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ABSTRACT
In the past few years, language-based video retrieval has attracted
a lot of attention. However, as a natural extension, localizing the
specific video moments within a video given a description query
is seldom explored. Although these two tasks look similar, the
latter is more challenging due to two main reasons: 1) The former
task only needs to judge whether the query occurs in a video and
returns an entire video, but the latter is expected to judge which
moment within a video matches the query and accurately returns
the start and end points of the moment. Due to the fact that different
moments in a video have varying durations and diverse spatial-
temporal characteristics, uncovering the underlying moments is
highly challenging. 2) As for the key component of relevance
estimation, the former usually embeds a video and the query into a
common space to compute the relevance score. However, the later
task concerns moment localization where not only the features of a
specific moment matter, but the context information of the moment
also contributes a lot. For example, the query may contain temporal
constraint words, such as “first”, therefore temporal context is
required to properly comprehend them.

To address these issues, we develop an Attentive Cross-Modal
Retrieval Network. In particular, we design a memory attention
mechanism to emphasize the visual features mentioned in the query
and simultaneously incorporate their context. In the light of this,
we obtain an augmented moment representation. Meanwhile, a
cross-modal fusion sub-network learns both the intra-modality
and inter-modality dynamics, which can enhance the learning of
moment-query representation. We evaluate our method on two
datasets: DiDeMo and TACoS. Extensive experiments show the
effectiveness of our model as compared to state-of-the-art methods.
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1 INTRODUCTION
Searching videos of interests from large collections has long been
an open problem in the field of multimedia information retrieval
[36]. Since this task needs to answer queries by relevant videos only,
most prior efforts cast it as a matching problem [33] by estimating
the relevance score between a video and the given query. Such
direct video-query matching works well for judging whether the
description query occurs in an entire video that depicts simple
scenes solely. However, in some real-world scenarios (e.g., robotic
navigation, autonomous driving, and surveillance), the untrimmed
videos usually contain complex scenes and involve a large number
of objects, attributes, actions, and interactions, whereby only some
parts of the complex scene convey the desired cues or match the
description. For a prepared surveillance video lasting for several
minutes, as Figure 1 shows, one may only have interest in the
moment, “a girl in orange first walks by the camera”, where the start
and end points are at the 24s and the 30s, respectively. Therefore,
localizing temporal moments of interest within a video is more
useful yet challenging, as compared to simply retrieving an entire
video.

In this paper, we focus on the task of moment retrieval, aiming
to identify the specific start and end points within a video to
precisely respond to the given query. In our work, a desired moment
refers to a query-aware temporal segment whose content is in
accordance with the given query1. In general, automatic moment
retrieval from a video requires two components, namely, fine-
grained moment candidates localization and relevance estimation.
The key challenges are, first, different moments in a video have
varying durations and diverse spatial-temporal characteristics;
thereby uncovering the underlying moments is already highly
challenging, not to mention the estimation of moment-query
relevance. To generate the moment candidates, a direct way is
1Note that an entire video may contain multiple moments related to the given query.

1

https://doi.org/10.1145/3209978.3210003


SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA Meng Liu, Xiang Wang, Liqiang Nie, Xiangnan He, Baoquan Chen, and Tat-Seng Chua

24s 30s

Language query: a girl in orange first walks by the camera.

Timeline

Ground Truth Sliding Window Retrieval  Moment Localizing

Figure 1: Temporal video moment localization is designed to localize a moment (the red bar) with a start point (24th s) and an
end point (30th s) in the video according to the given language query. Here the green bar denotes the ground truth, the orange
bar stands for the result of sliding window moment retrieval, and the red bar refers to the localizing result.

to densely sample sliding windows at different scales. However,
such moment derivation methods are limited, not only for the
expensive computational costs, but also the exponential search
space. Second, the relevance estimation is a typical cross-modal
retrieval problem. A viable solution as employed in [2] is to first
project the visual features of the moment candidates and textual
features of the query into a common latent space and then calculate
the relevance based on their similarity. Nevertheless, such workflow
overlooks the spatial-temporal information inside the moment and
the query. Taking the query of “a girl in orange first walks by the
camera” as an example, the term “first” is relative and requires
temporal context for proper comprehension.

To address the aforementioned problems, we develop an
Attentive Cross-Modal Retrieval Network, dubbed as ACRN, for
the task of moment retrieval. For moment derivation, we propose
a temporal memory attention network to explore the attentive
contextual visual features of the moments. For each pre-segmented
moment, its surrounding context, consisting of pre- and post-
moments, encodes consistent signal to imply the continuous
scenes [10]. Inspired by this, we utilize a memory network to
memorize the contextual information for each moment, and treat
the natural language query as the input to an attention network
to adaptively assign weights to the memory representation. In the
light of this, we obtain the augmented moment representation.
Thereafter, we introduce a cross-modal fusion network to enhance
the moment-query representation. It is built on the inter- and
intra-modal embedding interactions. The former aims to explicitly
model the interactions between the visual and textual embeddings,
and the latter targets at exploring the embedding interactions
within each individual modality. Finally, we feed the moment-query
representation into a boundary regression model to predict the
relevance scores and moment offsets.

