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ABSTRACT
Due to the prevalence of group activities in people’s daily life,
recommending content to a group of users becomes an important
task inmany information systems. A fundamental problem in group
recommendation is how to aggregate the preferences of group
members to infer the decision of a group. Most existing group
recommender systems applied a prede�ned strategy for preference
aggregation. We argue that such static strategies are insu�cient
to model the complicated process of group decision making and
result in the suboptimal performance for group recommendation.
In particular, group members should have non-uniform weights
in forming a group, and more importantly, the weights should be
varied when the group interacts with di�erent items.

In this work, we address the fundamental problem of preference
aggregation in group recommendation by learning the aggregation
strategy from data. We contribute a novel solution, namely AGREE
(short for “A�entive Group REcommEndation”), based on the
recent developments of a�ention network and neural collaborative
�ltering (NCF). Speci�cally, we adopt an a�ention mechanism
to adapt the representation of a group, and learn the interaction
between groups and items from data under the NCF framework.
Moreover, since many group recommender systems also have
abundant interactions of individual users on items, we further
integrate the modeling of user-item interactions into our method.
�rough this way, we can reinforce the two tasks of recommending
items for both groups and users. By experimenting on two
real-world datasets, we demonstrate that our AGREE model not
only improves the group recommendation performance but also
enhances the recommendation for users, especially for cold-start
users that have no historical interactions individually.

CCS CONCEPTS
•Information systems→Recommender systems; •Computing
methodologies→ Neural networks;
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1 INTRODUCTION
To address the information overload issue, recommender systems
have been widely deployed in online information systems, such as
E-commerce platforms, social media sites, news portals and so on.
An e�ective recommendation solution not only can increase the
tra�c and pro�t for service providers, but also can help customers
�nd the items of interest more easily [6, 7]. Moving beyond the
traditional task of recommending content for individual users, in
this work we focus on providing recommendation for a group of
users, known as the group recommendation task.

Owing to the prevalence of social media [26, 27], online group
activities have become very common in current social Web. For
example, a group of traveler can work together to plan a trip
on Mafengwo1, a group of teenagers can organize a social party
on Meetup2, and a group of researchers can discuss a paper on
Mendeley3. Such rich sources of information provide us a valuable
opportunity to study the online behaviors of groups, which in turn
bene�t us to develop a be�er recommendation service for groups.

Distinct to the decision making of an individual user, the decision
making process of a group is more complicated, since each member
in the group may contribute to the �nal decision. More importantly,
the process can be rather dynamic. For example, a member may
play di�erent roles and exhibit di�erent in�uence in choosing
items of di�erent types due to her specialty. Nevertheless, existing
recommendation solutions largely applied a prede�ned and �xed
strategy to aggregate the preferences of group members, such as
average [3, 4], least misery [1], maximum satisfaction [5] and so on.
As such, these solutions are insu�cient to capture the complicated
and dynamic process of group decision making, resulting in the
suboptimal performance for group recommendation.

In this work, we approach the fundamental problem in group
recommendation — how to aggregate the preference of group
members to decide a group’s choice on items. Instead of applying a
prede�ned strategy, we propose to learn the aggregation strategy
from the historical data of group-item interactions. �e key
challenges here are how to design an expressive model to learn the
in�uence of a member, and how to adapt the in�uence when the
1h�ps://www.mafengwo.com
2h�ps://www.meetup.com
3h�ps://www.mendeley.com
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group interacts with di�erent items. Inspired by the recent success
of representation learning, we approach the challenges from the
perspective of group representation learning in the embedding
space. To get the embedding vector that represents a group,
we aggregate the embedding of its members in a learnable way.
Speci�cally, we design a neural a�ention network to learn the
weight of a member, which is capable of assigning di�erent weights
for a user when the group interacts with di�erent items. �rough
this way, we can dynamically adjust the aggregation strategy for a
group to capture the complicated process of group decision making.

Moreover, many group-aware social platforms also have
abundant data of user-item interactions, the key data source
to infer user preference to address the item recommendation
task [29]. Intuitively, a group’s decision should be dependent on
the preference of its members. As such, another challenge here
is how to e�ectively leverage the user-item interaction data to
improve the performance of group recommendation. To this end,
we propose to address both tasks of group recommendation and
item recommendation simultaneously under the same framework.
Speci�cally, we employ the state-of-the-art neural collaborative
�ltering (NCF) framework [16] to learn the user-item and group-
item interactions in the same embedding space. �rough this
way, we not only improve the performance of both tasks, but also
enable recommendation for cold-start users that have no historical
individual behaviors by leveraging their group data.

�e main contributions of this work are summarized as follows:
• �is is the �rst group recommender system that leverages neural

a�ention network to learn the aggregation strategy from data in
a dynamic way.

• User-item interactions are further integrated to improve the
performance of group recommendation. As a byproduct, the user
cold-start problem in item recommendation can be alleviated.

• Extensive experiments are performed on a self-constructed
dataset and a public dataset to demonstrate our method.
Meanwhile, the datasets and codes are released to facilitate the
research community4.

2 METHODS
Generally speaking, our proposed AGREE model consists of two
components: 1) group representation learning which represents a
group based on its members aggregation and its general preference;
and 2) interaction learning with NCF which recommends items for
both users and groups. We �rst present the notations and formulate
the group recommendation problem to be solved (Section 2.1). We
then introduce the two key ingredients of our proposed model
(Section 2.2 and 2.3). Lastly, we discuss the optimization method
(Section 2.4).

2.1 Notations and Problem Formulation
We use bold capital le�ers (e.g., X) and bold lowercase le�ers (e.g.,
x) to represent matrices and vectors, respectively. We employ non-
bold le�ers (e.g., x ) to denote scalars, and squiggle le�ers (e.g., X)
to denote sets. If not clari�ed, all vectors are in column forms.

