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ABSTRACT

The booming of social networks has given rise to a large
volume of user-generated contents (UGCs), most of which are
free and publicly available. A lot of users’ personal aspects can be
extracted from these UGCs to facilitate personalized applications as
validated by many previous studies. Despite their value, UGCs can
place users at high privacy risks, which thus far remains largely
untapped. Privacy is defined as the individual’s ability to control
what information is disclosed, to whom, when and under what
circumstances. As people and information both play significant
roles, privacy has been elaborated as a boundary regulation process,
where individuals regulate interaction with others by altering the
openness degree of themselves to others. In this paper, we aim to
reduce users’ privacy risks on social networks by answering the
question of Who Can See What. Towards this goal, we present a
novel scheme, comprising of descriptive, predictive and prescriptive
components. In particular, we first collect a set of posts and extract
a group of privacy-oriented features to describe the posts. We then
propose a novel taxonomy-guided multi-task learning model to
predict which personal aspects are uncovered by the posts. Lastly,
we construct standard guidelines by the user study with 400 users
to regularize users’ actions for preventing their privacy leakage.
Extensive experiments on a real-world dataset well verified our
scheme.

CCS CONCEPTS
• Information systems → Retrieval tasks and goals; •

Security and privacy → Privacy protections;

KEYWORDS
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1 INTRODUCTION
With the increasing enthusiasm of users to share their daily

life on social networks, a large amount of personal data, such as
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personal demographics, daily activities and even relations with
the others, are made publicly available. It is reported that 66% of
users’ micro-posts are about themselves [24]. The huge amount of
users’ personal data accessible online may put the users at a high
risk of privacy leakage due to the following reasons. On one hand,
the default privacy settings usually make UGCs publicly accessible.
In fact, people are usually connected with heterogeneous circles
on social networks, such as family members, casual friends and
even strangers. As a result, UGCs are probably seen by unexpected
audience and hence cause unexpected consequences to users. Take
a real story as an example. A video podcaster’s home was broken
into and several video equipments were stolen during his travel. It
is ultimately found out that the break-in was caused by his detailed
tweets regarding his leave [24]. On the other hand, users may even
be unaware of the privacy leakage when they are posting on social
networks, which is also the cause of the regrettable messages [36].
Consequently, privacy leakage via user-generated contents (UGCs)
in social networks deserves our special attention.

In fact, according to the report [35], 50% of Internet users are
concerned about the privacy exposure, up from about 30% in 2009.
Privacy is elaborated as a process of boundary regulation [13, 34],
where individuals control over how much information about
themselves can be divulged to others. Therefore, maintaining
appropriate levels of disclosure within one’s social environment is
of essential significance. In fact, one’s social circle can be organized
into different groups based on their personal ties with the given
user. It is apparent that for different social circles, individuals hold
different norms of what kind of information should be treated as
privacy. For example, one’s age may be kept private to his/her
casual friends but visible to family members, while one’s negative
emotion may be better invisible to family members. Considering
that information and audience both play pivotal roles in the
privacy preserving, answering the question ofWho Can See What
is essential.

However, answeringWho Can See What is non-trivial due to the
following reasons. First, posts with personal information may ex-
plicitly or implicitly convey different aspects of users. These aspects
are usually not independent but can be organized into certain struc-
tures, such as groups, according to their relatedness. For example,
given a set of aspectsI = {aдe, current location,places planninд to дo},
aspects “current location” and “places to go” are more correlated
and should be modeled together in one group. More often than not,
such structure can impose certain constraints to the feature space
and enhance the performance of aspect detection. Consequently, the
main challenge is how to construct and leverage such structure to
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Figure 1: Illustration of the proposed scheme. First, we build a comprehensive taxonomy of the personal aspects, collect a
benchmark dataset and extract a rich set of privacy-oriented features from the UGCs. Second, we introduce a taxonomy-
constrained model to detect the potential privacy leakage. Last, we suggest users with the possible actions according to the
guidelines built via AMT.

learn shared features and specific features. Second, thus far, no gold
standard instruction is available to guide Who Can See What. As
the interpretation of privacy may be subjective and geographically
specific, obtaining a unified instruction poses a crucial challenge
for us. The third challenge lies in the lack of benchmark dataset and
the way to extract a set of privacy-oriented features. This is because
it is hard to distinguish the personal posts from the non-personal
posts, and some posts are too short to provide sufficient contexts
for feature extraction.

To address the aforementioned challenges, we present a novel
scheme for boundary regulation, comprising of three components:
description, prediction, and prescription. As illustrated in Figure 1,
in the first component, we summarize the literature and pre-define
a comprehensive taxonomy composed of 32 categories, where each
category corresponds to one personal aspect of users. To build
a benchmark dataset, we then feed a list of keywords to Twitter
Search Service1 for each category. A set of privacy-oriented features,
including linguistic and meta features are extracted to describe the
given UGCs. We choose the real-time sharing website Twitter as
the study platform due to the following facts: 1) Users in Twitter
are keen to share their personal events of various topics; And 2)
the followers are broadly and disorderly mixed. Based on these
features, the second component then endeavors to discover which
personal aspect has been uncovered by the given post. The pre-
defined structure in the first component has organized the 32
categories into eight groups, spanning from personal attributes
to life milestones. The categories within each group hold both
group-sharing features and aspect-specific features. Meanwhile,
we assume that there is a low dimensional latent feature space