The key contributions of this work are three-fold:

• We present a novel Attentive Cross-Modal Retrieval Net-
work, which jointly characterizes the attentive contextual
visual feature and the cross-modal feature representation.
To the best of our knowledge, the existing studies either
consider only one of the above models or not integrate them
within a unified model.

• For the purpose of accurately localizing moments in a
video with natural language, we are the first to introduce
a temporal memory attention network to memorize the
contextual information for each moment, and treat the
natural language query as the input of an attention network
to adaptively assign weights to the memory representation.

• We perform extensive experiments on two benchmark
datasets to demonstrate the performance improvement. As
a side contribution, we released the data and codes2.

The rest of the paper is organized as follows. The related work
is briefly introduced in Section 2. Section 3 details the proposed
approach. We present experiment results in Section 4. Finally,
Section 5 concludes the work and points out the future directions.

2 RELATEDWORK
Localizing specific moments within a video responding to a textual
query is related to many vision tasks including video retrieval,
temporal action localization, as well as video description and
question answering.

2.1 Video Retrieval
Given a set of video candidates and a language query, video
retrieval algorithms aim to retrieve the videos that match the
query. Technically, the retrieval problem is usually tackled as a
ranking task [5–7], returning moments based on their matching
scores. Similar to image-language embeddingmodels [8, 31], current
methods [22, 44] are designed to incorporate deep video-language
embeddings. Lin et al. [18] proposed a retrieval model to match the
visual concepts in the videos with the semantic graphs generated by
parsing the sentence descriptions. Bojanowski et al. [1] introduced a
strategy to tackle the problem of video-text alignment by assigning
a temporal interval to each sentence given a video and a set of
sentences with the temporal ordering. Different from the discussed
algorithms, the input of our model is only one sentence query and
the temporal ordering is not used.

There are also some efforts dedicated to retrieving temporal
segments within a video in constrained settings. Tellex et al. [34]
considered retrieving video segments from a home surveillance

2https://sigir2018.wixsite.com/acrn.
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camera via text queries with a fixed set of spatial prepositions. Later,
Lin et al. [19] developed a model to retrieve temporal segments in 21
videos from a dashboard car camera. Recently, Hendricks et al.[2]
proposed a joint video-language model to retrieve moments within
a video based on texture queries. However, these models can only
verify the segments containing the corresponding moment. Namely,
there are many background noises in the returned results. Although
they could densely sample video moments at different scales and
utilize these models to retrieve the corresponding video moment, it
is not only computationally expensive but also makes the matching
taskmore challengingwith the search space increasing. As we know
that adjusting the temporal boundaries of proposals by learning
regression parameters has succeeded in the object localization, as
in [26]. In this paper, we adopted a similar strategy to predict the
start and end time points of the desired video moment.

2.2 Temporal Action Localization
Gaidon et al. [9] introduced the problem of temporally localizing
actions in the untrimmed videos, focusing on limited actions such
as “drinking and smoking” and “open the door and sit down”. Later,
researchers worked on building large-scale datasets consisting
of complex action categories, and proposed different models for
localizing activities in videos. Shou et al. [28] proposed an end-
to-end segment-based 3D Convolutional Neural Network (CNN)
framework, which outperforms other Recurrent Neural Network
(RNN)-based methods by capturing spatio-temporal information
simultaneously. And Singh et al. [30] presented a multi-stream bi-
directional RNN network for fine-grained action detection. Gao et
al. [11] proposed a novel temporal unit regression network model,
which can jointly predict action proposals and refine the temporal
boundaries by temporal coordinate regression. Due to the fact that
these methods are restricted to a pre-defined list of actions, Gao et al.
[10] proposed to use natural language queries to localize activities.
They leveraged all the context moments surrounding the current
input, without explicitly considering the semantic information of
the input query. It thus considers the video moments unrelated to
the input query, which is unnecessary or even misleading.

2.3 Video Description and Question Answering
More recently, attention mechanism [43] is a standard part of the
deep learning toolkit, contributing to the impressive results in
neural machine translation [21], video captioning [23, 41] and
video question answering [45]. Visual attention models for video
captioning leverage the video frames at every time step, without
explicitly considering the semantic attributes of the predictedwords.
It is unnecessary or even misleading. To tackle this issue, Song et
al. [32] proposed a hierarchical Long Short-term Memory (LSTM)
network [20] with an adjusted temporal attention model for video
captioning. Later, Hori et al.[14] expanded the attention model
to selectively attend not just to specific times or spatial regions,
but to specific modalities of the inputs such as image features,
motion features, and audio features. Their new modality-dependent
attention mechanism provides a natural way to fuse multimodal
information for video description. Recently, Xu et al. [42] proposed
a multimodal attention LSTM network, which fully exploits both

Memory	Attention	
NetworkMoment	Feature

Girl	with	blue	shirt	drives
past	on	bike.

