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ABSTRACT

Learning vector representations (aka. embeddings) of users and
items lies at the core of modern recommender systems. Ranging
from early matrix factorization to recently emerged deep learning
based methods, existing efforts typically obtain a user’s (or an
item’s) embedding by mapping from pre-existing features that
describe the user (or the item), such as ID and attributes. We
argue that an inherent drawback of such methods is that, the
collaborative signal, which is latent in user-item interactions,
is not encoded in the embedding process. As such, the resultant
embeddings may not be sufficient to capture the collaborative
filtering effect.

In this work, we propose to integrate the user-item interactions —
more specifically the bipartite graph structure — into the embedding
process. We develop a new recommendation framework Neural
Graph Collaborative Filtering (NGCF), which exploits the user-
item graph structure by propagating embeddings on it. This leads
to the expressive modeling of high-order connectivity in user-
item graph, effectively injecting the collaborative signal into the
embedding process in an explicit manner. We conduct extensive
experiments on three public benchmarks, demonstrating significant
improvements over several state-of-the-art models like HOP-
Rec [38] and Collaborative Memory Network [5]. Further analysis
verifies the importance of embedding propagation for learning
better user and item representations, justifying the rationality and
effectiveness of NGCF.
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1 INTRODUCTION

Personalized recommendation is ubiquitous, having been applied
to many online services such as E-commerce, advertising, and
social media. At its core is estimating how likely a user will
adopt an item based on the historical interactions like purchases
and clicks. Collaborative filtering (CF) addresses it by assuming
that behaviorally similar users would exhibit similar preference
on items. To implement the assumption, a common paradigm
is to parameterize users and items for reconstructing historical
interactions, and predict user preference based on the parameters [1,
14].

Generally speaking, there are two key components in learnable
CF models — 1) embedding, which transforms users and items
to vectorized representations, and 2) interaction modeling, which
reconstructs historical interactions based on the embeddings. For
example, matrix factorization (MF) directly embeds user/item ID as
an vector and models user-item interaction with inner product [20];
collaborative deep learning extends the MF embedding function
by integrating the deep representations learned from rich side
information of items [29]; neural collaborative filtering models
replace the MF interaction function of inner product with nonlinear
neural networks [14]; and translation-based CF models instead use
Euclidean distance metric as the interaction function [27], among
others.

Despite their effectiveness, we argue that these methods are not
sufficient to yield satisfactory embeddings for CF. The key reason is
that the embedding function lacks an explicit encoding of the crucial
collaborative signal, which is latent in user-item interactions to
reveal the behavioral similarity between users (or items). To be
more specific, most existing methods build the embedding function
with the descriptive features only (e.g., ID and attributes), without
considering the user-item interactions — which are only used to
define the objective function for model training [26, 27]. As a result,
when the embeddings are insufficient in capturing CF, the methods
have to rely on the interaction function to make up for the deficiency
of suboptimal embeddings [14].

While intuitively useful to integrate user-item interactions
into the embedding function, it is non-trivial to do it well. In
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Figure 1: An illustration of the user-item interaction graph
and the high-order connectivity. The node u; is the target
user to provide recommendations for.

particular, the scale of interactions can easily reach millions
or even larger in real applications, making it difficult to distill
the desired collaborative signal. In this work, we tackle the
challenge by exploiting the high-order connectivity from user-
item interactions, a natural way that encodes collaborative signal
in the interaction graph structure.

Running Example. Figure 1 illustrates the concept of high-order
connectivity. The user of interest for recommendation is uj, labeled
with the double circle in the left subfigure of user-item interaction
graph. The right subfigure shows the tree structure that is expanded
from u;. The high-order connectivity denotes the path that reaches
u1 from any node with the path length [ larger than 1. Such high-
order connectivity contains rich semantics that carry collaborative
signal. For example, the path uy « iy « uy indicates the behavior
similarity between u; and uy, as both users have interacted with
ig; the longer path uq < iy < uy < i4 suggests that u; is likely to
adopt iy, since her similar user u2 has consumed i4 before. Moreover,
from the holistic view of | = 3, item i4 is more likely to be of interest
to ug than item is, since there are two paths connecting <ig, u1>,
while only one path connects <is, uj >.