1https://twitter.com/search-home

that is capable of capturing the higher-level semantics of UGCs as
compared to the original features. To learn the latent feature space
and further boost the aspect detection performance, we treat each
personal aspect as a task and propose a laTent grOup multi-tasK
lEarniNg (TOKEN) model that is able to leverage the pre-defined
structure to learn group-sharing latent features and aspect-specific
latent features simultaneously. The last component works towards
triggering and suggesting users what they should act according
to certain guidelines once their privacy leakage is detected by the
second component. Considering the existence of cultural difference
regarding users’ information disclosure norms, we build guidelines
by conducting a cross-cultural user study via Amazon Mechanical
Turk2 (AMT). In designing this guideline, we regulate the boundary
of users’ posts by four tier social circles, namely, family members,
close friends, casual friends and outsider audience.

Our main contributions can be summarized in threefold:
• We established a taxonomy to comprehensively character-
ize users’ personal aspects. Guided by this taxonomy, we
proposed a TOKEN model to uncover the personal aspects
disclosed by the user’s posts. Regarding the optimization,
we theoretically relaxed the non-smooth model to a smooth
one and derived its closed-form solution.

• We constructed guidelines regarding users’ information
disclosure norms with four kinds of social circles. This user
study with 400 users cannot be finished without the help of
the crowdsourcing Internet marketplace—AMT. In addition,
we studied the cultural similarities and differences of users’
privacy perception.

2https://www.mturk.com/mturk/welcome
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• We collected a representative dataset via Twitter Search
Service and developed a rich set of privacy-oriented features.
We have released the data to facilitate others to repeat
experiments and verify their ideas3.

The remainder of this paper is structured as follows, Section 2
briefly reviews the relatedwork. Sections 3, 4 and 5 present the three
components of TOKEN model, namely, description, prediction and
prescription, respectively. Section 6 details the experimental results
and analyses, followed by our concluding remarks and future work
in Section 7.

2 RELATEDWORK
Privacy leakage detection and multi-task learning are related to

this work.

2.1 Privacy
In the past decades, great efforts have been dedicated to privacy

study, and they can be generally divided into two directions. One is
investigating privacy issues from the structured data [1, 5, 31], such
as users’ structured profiles [29, 40], and their privacy settings [21].
Song et al. [40] studied the re-identification problem from users’
trajectory records with a human mobility dataset. Besides, Liu et
al. [29] proposed a framework for computing privacy scores for
users on social networks based on sensitivity and visibility of certain
profile items. Han et al. [21] further conducted in-depth study over
the privacy issues in people search by simulating different privacy
settings in a public social network. In spite of the compelling success
achieved by these studies with different application scenarios, far
too little attention has been paid to investigate users’ unstructured
data, whereby the data volume is larger, information is richer, and
privacy issues are more prominent, as compared to the structured
data.

Another direction is learning privacy issues from the unstruc-
tured data [30, 45, 46], mainly referring to UGCs. Approaches fol-
lowing this direction usually focus on training effective classifiers to
predict whether the given UGC is privacy-sensitive. Mao et al. [30]
studied privacy leakage on Twitter by automatically detecting
vacation tweets, drunk tweets, and disease tweets. Caliskan et al. [6]
proposed an approach to detecting sensitive content from Twitter
users’ timelines and associating each user with a privacy score.
Although great success has been achieved, they overlooked the
relatedness among personal aspects and fed data into traditional ma-
chine learning models, such as Naive Bayes [33] and AdaBoost![19].
To bridge this gap, we pre-defined a comprehensive taxonomy to
capture users’ structural personal aspects and based on which we
presented a novel multi-task learning method which considers the
relatedness among different personal aspects.

2.2 Multi-task Learning
Multi-task learning works by jointly solving a problem together

with other related problems simultaneously, using a shared rep-
resentation. This often leads to a better model for the research
problem, because it allows the learner to use the commonality
among the tasks [7]. Hence, precisely identifying and modeling the

3http://sigir18_privacy.bitcron.com/

Figure 2: Illustration of our pre-defined taxonomy.

task relatedness are crucial. Several regularization-style methods
have been proposed in the literature to model task relatedness.
Argyriou et al. [2] proposed a framework of multi-task feature
learning, which learns the shared features among all tasks with
convex optimization. The philosophy behind this framework is
that all tasks are related, which may be too restrictive and may
adversely affect the performance by neglecting the outlier tasks.
To address the problem, Song et al. [39] introduced a structure-
constrained multi-source multi-task learning model in the context
of user interest inference. The authors proposed to construct
the task relatedness structure by prior knowledge. However, the
underlying assumption of this work that tasks in the same group
should share the whole low-level feature space may be unrealistic.
Beyond them, we manually pre-defined a taxonomy to structure
the task relatedness, and utilized the taxonomy to guide a novel
multi-task learningmodel, which is capable of learning task-sharing
and task-specific features. Moreover, we assume that tasks within
a group should share certain high-level features.

In fact, MTL has been applied to solve many problems, including
social behavior prediction [16], image annotation [14, 15], and web
search [3]. However, to the best of our knowledge, limited efforts
have been dedicated to applying MTL in the privacy domain, which
is the major concern of our work.

3 DATA AND DESCRIPTION
In this section, we respectively detail the procedure of taxonomy

induction, data collection, ground truth construction, as well as
feature extraction.