Query	Feature

Cross-Modal	
Fusion

MLP	Model
Alignment	Score

0.9
Localization	Offset

[1.2s,	2.5s]

Video	 Query	

Figure 2: An illustration of our proposed ACRN model.

multimodal streams and temporal attention to selectively focus on
specific elements during the sentence generation.

Video question answering is a relatively new task, where a
video and a natural language question are provided and a model
is designed to reply the question. Zhao et al. [48] developed a
hierarchical dual-level attention networks to learn the question-
aware video representations with word-level and question-level
attentionmechanisms. And they also proposed a hierarchical spatio-
temporal attention network [49] to learn the joint representation of
the dynamic video contents according to the given question. Unlike
the aforementioned studies, Ye et al. [46] studied the problem of
video question answering by modeling its temporal dynamics with
frame-level attention mechanism. And Xu et al. [40] proposed to
refine the attention by gradually using both coarse-grained question
feature and fine-grained word feature. Motivated by these attention
mechanisms, we presented a temporal memory attention model to
dynamically select contextmoments consistentwith the input query
and simultaneously memorize the context moment information.

3 OUR PROPOSED ACRN MODEL
As Figure 2 illustrates, our proposed ACRN model comprises of the
following components: 1) the memory attention network leverages
the weighting contexts to enhance the visual embedding of each
moment; 2) the cross-modal fusion network explores the intra-
modal and the inter-modal feature interactions to generate the
moment-query representations; and 3) the regression network
estimates the relevance scores and predicts the location offsets
of the golden moments.

3.1 Problem Formulation
Let v and q denote a video and a query, respectively. We present a
video as a sequence of frames v = { ft }, where f represents a frame
and t ∈ {0, · · · ,τ } indexes the time point. The query is affiliated
with a temporal annotation (ts , te ), where ts and te is the start and
end point3, respectively. Our task is to identify a golden moment
c = { ft }

τt
t=τs corresponding to the description of the given query

q, whereby (τs ,τe ) = (ts , te ). Towards this end, we pre-segment the
video v into a set of moment candidates C = {ci }

M
i=1 via multi-scale

3As mentioned before, a description query may correspond to multiple moments in a
given video. To simplify the notation, we only formulate one relevant moment.
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Figure 3: An illustration of our proposed memory attention
model.

temporal sliding windows, where M is number of the moments4.
For the given query q and a moment candidate c overlapping with
the golden moment, we align the moment-query pair as a positive
training sample. Moreover, due to the segmentation strategy, the
positive candidates overlap with the golden moment on different
scales, we hence pair each positive moment-query pair (c,q) with a
time location offset (i.e., (ts −τs , te −τe )). We will detail the process
of data construction in Section 4.1. As such, the moment retrieval
problem can be formally defined as:

Input: A set of moment candidates C and the given query q.
Output: A ranking model mapping each moment-query pair

(c,q) to a relevance score and estimating their location offsets of
the golden moment.

3.2 Memory Attention Network
To estimate the matching score between each moment candidate
and the sophisticated query, a direct way is to project the visual
embeddings of the moment candidates and the textual embedding
of the query into a latent common space, and then feed them into
a well-designed similarity function to calculate their relevance.
Finally, it returns the moment with the highest score as the retrieval
result. Formally, we summarize the above process as follows,

x̂c = fΘ(xc ),
q̂ = fΘ(q),
c∗ = arg maxc ∈C д(̂xc , q̂),

(1)

where xc ∈ RD1 and q ∈ RD2 denote the embeddings of the
moment c and the input query q, fΘ(·) is the mapping function
[47] to project xc and q to x̂c and q̂ in a common space, and д is
the similarity function.

Although feasible, solely considering the current moment
candidate overlooks the spatial-temporal information within its
surrounding context, leading to information loss and suboptimal

4The generation of the moment candidates, the visual embedding of each moment,
and the textual embedding of the given query will be described in Section 4.1.

performance. For example, the term “first” in the query of “a girl in
orange first walked by the camera” is a temporal constraint word
and requires temporal context for a proper understanding. Recent
work [10] has observed that the pre-context and post-context
moments can be regarded as the context of the current moment
and provide its relative temporal position in a video. Inspired by
the observations, we consider to leverage the context information
to complement the current moment.

Suppose the context moments of each video moment c ∈ C are
Nc = {c j }, where j ∈ [−nc ,nc ] and nc denote the shift boundary5.
We utilize j > 0, j = 0, and j < 0 to index the post-, current, and
pre-context moments, respectively. The embedding of the central
moment c is denoted as xc , and its context embeddings are denoted
as xc j . Given these contextual embeddings, how to integrate
them is crucial to strengthen the representation discrimination
of the current moment. A simple strategy adopted in [11] is
to employ the average pooling on the context embeddings to
capture the interactions between the current and context moments.
And the output of the pooling operator is used as the enhanced
representation of the current moment, formulated as,

x̂c =
1

|Nc |

∑
c j ∈Nc

xc j . (2)

Although such average pooling is capable of fusing all contextual
embeddings into a single one, we argue that it is insufficient to
capture the consistent information and complex interactions among
the moment contexts. Particularly, the average pooling assumes
that the moments are linearly independent and equally contribute
to the final relevance estimation. Thereby, it fails to identify the
importance of each moment, and is unable to eliminate the useless
even noisy features.