Figure 1 illustrates the group recommendation task we address in
this paper. Suppose we have n usersU = {u1,u2, ...,un }, s groups
4h�ps://github.com/LianHaiMiao/A�entive-Group-Recommendation
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Figure 1: Illustration of the input data of attentive group rec-
ommendation task, which contains user-item interactions
and group-item interactions.

G = {д1,д2, ...,дs }, and m items V = {v1,v2, ...vm }. �e l-th
group дl ∈ G is consisted of a set of users, i.e., group members with
user indexes Kl = {kl,1,kl,2, ...,kl, |дl |}, where ukl,∗ ∈ U, and |дl |
is the size of the group. �ere are two kinds of observed interaction
data amongU, G, andV , namely, group-item interactions and user-
item interactions. We use Y = [yl j ]s×m to denote the group-item
interactions and R = [ri j ]n×m to denote the user-item interactions.
�en, given a target group дl (or target user ui ), our task is de�ned
as recommending a list of items that group дl (or the user ui ) may
be interested in, which is formally de�ned as:
Input: Users U, groups G, items V , group-item interactions Y,

and user-item interactions R.
Output: Two personalized ranking functions that map an item

to a real value for each group fg : V → R and each user
fu : V → R, respectively.

2.2 Attentive Group Representation Learning
Most existing group recommender systems aggregate the scores of
groupmembers via some prede�ned strategies. We �rst recapitulate
these common aggregation strategies to motivate our use of the
a�ention mechanism to learn group representation, and then
present our designed group representation learning component.

2.2.1 Motivation. �e average strategy [3, 4] treats group mem-
bers as contributing equally, and estimates the group preference
over an item as the arithmetic mean of the preference scores of its
members. �e least misery strategy [1] tries to please all members
in a group by choosing the lowest preference score among its
members over an item. �e maximum satisfaction strategy [5]
tries to maximize the greatest preference of a group, and it averages
the preference scores of members above a certain threshold. �e
expertise strategy [28] endows an individualized weight for a user
based on her expertise on the items.

We argue that these prede�ned strategies are data independent,
lacking the �exibility to dynamically adjust the weights of group
members. �is �exibility is particularly useful when a group
makes decision on items of di�erent types. Inspired by the recent
developments of neural a�ention mechanism [2, 35] which can
learn the importance of di�erent model components from data, we
consider using a�ention to learn the aggregation strategy. Its basic

https://github.com/LianHaiMiao/Attentive-Group-Recommendation
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idea is to perform weighted sum on a set of representations when
compressing them into one representation, where the weights are
learned by a neural network. We �nd that it is a natural �t for
addressing the group recommendation task, and more importantly,
existing aggregation strategies can be regarded as its special cases.
To be speci�c, the average is equivalent to giving a uniform
weight to all members, the least misery and maximum satisfaction
correspond to assigning nonzero weights to partial members only,
and the expertise can be seen as �xing the a�ention weights based
on the members’ expertise.

2.2.2 Method. We propose to address the group recommenda-
tion problem under the representation learning (RL) framework.
Under the RL paradigm, each entity of interest is represented as an
embedding vector, which encodes the inherent properties of the
entity (e.g., semantics of a word, interests of a user etc.) and is to
be learned from data. �e well-known matrix factorization (MF)
method in item recommendation [17, 39] is a typical RL model that
associates each user and item with an embedding vector.

Let ui and vj be the embedding vector for user ui and item vj ,
respectively, which are basic representation blocks in our AGREE
model. Our target is to obtain an embedding vector for each group
to estimate its preference on an item. To learn dynamic aggregation
strategy from data, it is necessary to de�ne the group embedding
as dependent of the embeddings of its member users and the target
items, which can be abstracted as,

gl (j) = fa (vj , {ut }t ∈Kl ), (1)

where gl (j) denotes the embedding of group дl tailored for
predicting its preference on target item vj , Kl contains the user
indexes of group дl , and fa is the aggregation function to be
speci�ed. In AGREE, we design the group embedding as consisting
of two components — user embedding aggregation and group
preference embedding:

gl (j) =
∑
t ∈Kl

α(j, t)ut︸          ︷︷          ︸
user embedding aggregation

+ ql︸︷︷︸
group preference embedding

. (2)

Next we elaborate the two components.

User embedding aggregation. We perform a weighted sum on
the embeddings of group дl ’s member users, where the coe�cient
α(j, t) is a learnable parameter denoting the in�uence of member
user ut in deciding the group’s choice on item vj . Intuitively, if a
user has more expertise on an item (or items of the similar type),
she should have a larger in�uence on the group’s choice on the
item [28]. To understand this, let us consider an example that a
group discusses which city to travel to; if a user has traveled to
China many times, she should be more in�uential when the group
considers whether should travel to a city in China. Since in the RL
framework, embedding ut encodes the member user’s historical
preference and embedding vj encodes the target item’s property,
we parameterize α(j, t) as a neural a�ention network with ut and
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Figure 2: Illustration of the user embedding aggregation
component based on neural attention network.

vj as the input:

o(j, t) = hT ReLU(Pvvj + Puut + b),

α(j, t) = so�max(o(j, t)) = expo(j, t)∑
t ′∈Kl expo(j, t ′)

,
(3)

where Pv and Pu are weight matrices of the a�ention network
that convert item embedding and user embedding to hidden layer,
respectively, and b is the bias vector of the hidden layer. We use
ReLU as the activation function of the hidden layer, and then project
it to a score o(j, t) with a weight vector h. Lastly, we normalize
the scores with a so�max function, which is a common practice in
neural a�ention network [2, 9, 35]; it makes the a�ention network
a probabilistic interpretation, which can also deal with groups of
di�erent sizes in our case.