3.1 Taxonomy Induction
In fact, for the privacy detection, Caliskan et al. [6] introduced

nine categories: location, medical, drug/alcohol, emotion, personal
attacks, stereotyping, family or other associations, personal details,
and personally identifiable information. These categories are
relatively coarse-grained and hence fail to provide more detailed
privacy leakage. In addition, they overlook the life milestones aspect
of individuals, which can also be privacy related [12]. Therefore, in
this work, by summarizing the literature [6, 12, 25], we pre-defined
a comprehensive taxonomy consisting of 32 fine-grained privacy
categories. These categories correspond to users’ various personal
aspects. As shown in Figure 2, these categories can be organized
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into eight groups, namely, personal attributes, relationship, activities,
location, emotion, healthcare, life milestones and neutral statements.
Except the neutral statements group, categories in the other seven
groups are all related to personal issues to some extent. It is noted
that, in our work, the neutral statements refer to the posts without
revealing any personal information from the other seven groups.
Consequently, based on this taxonomy, given a social post, we can
group it to at least one category.

3.2 Data Collection
To build our dataset, considering that most of users’ private

tweets are extremely sparse, we hence did not collect data by
following the user-centric policy. Instead, we collected the social
posts for each category in the pre-defined taxonomy by respective
keywords. In particular, we leveraged the Twitter Search Service.
We initially compiled a list of seed keywords4 for each category
and fed them to Twitter Search Service. In the light of this, we
obtained 269, 090 raw tweets. To improve the quality of the dataset,
we then developed several filter modules for different categories
to remove the noise. We filtered out tweets that contain external
URLs excluding those referring to users’ other social networks’
(e.g., Instagram) posts. In addition, as we study the first-order
privacy leakage, we ignored retweets in the dataset. Besides, we
only retained tweets consisting of more than 50 characters.

3.3 Ground Truth Construction
In our work, we constructed the ground truth about what has

been revealed by a given post via AMT. We required workers to
annotate each post with multiple categories. It is noted that we only
focus on first-order privacy leakage. Particularly, we instructed
the AMT workers to annotate a tweet as neutral if it reveals
nothing about the tweet owner even it may refer to other people’s
personal aspects. To ensure the quality of our ground truth, we
only employed the AMT masters instead of common workers.
AMT masters achieve the “master” distinction by satisfying the
demand with a high degree of accuracy. Moreover, we only accepted
the submissions whereby the privacy categories labeled by the
workers are at least 80% correct based on our sampling validation.
To alleviate the problem of subjectivity, we employed three different
workers for each post.

At last, we performed the majority voting to establish the final
labels for each post and obtained 11, 368 labeled posts. To uncover
insights of labeling quality, we use the Fleiss’ kappa statistic [18],
a variant of Cohen’s kappa [44], to measure the inter-worker
reliability. Considering that the number of category labels assigned
to each tweet is varying, we treat the problem as a set of binary
classification. For each binary classification, we count the number
of workers who assign this label to the given tweet and those who
do not. We finally get the average Fleiss’ kappa coefficient as 0.43,
which shows a moderate agreement of our workers [28].

3.4 Example Illustration
To get a more intuitive understanding of each category, we take

a close look at the samples of each category. Due to the space
4These keywords for each category can be available via http://sigir16_privacy.farbox.
com/.

Table 1: Examples of selected categories.
Category Example

Occupation “I used to be a swimmer... now I’m a coach. And I love torturing my kids.
“I felt more control of my work as a Teacher. "

Gender “I seriously going to buy tacos... I am my father’s daughter. "
“The worst thing you do is piss me off while I’m on my period."

Current
location

“At the Bell Performing Arts Centre for the LTS Jazz Band Concert #sweet"
“She told the doctor tomorrow is my birthday I can’t be in the hospital"

General
complaint

“dude if you’re going to cough every 20 seconds in the library can u leave"
“being in a relationship is stressful i wanna take a nap"

Age “...when I told him I’m only 24"
“Hey @user1 its my birthday tomorrow. I am turning 12! "

Neutral
statement

“Chelsea look like they got promoted last season..”
“Do you want my home address and social security too?”

limitation, we only list a few examples of selected categories in
Table 1. We found that users’ occupations are mainly revealed by
tweeting their new jobs, their feelings about the work, or self-
promotion. Users’ gender information can be embedded in their
roles in relationships (e.g., daughter, wife) or the distinct gender
characteristics (e.g., period for women). In addition, users’ current
locations are usually uncovered by sharing their current feelings
or current events. As to general complaints, frequent coughs in the
library and unsatisfactory relationships are likely to be complained.
Moreover, users are more likely to mention their age when their
birthdays are coming. Last but not least, although the neutral
statements may talk about “career promotion”, “my home” and
other personal aspects, they are usually revealing others’ privacy
or providing no details on the personal information of the user.

3.5 Features
To capture the user’s personal leakage, we extracted a rich set

of privacy-oriented features.

3.5.1 LIWC. LIWC, short for Linguistic Inquiry Word Count,
is a psycholinguistic transparent lexicon analysis tool, and its
effectiveness has been extensively validated in users’ personality
prediction [37, 38]. Considering that users’ personality traits signif-
icantly affect their behaviors, including privacy perceptions [26],
we adopted the LIWC feature to capture the sensitivity of a given
UGC. The main component of LIWC is a dictionary, containing the
mappings from words to 70 categories5. Given a document, LIWC
generates a vector to represent the percentage of words falling into
each category. Moreover, we noticed that the 70 categories in LIWC
dictionary, such as “job” and “home”, can comprehensively cover
the user’s personal aspects.