To tackle the aforementioned problem, we consider to explicitly
capture the varying importance of each context moments by
assigning an attentive weight to the embedding of each moment
[37]. The detail of our memory attention is illustrated in Figure
3. Here we design a memory attention network by considering
two components contributing to the attentive weights. Given the
representation vector of the basic context moment xc j ∈ RD1 and
the one of the given query q ∈ RD2 , we use a one-layer network
to estimate the attention score αc j , which explicitly reflects the
consistency between the moment and the query. Moreover, for
each moment in the contexts, we add the representations of the
prior moments to memorize the temporal information and model
the importance weights better. Formally, we present the memory
attention network as follows,

e(c j ,q) = σ (∑j
i=−nc Wcxci + bc )T · σ (Wqq + bq ),

αc j = e (c j ,q)∑nc
k=−nc

e (ck ,q) , j ∈ [−nc ,nc ], (3)

where Wc ∈ RD×D1 and Wq ∈ RD×D2 are used to transform the
query and video embeddings to the same underlying embedding
space; bc ∈ RD and bq ∈ RD denote the trainable bias vector
for the moment and the query, respectively; and σ (·) is the tanh
activation function to restrict the attention weight to be in (0,1).
5For example, nc=1 denotes that the context moment number is 1. Namely, there is
one pre-context and one post-context moment. The generation of the context moments
is illustrated in Section 4.1.
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Figure 4: An illustration of the commonly used early
fusion and our proposed cross-modal feature fusion model.
Top: Early fusion (multimodal concatenation). Bottom: Our
proposed cross-modal feature fusion model with intra-
modal and inter-modal intersections.

With the attention weight αc j , the fused featuremc is computed
as follows, {

x̂c j = Wcxc j + bc ,
mc = ∑

j ∈[−nc ,nc ] αc j x̂c j ,
(4)

where mc ∈ RD is the representation of the current moment c
attended by the current input query, andWc and bc are the common
space embedding matrix and bias vector in Eqn.(3), respectively.
As such, our memory attention network can leverage the context
weights of the various importance of each moment to enhance the
moment representations. And we can obtain the embedding query
feature,

q̂ = Wqq + bq , (5)
whereWq and bq respectively denote the query embedding matrix
and bias vector in Eqn.(3).

3.3 Cross-Modal Fusion Network
Previous multimodal studies do not leverage both intra-modality
and inter-modality dynamics directly. Instead, they apply the
commonly-used feature concatenation as an approach for mul-
timodal feature fusion (as shown in Figure 4(a)). This fusion
approach, nevertheless, does not efficiently model the inter-
modality dynamics.

In this paper, we aim to build a fusion sub-network that
disentangles unimodal and bimodal dynamics by modeling each of
them explicitly. Having established the attentive embedding, we
then obtain an enhanced moment representation. To estimate the
relevance between the moment and the query, we design a cross-
modal fusion network to explore the intra-modal and inter-modal

embedding interactions. The former is implemented by the tensor
fusion operation to explicitly model the interactions between the
visual and textual embeddings. Meanwhile, the latter, implemented
by the concatenation operation, targets at retaining the information
within each individual modality. Thereafter, we concatenate these
intra-modal and inter-modal embeddings into a fused moment-
query representation.

As shown in the Figure 4(b), the cross-modal fusion network
consists of two parts: the mean pooling and the tensor fusion. Due
to the fact that high dimensional vectors will lead to expensive time
complexity when computing tensor fusion, we introduce a mean
pooling layer before conducting the tensor fusion. In particular,
assuming that we obtain a D-dimension moment embedding mc
and aD-dimension query embedding q̂ from the preceding memory
attention network. We aim to learn a dimension reduction and
high-level representation based upon mean pooling. Representation
learning based on mean pooling is equivalent to applying a linear
filter with the size n to each input embedding, and each entry in
the output is the mean of the corresponding size kernel window in
value. We employ the mean pooling layer on mc and q̂ to obtain
the dimension reduction and high-level representation features
m̃c and q̃ for the moment and the query, respectively. Hereafter,
we input these two embeddings into the tensor fusion model. The
tensor fusion, technically speaking, can be viewed as a differentiable
outer product between the visual representation m̃c and the query
representation q̃,

fcq =
[
m̃c
1

]
⊗

[
q̃
1

]
= [m̃c , m̃c ⊗ q̃, q̃, 1], (6)

where ⊗ indicates the outer product between vectors, and fcq is all
the possible combinations of the unimodal embeddings with three
semantically distinct subregions. The two subregions m̃c and q̃
form unimodal interactions in tensor fusion, and subregions m̃c ⊗ q̃
capture bimodal interactions in tensor fusion.