Figure 2 illustrates our design of the user embedding aggregation
component. With such a so� a�ention mechanism, we allow
each member user to contribute in a group’s decision, where the
contribution of a user is dependent on her historical preference
and the target item’s property, which are learned from past data of
group-item interactions and user-item interactions (to be discussed
in Section 2.3).

Group preference embedding. Besides aggregating the embed-
dings of group members, we further associate a group дl with
a dedicated embedding ql . �e intention is to take the general
preference of a group into account. Our consideration is that in
some cases when users form a group, they may pursue a target
that is di�erent from the preference of each user. For example, in
a family of three, the child prefers cartoon movie and the parents
favor romantic movie; but when they go to a cinema together, the
�nal chosen movie could be an educational movie. As such, it
is bene�cial to associate a group with an embedding to denote
its general preference, in addition to the one aggregated from
its members. To combine the components of group preference
embedding with user embedding aggregation, we perform a simple
addition operation, same as the previous work [9, 36] that combine
di�erent signals in the embedding space. Our empirical results in
Section 3.4 show that this component can signi�cantly improve the
group recommendation performance.
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Figure 3: Illustration of interaction learning based on NCF.

2.3 Interaction Learning with NCF
NCF is a multi-layer neural network framework for item recommen-
dation [16]. Its idea is to feed user embedding and item embedding
into a dedicated neural network (which needs to be customized)
to learn the interaction function from data. As neural networks
have strong ability to �t the data, the NCF framework is more
generalizable than the traditional MF model, which simply applies a
data-independent inner product function as the interaction function.
As such, we opt for the NCF framework to perform an end-to-
end learning on both embeddings (that represent users, items, and
groups) and interaction functions (that predict user-item and group-
item interactions).

Figure 3 illustrates our customized NCF solution. Since we
aim to achieve both recommendation tasks for groups and users
simultaneously, we design the solution to learn the user-item and
group-item interaction functions together. Speci�cally, given a user-
item pair (ui ,vj ) or a group-item pair (дl ,vj ), the representation
layer �rst returns the embedding vector for each given entity
(details see Section 2.2). �en the embeddings are fed into a pooling
layer and hidden layers (shared by the two tasks) to obtain the
prediction score. Next we elaborate the two components.

Pooling layer. Assuming the input is a group-item pair (дl ,vj ),
the pooling layer �rst performs element-wise product on their
embeddings, i.e., gl (j) and vj , and then concatenates it with the
original embeddings:

e0 = φpoolinд(gl (j), vj ) =

gl (j) � vj
gl (j)
vj

 (4)

�e rationale is twofold. 1)�e element-wise product subsumes MF,
which uses multiplication on each embedding dimension to model
the interation between two embedding vectors; moreover, element-
wise product has been demonstrated to be highly e�ective in feature
interaction modeling in low-level of neural architecture [15]. 2)
Nevertheless, the element-wise product may lose some information
in the original embeddings which may be useful for later interaction
learning. To avoid such information loss, we further concatenate it
with the original embeddings.

Note that such a pooling operation is partially inspired from the
state-of-the-art neural recommender model NeuMF [16], which
shows that combines MF with MLP in the hidden layer leads
to be�er performance. As MLP concatenates the original user
embedding and item embedding, it inspires us to keep the original
embeddings to facilitate the learning of later hidden layers. We
apply the same pooling operation for the input of a (ui ,vj ) pair.

Shared Hidden layers. Above the pooling layer is a stack of fully
connected layers, which enable the model to capture the nonlinear
and higher-order correlations among users, groups, and items.

e1 = ReLU(W1e0 + b1)
e2 = ReLU(W2e1 + b2)
......

eh = ReLU(Wheh−1 + bh )

, (5)

whereWh , bh , and eh denote the weight matrix, bias vector, and
output neurons of the h-th hidden layer, respectively. We use the
ReLU function as the non-linear activation function, which has
empirically shown to work well. Moreover, we use the tower
structure for hidden layers and leave the further tuning on the
structure as future work. Finally, the output of the last hidden layer
eh is transformed to a prediction score via:{

r̂i j = wT eh , i f e0 = φpoolinд(ui , vj )

ŷl j = wT eh , i f e0 = φpoolinд(gl (j), vj )
, (6)

where w denotes the weights of the prediction layer; r̂i j and ŷl j
represent the prediction for a user-item pair (ui ,vj ) and a group-
item pair (дl ,vj ), respectively.

It is worth mentioning that we have purposefully designed the
prediction of the two tasks share the same hidden layers. �is
is because that the group embedding is aggregated from user
embeddings, which makes them in the same semantic space by
nature. Moreover, this can augment the training of group-item
interaction function with user-item interaction data and vice versa,
which facilitates the two tasks reinforcing each other.

2.4 Model Optimization
2.4.1 Objective Function. Since we address recommendation

task from the ranking perspective, we opt for pairwise learning
method for optimizing model parameters. �e assumption of
pairwise learning is that an observed interaction should be predicted
with a higher score than its unobserved counterparts. Speci�cally,
we employ the regression-based pairwise loss, which is a common
choice in item recommendation [34]:

Luser =
∑

(i, j,s)∈O
(ri js − r̂i js )2 =

∑
(i, j,s)∈O

(r̂i j − r̂is − 1)2, (7)

whereO denotes the training set, in which each instance is a triplet
(i, j, s) meaning that user ui has interacted with item vj , but has
not interacted with item vs before (i.e., vs is a negative instance
sampled from the unobserved interactions of ui ); r̂i js = r̂i j − r̂is ,
means the margin of the prediction of observed interaction (ui ,vj )
and unobserved interaction (ui ,vs ). Since we focus on implicit
feedback, where each observed interaction has a value of 1 and
unobserved interaction has a value of 0, we have ri js = ri j −ris = 1.
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We are aware that another prevalent pairwise learningmethod in
recommendation is the Bayesian Personalized Ranking (BPR) [8, 29].
It is worth pointing out that an advantage of the above regression-
based pairwise loss over BPR is that it eliminates the need of tuning
the L2 regularization for the weights in the hidden layers (i.e., {Wh }
and w). In BPR, the loss for an instance (i, j, s) is formulated as
− logσ (r̂i j − r̂is ), where σ is the sigmoid function. To decrease
the BPR loss on a multi-layer model, a trivial solution is to scale
up the weights in each update. As such, it is crucial to enforce
the L2 regularization on the weights to avoid this trivial solution.
In contrast, our chosen loss optimizes the margin term r̂i j − r̂is
towards 1, making such a trivial solution fail to decrease the loss.
�us the weights can be learned without any constraint on it.

Similarly, we can obtain the pairwise loss function for optimizing
the group recommendation task:

Lдroup =
∑

(l, j,s)∈O′
(yl js − ŷl js )2 =

∑
(l, j,s)∈O′

(ŷl j − ŷls − 1)2, (8)

where O ′ denotes the training set for the group recommendation
task, in which each instance (l , j, s) means that group дl has
interacted with item vj , but has not interacted with vs before.

2.4.2 Learning Details. We present some learning details that
are important to replicate our method.

Mini-batch training. We perform mini-batch training, where
each mini-batch contains both user-item and group-item inter-
actions. Speci�cally, we �rst shu�e all observed interactions,
and then sample a mini-batch of observed interactions. For
each observed interaction, we sample a �xed number of negative
instances to form the training instances.

Pre-training. It is known that neural networks are rather
sensitive to initialization [16]. To be�er train AGREE, we pre-train
it with a simpli�ed version that removes the a�ention network,
i.e., assigning a uniform weight on user embeddings to obtain the
group embedding. With the pre-trained model as an initialization,
we further train the AGREE model. Note that we employ Adam [23]
in the pre-training phase, which has a fast convergence owing to
its adaptive learning rate strategy. A�er pre-training, we use the
vanilla SGD, a common choice in �ne-tuning a pre-trained model.

Dropout. As the neurons of fully connected layers can
easily co-adapt [15, 33], we employ dropout to improve AGREE’s
generalization performance. Speci�cally, in the pooling layer, we
randomly drop ρ percent of the e0 vector. Moreover, we also apply
dropout on the hidden layer of the neural a�ention network and
the hidden layers of NCF interaction learning component. Note
that dropout is only used during training (i.e., computing gradients
with back-propagation), and must be disabled during the prediction
phase.

3 EXPERIMENTS
In this section, we conduct extensive experiments on one self-
collected dataset and one public dataset to answer the following
four research questions:
RQ1 How is the e�ectiveness of our designed a�ention network?

Can it provide be�er group recommendation performance?
RQ2 How does our proposed AGREE approach perform as com-

pared with state-of-the-art group recommender systems?

RQ3 How do the two components of group representation
— user embedding aggregation and group preference
embedding — contribute to the performance of AGREE?

RQ4 How does AGREE perform in handling the new-user cold-
start problem?

3.1 Experimental Settings
3.1.1 Datasets. We experimented with two real-world datasets,

one is crawled from a tourism website Mafengwo5 and the other
one is a publicly accessible dataset released from the competition
of context-aware movie recommendation6.

1. Mafengwo. Mafengwo is a tourism website where users
can record their traveled venues, create or join a group travel.
We retained the groups which have at least 2 members and have
traveled at least 3 venues, and collected their traveled venues. �e
traveled venues of each groupmemberwere also collected. Based on
the above criteria, we obtained 5, 275 users, 995 groups, 1, 513 items,
39, 761 user-item interactions, and 3, 595 group-item interactions.
On average, each group has 7.19 users.

2. CAMRa2011. CAMRa2011 is a real-world dataset containing
the movie rating records of individual users and households. Since
the majority of users have no group information in the dataset,
we �ltered them out and retained users who have joined a group.
�e user-item interactions and group-item interactions are explicit
feedback with the rating scale of 0 to 100. We transformed the
rating records to positive instances with the target value of 1 and
le� the other missing data as negative instances with the target
value of 0. �e �nal dataset contained 602 users, 290 groups, 7, 710
items, 116, 344 user-item interactions, and 145, 068 group-item
interactions. �e average group size is 2.08.

As both datasets only contain positive instances (i.e., observed
interactions), we randomly sampled from missing data as negative
instances to pair with each positive instance. Previous e�orts have
shown that increasing the negative sampling ratio from 1 to larger
values is bene�cial to the top-K recommendation [16]. For AGREE
on both datasets, the optimal sampling ratio is around 4 to 6, so
we �xed the negative sampling ratio as 4. Speci�cally, for each
log of Mafengwo, we randomly sampled 4 venues that the user
(group) has never visited; for each log of CAMRa2011, we randomly
sampled 4 movies that the user (group) has never watched. Each
negative instance is assigned to a target value of 0.