3.5.2 Privacy Dictionary. The privacy dictionary [43] is a
new linguistic resource for automated content analysis on privacy
related texts. We believe that sensitive UGCs should contain
some typical privacy related keywords. We hence employed this
dictionary to discriminate sensitive and non-sensitive UGCs. This
dictionary consists of eight categories6, derived from a wide range
of privacy-sensitive empirical materials. With the help of this
dictionary, we can generate similar outputs as LIWC does.

3.5.3 Sentiment Analysis. Different personal aspects are
frequently conveyed different sentiments. For example, we observed

5http://www.liwc.net/
6They are Law, OpenVisible, OutcomeState, NormsRequisites, Restriction, NegativePri-
vacy, Intimacy, and PrivateSecret.
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that people usually broadcast their graduation and becoming
parents in a more positive way, while describe their medical
treatments in a more negative way. Inspired by this, we adopted
the sentiment features [17] and utilized the Stanford NLP sentiment
classifer7 to judge tweets’ polarity. In particular, we assigned each
tweet with a value ranging from 0 to 4, corresponding to very
negative, negative, neutral, positive, very positive.

3.5.4 Sentence2Vector. Considering the short-length nature
of tweet, to perform content analysis, we employed the state-
of-the-art textual feature extraction tool Sentence2Vector8. Sen-
tence2Vector is developed based on the word embedding algorithm
Word2Vector [32], which has been found to be effective to alleviate
the semantic problems of word sparseness [20]. Given a UGC,
Word2Vector would project it to a fixed dimensional space, where
similar words are encoded spatially. In our work, we treated each
tweet as a sentence, and utilized the Sentence2Vector tool to
generate the vector representation of each tweet.

3.5.5 Meta-features. Apart from the above linguistic features,
we extracted several metadata features, which have also been
verified to be effective in topic detection [41]. These features include
the presence of hashtags9, slang words, images, emojis10, and user
mentions11. In particular, to count the number of slang words, we
constructed a local slang dictionary, consisting of 5, 374 words by
crawling the Internet Slang Dictionary & Translator12. Moreover,
we also incorporated the timestamp as an important feature, as we
observed that users would post activities at work in the daytime
while post their drug/alcohol aspects in the evening. Notably, we
only utilize the post time at the level of hours.

4 PREDICTION
In this section, we detail the prediction component.

4.1 Notation
We first declare some notations. In particular, we use bold capital

letters (e.g., X) and bold lowercase letters (e.g., x) to denote matrices
and vectors, respectively. We employ non-bold letters (e.g., x) to
represent scalars, and Greek letters (e.g., β) as parameters. If not
clarified, all vectors are in column form.

In our work, each task is aligned with one personal aspect, and
we hence have Q = 32 tasks, which have been pre-organized into
G = 8 groups, according to the pre-defined taxonomy. Meanwhile,
we are given N users and each is represented by a D-dimensional
vector. Let X ∈ RN×D stand for the input matrix and Y =
{y1, y2, · · · , yQ } ∈ RN×Q denote the corresponding label matrix,
where yq = {y1,y2, · · · ,yN }T ∈ {1,−1}N corresponds to the label
vector for the q-th task.

7http://stanfordnlp.github.io/CoreNLP/
8https://github.com/klb3713/sentence2vec
9A hashtag refers to a specially designated word prefixed with a ‘#’, which usually
represents the topic of this tweet.
10An emoji refers to a “picture character” to express facial expressions, concepts,
activities and so on.
11A user mention is a specially designated word in a tweet, prefixed with a “@”, which
usually refers to other users.
12http://www.noslang.com/

4.2 Model Formulations
For each task, we can learn a predictive model, which is defined

as follows,
fq (X) = Xwq , (1)

where wq = (w1
q ,w

2
q , · · · ,w

D
q )T ∈ RD represents the linear

mapping function for the q-th task. Let W = {w1,w2, · · · ,wQ } ∈

RD×Q . We adopt the least square loss function to measure the
errors,

L(W) = 1
2N

Y − XW
2
F , (2)

where
·F denotes the Frobenius norm of matrix. l2,1-norm has

been proven to be effective to select the relevant features for at
least one task. In particular, the multi-task learning with l2,1-norm
is defined as follows,

Γ =L(W) + β

2
W

2,1 , (3)

where β is a non-negative regularization parameter,
W

2,1 =∑D
d=1

wd
 is the l2,1-norm of W, wd = (wd

1 ,w
d
2 , · · · ,w

d
Q ), andwd

 represents the Euclidean norm of vector wd . The hidden
assumption behind l2,1-norm is that all tasks are related and share
the common set of relevant features. However, such assumption
is not realistic and makes the multi-task learning not robust to
the outlier tasks. Beyond that, as aforementioned, all the tasks in
our work have been pre-organized into eight groups according
to the proposed taxonomy. It is thus reasonable to assume that
tasks belonging to the same group would be more likely to share
a common set of relevant features. For example, tasks “places
planning to go” and “current location” belonging to the location
group of the taxonomy may share a common set of location-
relevant features. Let Cд stand for the index set of tasks part of
the д-th group and the diagonal matrix Vд ∈ RQ×Q denote the
corresponding group assignment. Vд (q,q) = 1 if q ∈ Cд , and
0 otherwise. Thereafter, the objective function in Eqn.(3) can be
strengthened as,