3.4 Learning
Above the tensor fusion sub-network fcq , we place a multi-layer
perceptrons (MLP) [12, 13, 38] to get the matching score of the
moment-query pair (c,q) as well as the localization offset between
the moment candidate and the golden moment (ts − τs , te − τe ).
Formally, the hidden layers are defined as follows6,

e1 = θ1(W1fcq + b1),
e2 = θ2(W2e1 + b2),
· · ·

eL = θL(WLeL−1 + bL),

(7)

where Wl , bl , θl and el denote the weight matrix, bias vector,
activation function, and output vector of the l-th hidden layers,
respectively. As for the activation function in each hidden layer,
we opt for the ReLU unit. Particularly, the out vector eL =
[scq ,δs ,δe ] ∈ R3 comprises of the matching score scq and the
localization offsets of δs = ts − τs and δe = te − τe .

Therefore, the loss function of our proposed model consists of
two parts: one is utilized to compute the loss of the alignment

6In our experiments, the number of layers in MLP is set as two.
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scores, and the other is on the localization offsets. In the following
subsections, we will detail them one by one.

3.4.1 Alignment Loss. Similar to the spirit in [10], we adopt the
alignment loss to encourage the aligned moment-query pairs to
have positive scores and misaligned pairs to have negative scores.
Formally, we restate it as,

Laliдn = α1
∑

(c,q)∈P
log(1 + exp(−scq ))

+α2
∑

(c,q)∈N
log(1 + exp(scq )),

(8)

where P is the set of positive moment-query pairs, namely aligned
moment-query pairs; N is the set of negative moment-query pairs,
namely misaligned moment-query pairs; and α1 and α2 are the
hyper parameters controlling the weights between the positive and
the negative moment-query pairs.

3.4.2 Localization Regression Loss. As the multi-scale temporal
sliding window is adopted to segment videos, different moment
candidates have different durations. Hence for each moment-query
pair, we need to not only judge whether the moment is relevant to
the query, but also decide the localization offsets compared to the
golden moment. Here we adopt the moment boundary adjustment
strategy presented in [11]. Formally, we denote the offset values
for the start and end points as follows,{

δ∗s = ts − τs ,

δ∗e = te − τe ,
(9)

where (ts , te ) is the start and end points of the given query, and
(τs ,τe ) is the start and end points of a candidate moment in P.
Meanwhile, we use δ∗ = [δ∗s ,δ∗e ] to denote the ground truth
localization offsets.

Based on the ground truth offsets, we can adaptively adjust
the alignment points of the current moments to match the exact
temporal duration. Towards this end, we design a location offset
regression modal as,

Lloc =
∑

(c,q)∈P
[R(δ∗s − δs ) + R(δ∗e − δe )], (10)

where P is the set of positive moment-query pairs and R is the L1
norm function.

We devise the optimization framework consisting of the
alignment loss and the localization regression loss processes, as,

L = Laliдn + λLloc , (11)

where λ is a hyper-parameter to balance the two losses.

4 EXPERIMENT
4.1 Data Description

4.1.1 TACoS. The first dataset is constructed by [25]. It is built
on the top ofMPII-Compositive dataset [27] and contains 127 videos.
Each video is associated with two type of annotations. One is the
fine-grained activity label with temporal annotation (i.e., the start
and end points). The other is natural language descriptions for the
temporal annotations. The dataset7 is used in [10] for temporal
activity localization, dubbed as TACoS.
7https://github.com/jiyanggao/TALL.

Table 1: The summary of the TACoS and DiDeMo datasets.

Dataset # Videos # Queries # Moments Domain Video Source
TACoS 100 14,229 2,326 Cooking Lab Kitchen
DiDeMo 10,464 40,543 26,892 Open Flickr

We briefly describe the dataset construction process. In paper
[10], each training video is sampled by multi-scale temporal sliding
windows with size of [64, 128, 256, 512] frames and 80% overlap.
As for the testing samples, they are coarsely sampled using sliding
windows with size of [128, 256] frames. For a sliding window
moment c from C with temporal annotation (τs ,τe ) and a query
description q with temporal annotation (ts , te ), they are aligned as
a pair of training sample if they satisfy the following conditions:
1) the Intersection over Union (IoU) is larger than 0.5; 2) the
non Intersection over Length (nIoL) is smaller than 0.15; and 3)
one sliding window moment can be aligned with only one query
description. In the dataset, there are 75 training videos, 25 testing
videos, and 26,963 trainingmoment-query pairs satisfying the above
conditions. Besides, they utilized 3D ConvNets (C3D) [35] as the
moment-level visual encoder and Skip-thoughts [17] as the query
description embedding extractor. Therefore, the dimension of the
visual embedding and the query description embedding are 4,096
and 4,800, respectively.