3.1.2 Evaluation Protocols. We adopted the leave-one-out eval-
uation protocol, which has been widely utilized to evaluate the
performance of the top-K recommendation [9, 17, 29]. Speci�cally,
for each user (group), we randomly removed one of her (its)
interactions for testing. �is results in disjoint training set Strain
and testing set Stest . Since it is too time-consuming to rank all
items for each user and group, we followed the common scheme
[16] that randomly selected 100 items that were not interacted by
the user or the group and ranked the testing item among the 100
items. For the new-user cold-start issue, we conducted experiments
on the Mafengwo dataset. Among all the 5, 277 users, 1, 296 (24.6%)
of them have interactions on items and joined at least 2 groups.
We randomly selected 10% of these users as the testing users and
5h�p://www.mafengwo.cn
6h�p://2011.camrachallenge.com/2011

http://www.mafengwo.cn
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removed their user-item interactions. To evaluate the performance
of the top-K recommendation, we employed the widely used metric
— Hit Ratio (HR) and Normalized Discounted Cumulative Gain
(NDCG). Large values indicate be�er performance. In leave-one-
out evaluation, HR measures whether the testing item is ranked in
the top-K list (1 for yes and 0 for no), while NDCG accounts for the
position of the hit by assigning higher score to hit at top positions.

3.1.3 Baselines. To justify the e�ectiveness of our method, we
compared it with the following methods.
• NCF.�is method treats a group as a virtual user and ignores the

member information of the group [30]. �en users and virtual
users are embedded into our NCF solution.

• Popularity [12]. �is method recommends items to users and
groups based on the popularity of items. �e popularity of an
item is measured by its number of interactions in the training set.
It is a non-personalized method to benchmark the performance
of other personalized methods.

• COM [37]. �is is the state-of-the-art group recommender
system. It is a probabilistic method that models the generative
process of group activities. We used the implementation released
by the authors and modi�ed the evaluation codes only to adapt
our testing scenario. We tuned the number of topics for COM
and le� other hyper-parameters as the default se�ing.

• GREE. �is is a variant of our AGREE method by removing
the a�ention component and se�ing a uniform weight on the
member embeddings. �is is to demonstrate the e�ect of learning
varying weights for group members.
To justify the usefulness of learning the aggregation strategy

from data, we further compare with another line of methods that
apply a prede�ned score aggregation strategy. For these methods,
we �rst run the NCF method to predict the individual preference
scores, and then apply the aggregation strategy to get the group
preference score.
• NCF+avg [3, 4]. NCF+avg is short for “NCF combined with

average”. It is the simplest aggregation strategy that averages
the preference scores of individuals as the group preference
score. �e hypothesis behind this method is that each member
contributes equally to the �nal group decision.

• NCF+lm [1]. NCF+lm applies the least misery strategy. It tries
to please all members in a group, which uses the minimum score
of individuals as the group preference score. �e underlying
assumption is that the least satis�ed member determines the
�nal group decision, which is similar to the well-known cask
principle.

• NCF+ms [5]. NCF+ms employs the maximum satisfaction
strategy. In contrast to NCF+lm, it tries to maximize the
satisfaction of group members. It averages the individual scores
above a speci�ed threshold as the group preference score. In this
work, we assumed a member prefers to follow other members’
options, and treated the maximum score as the preference of the
group.

• NCF+exp [28]. NCF+exp adopts the expertise scheme. It
applies a weighted average on individual scores, where the
weight re�ects the expertise of the user. In our experiments,
the expertise of a user is de�ned as the number of items she has
interacted with in the training set.

3.1.4 Implementation and Hyper-Parameter Se�ing. We imple-
mented ourmethod based on Pytorch7. For hyper-parameter tuning,
we randomly sampled one interaction for each user and group
as the validation set. As have mentioned before, the negative
sampling ratio was set to 4. For the initialization of the embedding
layer, we applied the Glorot initialization strategy [14], which
was found to have a good performance. For hidden layers, we
randomly initialized their parameters with a Gaussian distribution
of a mean of 0 and a standard deviation of 0.1. We used the
Adam optimizer for all gradient-based methods, where the mini-
batch size and learning rate were searched in [128, 256, 512, 1024]
and [0.001, 0.005, 0.01, 0.05, 0.1], respectively. In neural a�ention
network and NCF, we empirically set the size of the �rst hidden
layer same as the embedding size with the dimension of 32, and
employed three layers of a tower structure and ReLU activation
function. We repeated each se�ing for 5 times and reported the
average results. We further conducted the paired two-sample t-test
on NDCG based on the 5 times experiment results.

3.2 E�ect of Attention (RQ1)
�e primary motivation of this work is to learn variable a�ention
weights for group members, rather than the commonly used
uniform weighting strategy. �erefore, in order to investigate
the e�ectiveness of the a�ention network, we �rst compare the
performance of AGREE with the GREE baseline.

Figure 4 shows the performance of AGREE and GREE in each
training iteration under the optimal parameter se�ings. We have the
following observations: 1) Compared with GREE, AGREE achieves a
relative improvement on both datasets with respect to both metrics.
�e improvements are statistically signi�cant and mainly stem
from the strong representation power of the a�ention network. 2)
Both AGREE and GREE converge rather fast, reaching their stable
performance around the 20th iteration. Compared with GREE,
AGREE additionally uses an a�ention network to re-weight the
embedding vectors of groupmembers. �is improves generalization
without a�ecting the convergence speed, which provides evidence
on the e�ectiveness and rationality of AGREE.

Micro-Level Analysis. Apart from the superior recommenda-
tion performance, another key advantage of AGREE is its ability
in interpreting the a�ention weights of group members. To
demonstrate this, we performed some micro-level case studies. To
be speci�cally, we implemented AGREE in a two-stage scheme.
A�er obtaining the GREE model, we �xed the parameters and
trained the a�ention network only to make the e�ect of a�ention
more distinct. Prediction scores of the group toward positive and
negative items are investigated.