Γ =L(W) + β

2

G∑
д=1

D∑
d=1

(WVд )d
. (4)

It is worth noting there are two special cases. When the number
of groups G = 1, where all tasks are learned jointly in one group,
it reduces to the traditional multi-task feature learning [2]. When
G = Q , where all tasks are learned separately, it reduces to the
traditional supervised machine learning. Besides, we also argue
that tasks of the same group in the taxonomy may not share the
common set of low-level relevant features but the common set
of high-level latent features. We assume that there are J , where
J ≤ D, latent features. Each task is defined as a linear combination
of a subset of these latent features. Formally, let us define W = LS,
where L ∈ RD×J and S = {s1, s2, · · · , sQ } ∈ RJ×Q . Each column of
L stands for a latent feature, and each row of S represents the linear
weights of latent features. We hence impose the l2,1-norm on S
instead of W to learn the group-sharing latent features. Apart from
the group-sharing latent features, we also assume each task should
be related to a few specific latent features, which is implemented

http://stanfordnlp.github.io/CoreNLP/
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by the l1 norm of S. Putting them together, we have the following
objective function Γ,

L(L, S) + β

2

G∑
д=1

J∑
j=1

(SVд )j
 + γ

2
S1 + µ

2
L2

F , (5)

where
S1 is the entry-wise l1 norm of matrix S, while µ and γ are

non-negative regularization parameters.

4.3 Optimization
We adopt the alternative optimization strategy to solve S and

L. In particular, we optimize one variable while fixing the other in
each iteration. We keep this iterative procedure until the objective
function converges.

4.3.1 Computing L with S fixed. We first fix S and take
derivative of the objective function with respect to L. We thus
have,

1
N

XT XLSST + µL = 1
N

XT YST . (6)

Inspired by the Lemma 4.3.1 in [23], we transform the above
equation to the following linear system,

AVec(L) = B,
A = [ 1

N SST ⊗ XT X + µI],
B = Vec( 1

N XT YST ),
(7)

where ⊗ denotes the Kronecker product, I ∈ R(D×J )×(D×J ) is an
identity matrix, and Vec(·) stands for stacking columns of a matrix
into a single column vector. It is easy to prove that A is always
positive definite [23] and invertible.

4.3.2 Computing S with L fixed. Fixing L to optimize S, we
encounter two non-smooth terms, l2,1-norm and l1 norm, which
are intractable to be solved directly. To convert the l2,1-norm, we
resort to another variational formulation [2, 39] of the l2,1-norm in
Eqn.(5) as follows,

Γ =L(L, S) + β

2

( G∑
д=1

J∑
j=1

(SVд )j
)2

+ γ

2
S1 . (8)

According to the Cauchy-Schwarz inequality, given an arbitrary
vector b ∈ RM such that b ̸= 0, we have,

M∑
i=1

|bi | =
M∑
i=1

θ
1
2
i θ

− 1
2

i |bi |

≤

( M∑
i=1

θi
) 1

2
( M∑
i=1

θ−1
i b2

i

) 1
2 =

( M∑
i=1

θ−1
i b2

i

) 1
2
, (9)

where θi ’s are introduced variables that should satisfy ∑M
i=1 θi = 1,

and θi > 0. The equality holds for θi = |bi |/
b1. Based on this, we

derive the following inequality,

( G∑
д=1

J∑
j=1

(SVд )j
)2

≤
G∑
д=1

( ∑J
j=1

(SVд )j
)2

θk

≤
G∑
д=1

J∑
j=1

(SVд )j
2

θk,д
, (10)

where we introduce the variable θk,д . The equality can be attained
if θk,д satisfies that,

θk,д =
(SVд )j

∑G
д=1

∑J
j=1

(SVд )j
 . (11)

Consequently, fixing L and minimizing Γ is equivalent to
minimizing the following convex objective function,

Γ =L(L, S) + β

2

Q∑
q=1

J∑
j=1

(SVд )j
2

θk,д
+ γ

2
S1 . (12)

To facilitate the computation of the derivative of objective function
Γ with respect to S, we define a diagonal matrix Θд ∈ RJ×J as
follows,

Θд (j, j) = 1
θ j,д
. (13)

The final objective function Γ can be rewritten as follows,

Γ =L(X, Y) + β
2

G∑
д=1

tr
[
(SVд )T ΘдSVд

]
+ γ

2
S1 . (14)

where tr (A) is the trace of matrix A. To optimize the l1 norm, we
use the fast iterative shrinkage-thresholding algorithm (FISTA) [4]
as follows, 

Γq = h(sq ) + p(sq ),
h(sq ) = L(L, sq ) + β

2
∑
q∈Cд tr (sTq Θдsq ),

p(sq ) = γ
2

sq1
.