4.1.2 DiDeMo. The second dataset is constructed by [2] for
language-based moment retrieval, named the Distinct Describable
Moments (DiDeMo) dataset8. It includes 10,464 personal videos
with duration of 25-30 seconds, 26,892 video moments, and 40,543
localized descriptions. Descriptions in DiDeMo refer to expressions,
describing the specific moments in a video. What is more, the
construction of the DiDeMo dataset contains a verification step
to ensure that the descriptions align with a single moment within
a video. In the dataset, each video is broken into six five-second
moments and represented by a 6 × 4096 feature matrix, where
each column represents a 4,096-d VGG [29] feature of one moment.
For language features, they adopted 300 dimensional dense word
embeddings Glove [24] to represent each word.

The statistics of the datasets are summarized in Table 1. The
reported experimental results in this paper are based on datasets
mentioned above9. Besides, we carried out experiments with the
help of Tensorflow, selecting function AdamOptimizer as our
optimizer. We trained it over a server equipped with 16 Tesla K80s.

4.2 Experimental Settings
4.2.1 Evaluation Protocols. To thoroughly measure our model

and the baselines, we adopt “R@n, IoU=m” proposed by [15] as
the evaluation metric. To be more specific, given a query, it is
the percentage of top-n results having IoU larger thanm. In the
following, we use R(n,m) to denote “R@n, IoU=m”. This metric
itself is on the query level, so the overall performance is the average
among all the queries,

R(n,m) =
1
Nq

Nq∑
i=1

r (n,m,qi ), (12)

8https://github.com/LisaAnne/LocalizingMoments.
9In the following experiments, we set the context moment number nc as 1. And the
length of context window is set as 128 frames on the TACoS dataset and 5 seconds on
the DiDeMo dataset.
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Table 2: Performance comparison between our proposed
model and the state-of-the-art baselines on TACoS. (p-
value∗: p-value over R(1, 0.5))

Method R@1 R@1 R@1 R@5 R@5 R@5 p-value∗IoU=0.5 IoU=0.3 IoU=0.1 IoU=0.5 IoU=0.3 IoU=0.1
MCN 1.25% 1.64% 3.11% 1.25% 2.03% 3.11% 3.62E-10

VSA-STV 8.84% 13.59% 17.58% 16.41% 26.40% 35.86% 2.16E-06
VSA-RNN 9.96% 16.16% 20.92% 18.32% 29.19% 40.66% 1.82E-05
TALL 12.46% 16.85% 21.69% 24.44% 33.38% 45.38% 5.71E-05
ACRN 14.62% 19.52% 24.22% 24.88% 34.97% 47.42% -

where r (n,m,qi ) is the recall [3] for a query qi , Nq is the total
number of queries, and R(n,m) is the averaged overall performance.

4.2.2 Baselines. We compared our proposed ACRN with
the following several state-of-the-art baselines to justify the
effectiveness of our proposal:

• TALL [10]: This is a cross-modal temporal regression
localizer that jointly captures the interaction between the
query description and video moments, as well as outputs
alignment scores and action boundary regression results for
the moment candidates.

• MCN [2]: This method is designed for the moment-query
retrieval task. It emphasizes the local and global moment
features, aiming to strengthen the expressiveness ability.

• VSA-RNN [10]: This method is the variant of the
Deep Visual-Semantic Alignment (DVSA) model [16]. It
transforms the local visual feature and the texture feature
encoded by the LSTM model into a common space, and then
estimates the matching score of each moment candidate and
the query (as formulated in Eqn.(1)).

• VSA-STV [10]: Instead of using RNN to extract the query
description embedding, this work uses an off-the-shelf Skip-
thoughts [17] sentence embedding extractor. A skip-thought
vector is in the 4,800-dimensional space, and we linearly
transformed it to 1,000 dimension. Visual encoder is the
same with that of the VSA-RNN.

Note that VSA-RNN and VSA-STV are two baseline models in [10],
but the source codes and the involved parameters are not released
by the authors. We implemented these two models by our own,
and tried our best to tune their parameters to achieve the optimal
performance. In our paper, we represented each word with 500
dimensional dense word embeddings (specifically Glove [24]) when
training the VSA-RNN. The size of the hidden state of LSTM is
1,024 and the output size is 1,000. Video moments are processed
by a visual encoder and linearly transformed to 1,000 dimensional,
which are used as the moment-level embeddings. Besides, cosine
similarity is used to calculate the confidence score between the
moment candidates and the given query. And hinge loss is used to
train the two models, which is defined as follows,

L =
∑
k

[
∑
l

max(0, skl − skk + 1) +
∑
l

max(0, slk − skk + 1)], (13)

where k is the index of moment candidates, l is the index of query
descriptions, skk denotes the cosine score of the aligned moment-
query pair, and skl or slk denotes the cosine score of the misaligned
moment-query pair.