We randomly selected a testing group which consists of three
users (#805, #806, and #807), and the group has traveled three venues
(#30 Argentina, #32 Chile, and #106 Bolivia) with the target value
of 1. Each group member also has her owning traveling history8.
Besides traveled venues, we also randomly picked three negative
venues (#65 Iran, #121 Qiandao Lake, and #123 Baoji) with the target
value of 0.
7h�p://www.pytorch.org
8User #805 has traveled #58 Brazil, #31 Trukey, and #136 Japan; user #806 has traveled
#547 Jiangxi, #62 Yunnan, and #553 Hunan; user #807 has traveled #139 Los Angeles
and #86 New York.

http://www.pytorch.org
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Figure 4: Performance of AGREE and GREE in each training iteration on Mafengwo and CAMRa2011 datasets (Section 3.2).

Table 1: Case studies of a sampled group on the e�ect of
attention (Section 3.2). �e member weights and prediction
scores of the group for positive venues (Venue #30, #32,
#106) and negative venues (Venue #65, #121, #123) are shown
(Section 3.2).

Model User #805 User #806 User #807 ŷ

Venue #30 GREE 0.333 0.333 0.333 0.260
AGREE 0.286 0.302 0.412 0.572

Venue #32 GREE 0.333 0.333 0.333 0.096
AGREE 0.222 0.583 0.195 0.370

Venue #106 GREE 0.333 0.333 0.333 0.192
AGREE 0.364 0.287 0.347 0.318

Venue #65 GREE 0.333 0.333 0.333 0.132
AGREE 0.408 0.311 0.281 0.091

Venue #121 GREE 0.333 0.333 0.333 0.132
AGREE 0.335 0.374 0.291 0.053

Venue #123 GREE 0.333 0.333 0.333 0.109
AGREE 0.288 0.411 0.301 0.063

Table 1 shows the a�ention weights and prediction score for the
group of GREE and AGREE. We have the following observations: 1)
For di�erent target venues, the a�ention weights of group members
vary signi�cantly in AGREE. For example, when predicting the
group’s preference on negative venues #121 and #123, the a�ention
weights of user #806 are relatively high. �is is probably because
that the user has traveled a lot of Chinese venues (#547 Jiangxi,
#62 Yunnan, and #553 Hunan), and thus she has more power
in deciding whether the group should travel to other Chinese
venues (note that #121 Qiandao Lake and #123 Baoji are Chinese
venues). 2) For positive venues, the prediction scores of AGREE
are much larger than that of GREE and are closer to the target
value of 1. While for negative venues, the prediction scores of
AGREE are closer to the target value of 0 than that of GREE.
As GREE assigns the same weight for all members in the group,
the model’s representation ability is limited. By augmenting
GREE with a learnable a�ention network, AGREE is capable of
assigning higher weights for in�uential users and thus leads to
be�er recommendation performance.

3.3 Overall Performance Comparison (RQ2)
Now we compare the performance of ARGEE with the baselines of
interest. Note that since COM and score aggregation methods are
specially designed for group recommendation, they can not provide
recommendation for individual users.

Table 2 and Table 3 show the results on Mafengwo and
CAMRa2011, respectively. We have the following observations:
1) Our AGREE method achieves the best performance on the two
datasets for both recommendation tasks, signi�cantly outperform-
ing state-of-the-art methods (all the p-values between our model
and each baseline are much smaller than 0.05, which indicates that
the improvements are statistically signi�cant). �is validates the
e�ectiveness of our AGREE solution, more speci�cally, the positive
e�ect of the a�ention network in aggregating the preference of
groupmembers and simultaneously addressing the two tasks. 2)�e
performance of neural network-based solutions (i.e., NCF, GREE,
NCF+avg, NCF+lm, NCF+ms, NCF+exp, and AGREE) are superior
to that of non-personalized approach Popularity and probabilistic
graphical model COM. �is demonstrates the superiority of neural
networks, especially their great ability in modeling the high-order
interactions among users, groups, and items. 3) �ere is no obvious
winner among the score aggregation-based solutions. For example,
NCF+avg outperforms NCF+lm when K = 5 on Mafengwo, but
underperforms when K = 10. �is again con�rms that a prede�ned,
static score aggregation strategy is insu�cient to predict the group
decision well. In contrast, AGREE dynamically associates weights
for group members by learning from data, which shows remarkable
�exibility and superiority.

3.4 Importance of Components (RQ3)
�e overall performance comparison shows that AGREE obtains
the best results, demonstrating the e�ectiveness of the integrated
end-to-end solution. To further understand the importance of
user embedding aggregation and group preference embedding in
learning group representation, we performed some ablation studies.
For convenience, we use the name AGREE-U to denote the method
“AGREE with user embedding aggregation only”, and AGREE-G to
denote “AGREE with group preference embedding only” (which is
equivalent with the NCF method).

Table 4 and Table 5 show the results of AGREE and the two
simpli�ed variants. We have the following observations:

1) AGREE consistently and signi�cantly outperforms AGREE-U
and AGREE-G on both datasets with respect to both metrics, which
can be evidenced by the small p-values. �is indicates that both
components of user embedding aggregation and group preference
embedding are bene�cial to model group decisions, and combining
them leads to be�er performance.
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Table 2: Top-K performance of both recommendation tasks for users and groups on Mafengwo (Section 3.3).