(15)

The key iteration step of FISTA is to calculate s(k )
q by minimizing

the following function,

arg min
S

{
p(sq ) +

R
(k )
q

2

sq − (z(k )
q − 1

Rkq
∇h(z(k )

q )
2

F

}
, (16)

where R
(k )
q is the Lipschitz constant of ∇h(sq ), z(k )

q is a linear
combination of s(k−1)

q and s(k−2)
q , and ∇h(sq ) is,

∇h(sq ) = 1
N

LT XT (XLsq − yq ) + β
∑
q∈Cд

Θдsq . (17)

We solve Eqn.(16) by the following soft-threshold step,

s(k )
q = T γ

2R(k )
q

(eq ) = max (0, 1 −
γ/2R(k )

qeq1
)eq , (18)

where T is a shrinkage operator [4] and eq is defined as,

eq = z(k )
q −

1
R

(k )
q

∇h(z(k )
q ). (19)

Based on the sub-multiplicative property of spectral norm, we
easily derive that

∇h(sq1 ) − ∇h(sq2 )
 equals to,β ∑q∈Cд Θд (sq1 − sq2 ) + 1

N LT XT XL(sq1 − sq2 )


≤

(
β

∑
q∈Cд

Θд
 + 1

N

LT XT XL
 ) sq1 − sq2


≤ Rq

sq1 − sq2

 , (20)



Table 2: Performance comparisons of our TOKEN model trained with different feature configurations(%).

Features S@K P@K p-value
S@1 S@3 S@5 P@1 P@3 P@5

Privacy dictionary 8.56 ± 0.73 18.38 ± 0.78 54.26 ± 1.54 8.56 ± 0.73 6.33 ± 0.25 11.28 ± 0.36 5.9e−22
Sentiment 30.48 ± 1.51 52.23 ± 1.09 63.10 ± 1.28 30.48 ± 1.51 17.44 ± 0.36 13.32 ± 0.25 1.6e−20
Meta-features 30.31 ± 1.48 52.28 ± 1.08 63.12 ± 1.23 30.31 ± 1.48 17.38 ± 0.49 13.10 ± 0.65 9.9e−21
Sentence2Vector 33.29 ± 1.77 59.06 ± 0.97 70.91 ± 0.54 33.29 ± 1.77 20.66 ± 0.34 15.54 ± 0.17 2.0e−21
LIWC 37.13 ± 2.45 67.98 ± 1.50 78.65 ± 1.42 37.13 ± 2.45 24.72 ± 0.70 17.44 ± 0.54 3.1e−10
Total 44.37 ± 1.33 74.67 ± 1.38 84.66 ± 0.59 44.37 ± 1.33 28.42 ± 0.57 19.86 ± 0.32 -

whereby we enforce R(1)
q = R

(2)
q = · · · = Rq , and

· denotes the
spectral norm of matrix as well of Euclidean norm of vector. As
Θд and LT XT XL are both positive-semidefinite matrices, simple
algebra computation gives that,

Rq = β
∑
q∈Cд

λmax (Θд ) + 1
N
λmax (LT XT XL), (21)

where λmax (·) denotes the maximum eigenvalue of a matrix.

5 PRESCRIPTION
The section details how to construct the guidelines and use the

guidelines to recommend appropriate actions to users.

5.1 Guideline Construction
Although privacy may be subjective, there is still a societal

consensus that certain information is more private than the others
from a general societal view [6]. We thus conducted a user
study via AMT to build guidelines regrading disclosure norms in
different circles. Considering the existence of cultural difference,
we launched a cross-cultural study within two distinct areas: the
U.S. and Asia13, where for each area, we hired 200 subjects. Each
subject was required to answer a questionnaire, which consists of a
series of questions of whether he/she feels comfortable to share the
given personal aspect to four social circles: Family members, Close
Friends, Casual Friends and Outsider Audience. Finally, we harvested
two tables of guidelines, reflecting the privacy perception of users
from the U.S. and Asia, respectively.

5.2 Action Suggestion
Based on our proposed TOKEN model, we can infer which

personal aspect has been leaked from the given UGC. Once the
privacy leakage is detected, assuming that we know the culture
background of this user, we then can resort to our culture-aware
guidelines established by hundreds of users and choose who is
appropriate to see this UGC to avoid the privacy leakage. In a
sense, we can remind users of what has been uncovered and
accordingly recommend the appropriate UGC-level privacy settings
for their social platforms. For example, an Asia girl is posting a
tweet pertaining to her health condition, and our scheme would
recommend her to set this UGC to be accessed only by her family
members and close friends, according to the guidelines.

13We found that 99% involved Asia subjects are Indians.

6 EXPERIMENTS
In this section, we conducted extensive experiments to verify

the effectiveness of our proposed scheme.

6.1 Experimental Setting
For the task of privacy leakage detection, precision is more

important than recall. We hence measured the proposed TOKEN
model and its competitors via two widely-used metrics: S@K and
P@K [9, 10, 39]. S@K represents the mean probability that a correct
privacy category is captured within the top K recommended cate-
gories. P@K stands for the proportion of the top K recommended
categories that are correct. We employed the grid search strategy
to obtain the optimal regularization parameters among the values
{10r : r ∈ {−8,−7, · · · , 2, 3}} regarding P@1. Experimental results
reported in this paper are the average values over 10-fold cross
validation.

6.2 Evaluation of Description
To examine the discriminative features we extracted, we con-

ducted experiments over different kinds of features using TOKEN.
In particular, we also performed significant tests to validate the ef-
fectiveness of all the features regarding S@5. Table 2 comparatively
shows the performance of TOKEN in terms of different feature
configurations.