Table 3: Performance comparison between our proposed
model and the state-of-the-art baselines on DiDeMo. (p-
value∗: p-value over R(1, 0.5))

Method R@1 R@1 R@1 R@5 R@5 R@5 p-value∗IoU=0.5 IoU=0.7 IoU=0.9 IoU=0.5 IoU=0.7 IoU=0.9
MCN 23.33% 15.37% 15.32% 41.03% 20.37% 19.77% 6.14E-09

VSA-STV 25.38% 14.49% 14.39% 68.56% 26.92% 24.24% 1.98E-03
VSA-RNN 24.94% 14.52% 14.44% 68.39% 26.10% 23.95% 3.31E-06
TALL 26.45% 15.36% 15.31% 68.78% 28.43% 26.15% 2.32E-02
ACRN 27.44% 16.65% 16.53% 69.43% 29.45% 26.82% -

4.3 Performance Comparison
Table 2 displays the performance comparison w.r.t. R(n,m) on
TACoS. We have the following observations:

• VSA-STV and VSA-RNN achieve poor performance since
they overlook the context information of moment candidates.
They hence fail to exploit the spatial-temporal cues to guide
the retrieval process, highlighting the necessity of modeling
the context in moment retrieval.

• While MCN considers the features from the surrounding
moments, it treats the average pooling of all the context
representations as the context of each current candidate,
ignoring the adaptive importance of the context moments.
Assigning equal importance with each context moments may
lead to introduce noisy features and lead to negative transfer.
That is why MCN achieves the unstable performance on
two datasets. It hence verifies the feasibility of revising the
attention weight of each context moment.

• When performing our moment retrieval task, TALL
outperforms MCN, VSA-STV and VSA-RNN. The observed
results make sense since TALL is capable of exploiting the
interactions across the visual and textual modalities and
strengthens the expressiveness of the moment-query pairs.

• ACRN achieves the best performance, substantially surpass-
ing all the baselines. Particularly, ACRN shows consistent im-
provements over TALL and MCN, verifying the importance
of memorizing the context information and employing the
attention mechanism on identifying the adaptive importance
attention of each context moment.

We also evaluated our proposed ACRN model and the baseline
methods on DiDeMo, and reported the results regarding IoU∈{0.5,
0.7,0.9} and R@{1, 5}. Note that since the positive moment-query
pairs in this dataset are well aligned, namely there are no location
offsets between them, we only used the alignment loss to train the
ACRN and TALL model for localizing the corresponding moment.
The results are shown in Table 3. It can be seen that the results
are consistent with those on TACoS. ACRN shows a significant
improvement over non-attention models (TALL and MCN) and
non-context models (VSA-RNN and VSA-STV).

In addition, we also conducted the significance test between our
model and each of the baselines. We can see that all the p-values
are substantially smaller than 0.05, indicating that the advantage of
our model is statistically significant.

4.4 Study of ACRN
In the following section, we first explore how our proposed memory
attention network and cross-modal fusion network affect the
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Figure 5: Performance comparison among ourmodel variants on the TACoS dataset and the DiDeMo dataset. From left to right:
(a) is the R@1 vs IoU ∈ {0.1, 0.2, 0.3, 0.4, 0.5} on the DiDeMo dataset; (b) is the R@5 vs IoU ∈ {0.6, 0.7, 0.8, 0.9, 1.0} on the DiDeMo
dataset; (c) is the R@1 vs IoU ∈ {0.1, 0.2, 0.3, 0.4, 0.5} on the TACoS dataset; (d) is the R@5 vs IoU ∈ {0.6, 0.7, 0.8, 0.9, 1.0} on the
TACoS dataset.

moment retrieval results. We then visualize the alignment and
offset regression process of our proposed ACRN.

4.4.1 Component-Wise Comparison. We experimented with
variants of our model to verify the effectiveness of the memory
attention and cross-modal fusion networks:

• ACRN-a: We utilized the average pooling in Eqn.(2)
to replace our proposed memory attention network for
memorizing the context embeddings.

• ACRN-m: We eliminated the memory part of our memory
attention model in Eqn.(3). That is, each context attention
value is only related to itself and the query without
considering the context information.

• ACRN-c: Instead of using cross-modal fusion model
in Eqn.(6), we adopted the early fusion strategy, i.e.,
concatenating the multimodal feature.

We tested these model variants on the TACoS and DiDeMo dataset,
respectively. And the component-wise comparison results are
shown in the Figure 5.

By jointly analyzing Figure 5, we have the following findings:

• As Figures 5(a) and 5(b) demonstrate, ACRN outperforms
ACRN-a by a large margin on the DiDeMo dataset, and
achieves considerable improvement on the TACoS dataset as
shown in the Figures 5(c) and 5(d). It reveals that simply
operating average pooling is insufficient to capture the
consistent information and underlying interactions among
the moment contexts. As average pooling assumes that
the context moments are linearly independent and equally
contributing to the final relevance estimation. It hence fails to
identify the adaptive importance of each moment and hardly
eliminates the irrelevant even noisy features. Therefore, the
improvement achieved by ACRN verifies the effectiveness
of the attention mechanism.

• The performance of ACRN-m indicates that removing
the memory attention network hurts the expressiveness
of the moment representation and further degrades the
retrieval performance. Particularly, ACRN-m assumes that
the representation of one moment candidate is independent
with its surrounding context moments, which cannot exploit
the spatial-temporal information encoded in the contexts.