Overall Performance Comparison (Mafengwo)
K=5 K=10

User Group User Group
HR NDCG p-value HR NDCG p-value HR NDCG p-value HR NDCG p-value

NCF 0.6363 0.5432 4.46e-06 0.4291 0.3405 7.18e-09 0.7417 0.5733 3.68e-05 0.6181 0.4020 3.95e-08
Popularity 0.4047 0.2876 2.02e-12 0.3115 0.2169 1.55e-11 0.4971 0.3172 2.09e-12 0.4251 0.2537 1.13e-11
COM — — — 0.4420 0.3297 6.54e-09 — — — 0.5434 0.3727 1.36e-09
GREE 0.6306 0.5395 7.87e-07 0.4513 0.3577 1.20e-07 0.7206 0.5687 1.74e-06 0.6151 0.4111 3.25e-07
NCF+avg — — — 0.4774 0.3669 2.86e-06 — — — 0.6222 0.4140 8.84e-07
NCF+lm — — — 0.4744 0.3631 5.67e-07 — — — 0.6302 0.4152 1.45e-06
NCF+ms — — — 0.4700 0.3616 3.46e-07 — — — 0.6281 0.4114 3.57e-07
NCF+exp — — — 0.4724 0.3647 1.03e-06 — — — 0.6251 0.4015 3.61e-08
AGREE 0.6383 0.5502 — 0.4814 0.3747 — 0.7491 0.5775 — 0.6400 0.4244 —

Table 3: Top-K performance of both recommendation tasks for users and groups on CAMRa2011 (Section 3.3).

Overall Performance Comparison (CAMRa2011)
K=5 K=10

User Group User Group
HR NDCG p-value HR NDCG p-value HR NDCG p-value HR NDCG p-value

NCF 0.6119 0.4018 1.03e-06 0.5803 0.3896 9.02e-06 0.7894 0.4535 1.89e-07 0.7593 0.4448 3.92e-07
Popularity 0.4624 0.3104 9.15e-11 0.4324 0.2825 5.92e-11 0.6026 0.3560 5.99e-11 0.5793 0.3302 3.67e-11
COM — — — 0.5793 0.3762 7.20e-08 — — — 0.7682 0.4368 1.46e-17
GREE 0.6163 0.4079 5.02e-05 0.5883 0.3871 2.11e-06 0.7841 0.4571 5.67e-07 0.7690 0.4479 5.43e-08
NCF+avg — — — 0.5683 0.3819 2.97e-07 — — — 0.7641 0.4452 4.47e-07
NCF+lm — — — 0.5593 0.3788 1.29e-07 — — — 0.7648 0.4455 4.94e-07
NCF+ms — — — 0.5434 0.3710 2.75e-08 — — — 0.7607 0.4348 3.74e-08
NCF+exp — — — 0.5648 0.3787 1.26e-07 — — — 0.7621 0.4426 2.05e-07
AGREE 0.6223 0.4118 — 0.5883 0.3955 — 0.7967 0.4687 — 0.7807 0.4575 —

Table 4: Top-K performance of AGREE and its two simpli�ed variants on the Mafengwo dataset (Section 3.4).

Component Performance Comparison (Mafengwo)
K=5 K=10

User Group User Group
HR NDCG p-value HR NDCG p-value HR NDCG p-value HR NDCG p-value

AGREE-U 0.6220 0.5364 2.80e-07 0.4141 0.3322 2.99e-09 0.7309 0.5716 9.02e-06 0.5709 0.3832 3.39e-09
AGREE-G 0.6363 0.5432 4.46e-06 0.4291 0.3405 7.18e-09 0.7417 0.5733 3.68e-05 0.6181 0.4020 3.95e-08
AGREE 0.6383 0.5502 — 0.4814 0.3747 — 0.7491 0.5775 — 0.6400 0.4244 —

Table 5: Top-K performance of AGREE and its two simpli�ed variants on the CAMRa2011 dataset (Section 3.4).

Component Performance Comparison (CAMRa2011)
K=5 K=10

User Group User Group
HR NDCG p-value HR NDCG p-value HR NDCG p-value HR NDCG p-value

AGREE-U 0.6043 0.3945 1.12e-07 0.5793 0.3832 4.47e-07 0.7601 0.4465 4.09e-08 0.7441 0.4376 6.36e-08
AGREE-G 0.6119 0.4018 1.03e-06 0.5803 0.3896 9.02e-06 0.7894 0.4535 1.89e-07 0.7593 0.4448 3.92e-07
AGREE 0.6223 0.4118 — 0.5883 0.3955 — 0.7967 0.4687 — 0.7807 0.4575 —

2) AGREE-G shows be�er performance than AGREE-U on both
datasets. �is reveals that the group preference embedding has a
larger impact in learning group representation in our method.

3.5 Handling New-User Cold-Start Issue (RQ4)
We consider addressing the new-user cold-start problem, where
users have participated in groups but never consumed items
individually. Since user embeddings are shared in AGREE for
learning group-item and user-item interactions, the embeddings of
users can be well learnt from the group-item interactions even the
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Table 6: Top-K performance of the new-user cold-start
scenario on Mafengwo (Section 3.5).

New-User Cold-Start (Mafengwo)
K=5 K=10

HR NDCG p-value HR NDCG p-value
Popularity 0.3115 0.2169 1.22e-12 0.4251 0.2537 8.18e-13
NCF+group 0.6576 0.4687 2.20e-09 0.7716 0.5512 9.62e-09
AGREE 0.6989 0.5146 — 0.8013 0.5830 —

users have no user-item interactions. In fact, the average number
of groups joined by a user on the Mafengwo dataset is 1.36, while
that of the CAMRa2011 dataset is 1.00. �erefore, the CAMRa2011
dataset is not suitable for this scenario since we know few about
the user if she only participates in one group, and we conducted
the experiment on the Mafengwo dataset by selecting the users
who participate as least two groups. �e experiment se�ing is
illustrated in Section 3.1.2. We compared our AGREE model with
two methods 1) Popularity, and 2) NCF+group, which enriches the
user-item interaction data by assuming that a user has consumed
the historical items of her participated groups; then NCF is applied
on the enriched data.

