relations (@, ) for vertex embeddings. We analyze both
link prediction and recommendation tasks on datasets VisualizeUs
and Wikipedia, respectively. Except for the parameters being tested,
other parameters assume default values.

From Figure 4 and Figure 5, we observe that the impact of the two
parameters have similar trends w.r.t. different performance metrics
in the same task: (1) with the increase of y, the performance first
increases and then remains stable after certain values; (2) with the
increase of f3, the performance first increases and then decreases af-
ter certain values. When y is small, our optimization model may ar-
tificially reduce the importance of the explicit relations for network
embeddings. However, when f is large, the optimization model
may artificially overstate the role of the implicit relations.

The existence of the yielding points confirms that purely using
explicit or implicit relations is insufficient to learn desirable repre-
sentations for a bipartite network. In addition, we can observe that
the best value of y is larger than that of @ and f. It indicates that
the explicit relations are more important than implicit relations for
the bipartite network embeddings.

5.6 Case Study

A good embedding algorithm should provide a meaningful visual-
ization that layout a network. Due to space limitation, we conduct
a visualization study for a small bipartite network. We visualize a
collaboration bipartite network, which is a subset of DBLP dataset.
It consists of 736 researchers and 6 international journals, where the
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Figure 6: Visualization of authors in DBLP. Color of a vertex
indicates the research fields of the authors (red: “computer
science theory”, blue: “artificial intelligence”). BiNE’ is the
version of BiNE — without implicit relations.

6 journals are from two different research fields: SICOMP, IANDC
and TIT from computer science theory, and Al IJCV,and JMLR
from artificial intelligence. A link will be formed if the researcher
published at least 5 papers in the journal. The research field of a
researcher is determined by the published venues of his/her works.

We utilize the t-SNE tool [41] to map the embedding vectors
of authors into 2D space. Figure 6 compares the visualization re-
sults given by different embedding approaches, where color of a
vertex indicates the research field of a researcher (red: “computer
science theory”, blue: “artificial intelligence”). Obviously, DeepWalk,
Node2vec, LINE, Metapath2vec++, and our BiNE are good since
researchers belonging different research fields are well seperated.
In our opinion, BiNE gives a better result due to the fact that it also
generates an obvious gap between two research fields. However,
BiNE’ (a variant of BiNE - without implicit relations) demonstates
a worse layout than expected. It indicates that modeling high-order
implicit relations is helpful to preserve the network structure well.

(e) Metapath2vec++
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6 CONCLUSIONS

We have presented BiNE, a novel approach for embedding bipartite
networks. It jointly models both the explicit relations and high-
order implicit relations in learning the representation for vertices.
Extensive experiments on several tasks of link prediction, recom-
mendation, and visualization demonstrate the effectiveness and
rationality of our BiNE method.

In this work, we have only considered the information revealed
in observed edges, thus it may fail for vertices that have few or
even no edges. Since missing data is a common situation in real-
world applications, the observed edges may not contain sufficient
signal on vertex relations. To address this issue, we plan to extend
our BiNE method to model auxiliary side information, such as nu-
merical features [42], textual descriptions [43], and among other
attributes [9]. In addition, the bipartite networks in many practical
applications are dynamically updated [32]. For example, the prefer-
ences of users may evolve over time which can be revealed in her
recent behaviors. Thus, we plan to investigate how to efficiently
refresh embeddings for dynamic bipartite networks. Lastly, we are
interested in extending our method to learn representations for the
more generic and heterogeneous n-partite networks, for which one
key challenge is how to automatically learn the varying weights
for relations of different types.
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