Taking the advantage of the memory attention network,
ACRN is capable of enriching the moment representation.

• ACRN shows consistent improvement over ACRN-c on
two datasets, verifying the crucial influence of modality
interaction. Concatenation of the moment and query
representations models the intra-modal interactions solely
and limits the expressiveness of themoment-query pairs’ rep-
resentations. Our proposed cross-modal fusion network can
exploit the intra-modal and inter-modal feature interactions
and further enhance the moment-query representations.

4.4.2 Qualitative Results. To gain the deep insights into our
proposed ACRN model, we show an example of moment retrieval.
The video illustrated in Figure 6 describes a complex cooking scene,
in which a man firstly took out a glass from the cupboard and placed
it on the countertop, and then he went back to the cupboard and
took out a second glass. Later, he cracked an egg from the fridge and
drained the egg white by holding the halves of the shell together
over the glass. We choose the description “He took out a glass”
from the dataset as the given query, and utilize the aforementioned
models to retrieve the relevant moments. From the results shown
in the Figure 6, we observe that:

• As Figure 6(b) illustrates, MCN returns a moment that “The
man drained the egg white” from themoment candidates, not
the moment that “He took out a glass”. Although it considers
the local moment feature and the global feature, MCN forces
all the background moment contexts as the global feature
to enhance the representation of the visual embedding. As
most of the moment candidates within this video are related
to the scene “cracked egg and drained egg white”, the global
visual embedding fails to represent the desired scene.

• Both VSA-STV and VSA-RNN return a moment contain two
sub-scenes which are “He took out a glass” and “ He took a
second glass”, as shown in Figure 6(c) and 6(d), respectively.
Because these two models only consider the current moment
information instead of the temporal context information,
they cannot identify the relative order of the moments.
Hence, they only return all frames contain the action “took”
and object “glass” as the output. The poor performance
admits the importance of the spatial-temporal information
within the surrounding context.
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7.8s 16.4sGround 

Query: He took out a glass.

(a) The golden moment of the moment retrieval.

Alignment 46.5s42.2s

(b) The moment retrieval result of the MCN.

Alignment 10.4s 19.0s

(c) The moment retrieval result of the VSA-STV.

Alignment 10.4s 19.0s

(d) The moment retrieval result of the VSA-RNN.

Alignment
8.0s 15.0sRegression

8.4s 12.8s

(e) The moment retrieval result of the TALL.

Alignment 7.0s 15.6s
7.2s 17.0sRegression

(f) The moment retrieval result of the ACRN.

Figure 6: Moment retrieval results on the TACoS dataset.
All of the above figures are the R@1 results. The gray,
blue and green bars denote the time line of the ground
truth, alignment result and regression fine tune result,
respectively.

• TALL generates more accurate alignment result than MCN,
VSA-STV, and VSA-RNN, as Figure 6(e) displays. This
certifies the importance of cross-modal fusion, which
enriches the moment-query representations by modeling
the intra-modal and inter-modal feature interactions.

• Our alignment retrieval performs better than all the state-
of-the-art baselines. As shown in Figure 6(f), our alignment
result has larger IoU with the golden moment. Moreover,
ACRN generates better result than TALL. Although TALL
model utilizes context information, it respectively pools the
pre- and post-contexts into one vector and then concat them
with the current moment to enhance the visual embedding. It
ignores the complex interactions among contexts and fails to
identify the importance of each moment, therefore it misses
some important cues. This indicates the effectiveness of our
proposed attentive moment retrieval network.

• Even in the case that the alignment retrieval results have
small IoU with the golden moment, ACRN and TALL can
correct the alignment time points via their regression part
and further provide a more accurate result. This highlights
the effectiveness of the location offset regression. In addition,
our proposed ACRN further performs better offsets than
TALL, this demonstrates that the ACRN can generate better
moment-query representation.

5 CONCLUSION AND FUTUREWORK
In this paper, we develop an attentive cross-modal retrieval scheme
to retrieve specific moments from a long video responding to
a given query. To well align the moment candidates and the
given query, we design a memory attention model to dynamically
compute the visual attention over the query and its context
information. Meanwhile, we adopt a cross-modal fusion sub-
network to incorporate cross-modal information into the moment-
query alignment. To evaluate our model, we perform extensive
experiments on two public datasets. And the results show that our
model can achieve better performance compared to the state-of-
the-art baselines.

In future, we will extend our work in three directions. First,
we plan to design an end-to-end model, which observes the
moments and decides both where to look at next and when to
make a prediction. It will not need to pre-segment videos with
multi-scale sliding windows, and can quickly narrow down the
searching space. Second, we shall study different attention networks
on frame-level and incorporate them into our model, because
different parts of a frame have varying influences on the scene
and query understanding. Third, we will consider our framework
in personalizedmoment recommendation, where the retrieval result
is relevant to personal interests of users. In particular, when given
a video, the personal query history is treated as the user-item
interactions similar in [4, 13, 39] to better capture a user’s preference
towards moments.
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