It can be seen that ourmodel based on LIWC features achieves the
best performance, while the features extracted based on the privacy
dictionary are the least effective. This shows that the users’ privacy
is better characterized by the LIWC dictionary, as compared to the
privacy dictionary. One possible explanation is that the categories
of LIWC dictionary, include not only content categories such as
“home”, “job”, and “social” that intuitively capture usersąŕ personal
aspects, but also certain style (function) categories like “pronouns”
and “verb tense” that provide the self- or other-references and
temporal hints. Meanwhile, although the privacy dictionary is not
much powerful when K = 1 and K = 3, its performance is largely
improved when K reaches 5.

Although meta-features only account for six dimensions and the
sentiment features are only one-dimensional, they also yield com-
pelling performance. In particular, we argue that the timestamps
of UGCs may play an important role regarding privacy leakage
detection. We thus had a closer look at the comparison among the
time distributions of several representative categories in Figure 3.
As can be seen from Figures 3(a), 3(b), and 3(c), categories related to
activities show prominent temporal patterns. For example, tweets
related to users’ activities at home peak at around 12pm and 20pm,
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Figure 3: Illustration of temporal patterns regarding personal aspects. X axis: the timeline (by hour); Y axis: the distribution
of tweets.

while those related to users’ activities outside of home and work
are more likely to be posted at around 20pm. In addition, Figure 3(d)
shows that users would tweet their drug/alcohol aspects in the
evening. To some extent, this also reflects the fact that users are
more likely to get drunk during their activities outside. Interestingly,
we also observed that users prefer to post their “status change” in
the evening.

6.3 Evaluation of Prediction
To verify the effectiveness of our proposed model, we compared

TOKEN with the following four baselines.
SVM: The first baseline is the support vector machine (SVM) [11],

which simply concatenates the features generated from different
sources into a single feature vector and learns each task individually.
We chose the learning formulation with the kernel of radial-basis
function. We implemented this method with the help of LIBSVM [8].

MTL_Lasso: The second baseline is the multi-task learning
with Lasso [42]. This model also does not take advantage of prior
knowledge about tasks relatedness.

MTFL: The third baseline is the multi-task feature learning [2],
which takes advantage of the group lasso to jointly learn features
for different tasks. However, this model assumes that all tasks are
relevant and organizes all tasks in a single group.

GO-MTL(without taxonomy): The fourth baseline is the
grouping and overlap in multi-task learning proposed in [27]. This
model does not leverage the prior knowledge of task relations, as
there is no taxonomy constructed to guide the learning. It is worth
mentioning that we can derive GO-MTL from TOKEN by making
β = 0.

For eachmethodmentioned above, the involved parameters were
carefully tuned, and the parameters with the best performance
in S@5 were used to report the final comparison results. Table 3
shows the performance comparison between the baselines and our
proposed TOKEN. First, we noticed that TOKEN outperforms the
single task learning SVM. This verifies that there are relationships

among tasks. This also shows the superiority of our work over other
similar privacy detection researches [6, 30]. In particular, it is not
surprised that SVM achieves the worst performance. This may be
due to insufficient positive training samples for certain categories.
For example, there are only 52 positive training samples available for
category “home address”. Multi-task learning is able to alleviate the
unbalanced training sample problems by borrowing some samples
from related tasks. In addition, TOKEN shows superiority over
MTL_Lasso andMTFL, respectively, which enables us to draw a
conclusion that it is effective to learn tasks by groups, defined by
the taxonomy. Besides, the less satisfactory performance of GO-
MTL, as compared to TOKEN, also demonstrates the importance
to incorporate the prior grouping knowledge of tasks. Moreover,
we also performed significant tests over the 10-fold cross validation
and found that TOKEN can significantly outperforms the baselines
regarding S@5.

6.4 Evaluation of Prescription Analysis
In this subsection, we provide some insights to analyze the

guidelines obtained from the cross-culture user study.

6.4.1 On the Cultural Privacy Perception. Due to the limited
space, we only displayed the eight categories with the most
different and similar privacy perceptions between users from the
U.S. and Asia in Tables 4 and 5, respectively. As expected, Table 4
demonstrates the existence of cultural difference regarding privacy
perception. Overall, the Americans are more open to share the listed
personal aspects, especially their emotions, age and activities at
home, as compared to the Asians. As can be seen, American are
more open than Asians in terms of revealing their age. Therefore, it
is advisable to recommend different actions for users with different
cultures, once the privacy leakage is detected.

Table 5 also demonstrates the existence of social consensus
between different cultures regarding the privacy perception. In-
terestingly, we observed that the categories on which users from
different cultures achieve consensus are more private, as the

Table 3: Performance comparisons between our TOKEN model and the baselines in S@K and P@K (%).

Methods S@K P@K p-value
S@1 S@3 S@5 P@1 P@3 P@5

SVM 2.65 ± 1.09 52.15 ± 4.25 72.01 ± 1.28 2.65 ± 1.09 17.80 ± 2.03 16.53 ± 0.52 2.3e−16
MTL_Lasso 43.99 ± 1.18 73.02 ± 1.30 82.26 ± 0.83 43.99 ± 1.18 27.35 ± 0.56 19.34 ± 0.26 6.9e−7
MTFL 43.75 ± 2.03 73.98 ± 1.03 83.69 ± 0.68 43.75 ± 2.03 27.63 ± 0.51 19.70 ± 0.28 3.1e−3
GO-MTL 43.92 ± 1.29 73.93 ± 1.15 83.45 ± 0.94 43.92 ± 1.29 27.25 ± 0.45 19.40 ± 0.31 2.9e−3
TOKEN 44.37 ± 1.33 74.67 ± 1.38 84.66 ± 0.59 44.37 ± 1.33 28.42 ± 0.57 19.86 ± 0.32 -



Table 4: The eight categories with themost different privacy perceptions between the U.S. and Asia. The percentage of subjects
who feel comfortable to share the given personal aspect to each social circle. FA: FamilyMember; CL: Close Friends; CA: Casual
Firends; OU: Outsider Audience.