�e results are shown in Table 6. �e conclusions are twofold:
1) AGREE demonstrates signi�cant improvements over Popularity
and NCF+group. Speci�cally, the improvements over NCF+group
are 6.28% in HR and 9.79% in NDCG when K = 5, 3.85% in HR and
5.77% in NDCG when K = 10. �is indicates the signi�cance of
AGREE in addressing the cold-start issue by leveraging users’ group
activities. 2) AGREE and NCF+group achieve preferable results as
comparedwith Popularity, which veri�es that personalizedmethods
are superior to the non-personalized method even for the cold-start
se�ing.

4 RELATEDWORK
In this section, we review the related area of group recommendation
and deep learning techniques for recommendation.

4.1 Group Recommendation
Group recommendation has received a lot of a�entions in recent
years and has been widely applied in various domains. Technically
speaking, these work can be divided into two categories —memory-
based and model-based approaches.

Memory-based approaches can be further subdivided into
preferences aggregation and score aggregation [37]. Preferences
aggregation strategy �rst aggregates the pro�les of group members
into a new pro�le, and then employs recommendation techniques
designed for individuals to make group recommendation. Score
aggregation strategy �rst predicts the individuals’ scores over
candidate items, and then aggregates the predicted scores of
members in a group via prede�ned strategies (e.g., average,
least misery, maximum satisfaction and so on) to represent the
group’s preferences. However, both approaches are prede�ned
and in�exible, which utilize trivial methods to aggregate members’
preferences.

Distinct from memory-based approaches, model-based methods
exploit the interactions amongmembers bymodeling the generative
process of a group. �e PIT model [25] e�ectively identi�es the
group preference pro�le for a given group by considering the

personal preferences and personal impacts of group members.
A probabilistic model named COM [37] is proposed to model
the generative process of group activities and make group
recommendations. �e most similar method to our algorithm is
a deep learning approach, DLGR [18], which learns high-level
comprehensive features to represent group preference so as to
avoid the vulnerabilities in a shallow representation. Our work
falls into the model-based category. In addition to learn the
high-level interactions among users, groups, and items under
the deep learning framework, our work employs the a�ention
mechanism as the underlying principle for the aggregation of users’
embedding representations. Meanwhile, user-item and group-item
recommendations are mutually reinforced under our framework.

4.2 Deep Learning for Recommendation
�e proliferation of deep learning has swept the research com-
munity, among which recommender systems are no exception.
�e majority of work that integrates recommender systems with
deep learning methods primarily utilized deep neural networks
for modeling auxiliary information [13, 36]. �e features learnt
by deep neural networks are then incorporated into collaborative
�ltering algorithms. However, these work somehow falls into a
two-stage mode, in which recommender systems and deep learning
methods are implemented separately. Di�erent from previous
work, there are some a�empts that try to seamlessly combine
recommender systems with deep learning methods by modeling
user-item interactions [16] and higher-order interactions among
features [15]. �e success of NCF [16] has been further extended
to a�ribute-based social recommendation [34] and review-based
product recommendation [10], being utilized as the foundation of
our work as well.

�e a�ention mechanism with the realization of neural networks
has been shown e�ective in several tasks. It simulates human
recognition by focusing on some selective parts of the whole image
or the whole sentence while ignoring some other informative
(less informative) parts. In fact, the a�ention mechanism has
been investigated in the �eld of recommender systems. To
get the representation for a multimedia item (e.g., image or
micro-video [24]), Chen et al. [9] aggregate its components (e.g,
regions or frames) with an a�ention network. �en the similar
a�ention mechanism is applied to aggregate interacted items to
get user representation to make recommendation. Note that such
component-level a�ention for multimedia items is not restricted
to the recommendation task, and it can also be applied to other
applications, such as multimedia QA [26], popularity prediction [21,
22], clothing matching [31], and so on. In a�entional factorization
machines [35], the weights of feature interactions are learnt via
neural a�ention network. Moreover, an a�ention- and recurrent
neural network-based deep architecture was proposed [38] for
modeling queries and advertisements in online advertising. Inspired
by these pioneering work, the key idea of our AGREE model is
to regard a group as an image or a sentence and learn to assign
a�ention weights for members (components) in the group (image or
sentence): higher weights indicate that the corresponding members
(components) are signi�cant to the end task (image or sentence).
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5 CONCLUSION AND FUTUREWORK
In this work, we address the group recommendation problem from
the perspective of neural representation learning. Under the frame-
work, there are two key factors to estimate a group’s preference
on an item well: 1) how to obtain a semantic representation for
a group, and 2) how to model the interaction between a group
and an item. We propose a novel solution named AGREE, which
addresses the �rst factor of group representation learning with an
a�ention network and the second factor of interaction learning
with NCF. Speci�cally, by leveraging the a�ention network, AGREE
can automatically learn the importance of a group member from
data; by leveraging NCF, it is capable of learning the complicated
interactions among groups, users, and items. Furthermore, we
integrate the modeling of user-item interaction data into AGREE,
allowing the two tasks of recommending items for groups and users
to be mutually reinforced. To validate the e�ectiveness of AGREE,
we perform extensive experiments on two real-world datasets. �e
results show that AGREE achieves state-of-the-art performance for
group recommendation; further micro-level analyses demonstrate
how the a�ention network improves the performance, and how
components of AGREE a�ect the results, and how AGREE allievates
the new-user cold-start issue.

In future, we plan to extend our work in the following two
directions. First, we will explore the utility of social network [20,
32], since it contains valuable signal on how users form a group and
how users trust each other. Second, we are interested in realizing
group recommender systems in an online fashion. �e interests
of users evolve over time, and so do the preferences of groups. As
it is computationally prohibitive to retrain a recommender model
in real-time, it would be extremely helpful to do online learning
[11, 19]. Along this line, we are particularly interested in leveraging
reinforcement learning methods to provide online recommendation.
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