Categories the U.S. Asia
FA CL CA OU FA CL CA OU

emotion: positive emotion 95.0% 97.5% 83.0% 54.0% 75.5% 86.5% 44.5% 21.0%
emotion: negative emotion 88.5% 93.5% 59.5% 36.5% 49.0% 77.5% 31.0% 20.0%
personal attributes: gender 95.5% 96.0% 84.5% 63.5% 75.5% 76.5% 53.0% 32.5%
emotion: general complaints 92.0% 94.0% 83.5% 59.5% 67.0% 79.0% 52.0% 32.0%
personal attributes: age 98.5% 96.0% 74.5% 40.0% 89.5% 79.0% 38.0% 16.0%
activity: activities at home 95.0% 93.0% 61.5% 35.0% 79.0% 68.5% 33.5% 13.0%
neutral statements 98.0% 96.5% 94.0% 85.5% 75.0% 81.0% 70.5% 65.5%

Table 5: The eight categories with the most similar privacy perceptions between the U.S. and Asia. The percentage of subjects
who feel comfortable to share the given personal aspect to each social circle.

Categories the U.S. Asia
FA CL CA OU FA CL CA OU

healthcare: treatments 96.0% 76.5% 18.5% 5.0% 88.0% 65.5% 14.5% 7.5%
healthcare: health conditions 98.0% 71.0% 17.5% 7.0% 85.0% 65.5% 19.5% 7.5%
life milestones: passing away 95.5% 86.5% 35.0% 12.0% 88.0% 74.5% 31.0% 7.5%
emotion: specific complaints 53.5% 78.0% 28.0% 17.5% 36.5% 68.0% 28.0% 19.0%
location: home address 95.5% 71.0% 5.0% 3.0% 80.5% 73.0% 18.0% 6.0%
location: current location 94.5% 87.5% 31.5% 9.0% 75.0% 77.5% 35.0% 11.5%
personal attributes: contact 95.5% 87.0% 18.5% 3.0% 77.5% 80.5% 27.5% 10.5%
location: places planning to go 95.0% 91.5% 51.0% 21.5% 77.0% 87.0% 39.0% 13.5%

majority of users agreed that these categories should be kept private
from the outsider audience, even the casual friends. Besides, from
Tables 4 and 5, we observed that, in general, the more sensitive
the information is, the closer the social circles that they prefer to
access are. However, we also noticed that the disclose norms may
not always prefer family members. For example, people prefer to
keep their tweets regarding the “negative emotion” and “specific
complaints” away from their closest social circle–family members.

6.4.2 On the Gap Between the Intended Audience and
Real Audience. First, we introduced two kinds of audience who
play key roles regarding information disclosure: the intended
audience and the real audience. The former refers to those audience
the post owner has in mind when he/she posts, while the latter
corresponds to those who actually have access to the post. In the
context of our work, posts in our dataset are actually accessed at
least by the outsider audience circle, otherwise we cannot collect
them via the Twitter Search Service. Based on our study, we
observed that only 10.5% Asian users consider the outsider audience
as the intended audience with regard to the contact aspect. This
verifies the existence of a prominent gap between the intended
audience and real audience of a UGC, which just in turn confirms
that it is highly desired to fix the problem of boundary regulation.
Otherwise, the user’s privacy may be seriously leaked by the gap
between the intended audience and the real audience.

7 CONCLUSION AND FUTUREWORK
In this work, we study the problem of boundary regulation by

presenting a scheme, consisting of three components: description,

prediction and prescription. As to description, we build a compre-
hensive taxonomy, construct a benchmark dataset, and develop
a set of privacy-oriented features. Experiment results shows that
LIWC and Sentence2Vector features are the most discriminative
features regarding privacy leakage detection. Meanwhile, we
found that the privacy leakage via UGCs holds certain temporal
patterns. Regarding prediction, we propose a taxonomy-guided
multi-task learning model to categorize social posts, which is
able to learn both group-sharing and aspect-specific features
simultaneously. Experiment results also verify the advantages
of taking the proposed taxonomy into consideration in multi-
task learning. In terms of prescription, we construct cross-culture
guidelines regarding the user’s information disclosure norms based
on the crowd intelligence via AMT. With these guidelines and
the user’s background, we can recommend users to accordingly
select audience for their posts. Furthermore, we investigate the
cultural comparisons pertaining to the user’s privacy perception.
Overall, we found that the Americans are more open to share their
personal aspects, as compared to the Asians. Meanwhile, we also
found that the privacy perception of users with different cultures
achieves social consensus in terms of certain categories, such as
the healthcare-related categories and location-related categories.
Besides, we observed the prominent gap between the intended
audience and the real audience regarding information disclosure.
This in turn verifies the importance of solving the problem of
boundary regulation.

Currently, we only explore the simple linear mapping to model
the prediction component. However, the complicated prediction
mapping may lie in the highly non-linear space. Therefore, we



plan to extend our work towards applying the more advanced
neural networks in our context due to their huge success in various
domains [22].
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