Present Work. We propose to model the high-order connectivity
information in the embedding function. Instead of expanding
the interaction graph as a tree which is complex to implement,
we design a neural network method to propagate embeddings
recursively on the graph. This is inspired by the recent
developments of graph neural networks [8, 30, 36], which can be
seen as constructing information flows in the embedding space.
Specifically, we devise an embedding propagation layer, which
refines a user’s (or an item’s) embedding by aggregating the
embeddings of the interacted items (or users). By stacking multiple
embedding propagation layers, we can enforce the embeddings
to capture the collaborative signal in high-order connectivities.
Taking Figure 1 as an example, stacking two layers captures the
behavior similarity of uj « iy <« ug, stacking three layers captures
the potential recommendations of u; « iz « up « iy, and the
strength of the information flow (which is estimated by the trainable
weights between layers) determines the recommendation priority
of iy and is. We conduct extensive experiments on three public
benchmarks to verify the rationality and effectiveness of our Neural
Graph Collaborative Filtering (NGCF) method.

Lastly, it is worth mentioning that although the high-order
connectivity information has been considered in a very recent
method named HOP-Rec [38], it is only exploited to enrich

the training data. Specifically, the prediction model of HOP-
Rec remains to be MF, while it is trained by optimizing a loss
that is augmented with high-order connectivities. Distinct from
HOP-Rec, we contribute a new technique to integrate high-order
connectivities into the prediction model, which empirically yields
better embeddings than HOP-Rec for CF.

To summarize, this work makes the following main contributions:

e We highlight the critical importance of explicitly exploiting the
collaborative signal in the embedding function of model-based
CF methods.

e We propose NGCF, a new recommendation framework based on
graph neural network, which explicitly encodes the collaborative
signal in the form of high-order connectivities by performing
embedding propagation.

e We conduct empirical studies on three million-size datasets.
Extensive results demonstrate the state-of-the-art performance of
NGCEF and its effectiveness in improving the embedding quality
with neural embedding propagation.

2 METHODOLOGY

We now present the proposed NGCF model, the architecture of
which is illustrated in Figure 2. There are three components in the
framework: (1) an embedding layer that offers and initialization
of user embeddings and item embeddings; (2) multiple embedding
propagation layers that refine the embeddings by injecting high-
order connectivity relations; and (3) the prediction layer that
aggregates the refined embeddings from different propagation
layers and outputs the affinity score of a user-item pair. Finally,
we discuss the time complexity of NGCF and the connections with
existing methods.

2.1 Embedding Layer

Following mainstream recommender models [1, 14, 26], we describe
a user u (an item i) with an embedding vector e, € R9 (e; € R9),
where d denotes the embedding size. This can be seen as building a
parameter matrix as an embedding look-up table:

E=[ey, - euy, € epy | 1)
[ — [ ——
users embeddings item embeddings

It is worth noting that this embedding table serves as an initial
state for user embeddings and item embeddings, to be optimized
in an end-to-end fashion. In traditional recommender models like
MF and neural collaborative filtering [14], these ID embeddings are
directly fed into an interaction layer (or operator) to achieve the
prediction score. In contrast, in our NGCF framework, we refine
the embeddings by propagating them on the user-item interaction
graph. This leads to more effective embeddings for recommendation,
since the embedding refinement step explicitly injects collaborative
signal into embeddings.

2.2 Embedding Propagation Layers

Next we build upon the message-passing architecture of GNNs [8,
36] in order to capture CF signal along the graph structure and
refine the embeddings of users and items. We first illustrate the
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Figure 2: An illustration of NGCF model architecture
(the arrowed lines present the flow of information). The
representations of user u; (left) and item iy (right) are refined
with multiple embedding propagation layers, whose outputs
are concatenated to make the final prediction.

design of one-layer propagation, and then generalize it to multiple
successive layers.

2.2.1 First-order Propagation. Intuitively, the interacted items
provide direct evidence on a user’s preference [16, 37]; analogously,
the users that consume an item can be treated as the item’s features
and used to measure the collaborative similarity of two items. We
build upon this basis to perform embedding propagation between
the connected users and items, formulating the process with two
major operations: message construction and message aggregation.

Message Construction. For a connected user-item pair (u, i), we
define the message from i to u as:

my; = f(ei, ey, pui)s o)
where my, ; is the message embedding (i.e., the information to be
propagated). f(-) is the message encoding function, which takes
embeddings e; and e, as input, and uses the coefficient p,; to
control the decay factor on each propagation on edge (u, i).

In this work, we implement f(-) as:

1
My = —(Wlei +Ws(e; © eu)), 3)
INulINi
where W1, W3 € R4%d are the trainable weight matrices to distill
useful information for propagation, and d’ is the transformation
size. Distinct from conventional graph convolution networks [4, 18,
28, 40] that consider the contribution of e; only, here we additionally
encode the interaction between e; and e, into the message being

passed via e; © ey, where © denotes the element-wise product.

This makes the message dependent on the affinity between e; and
ey, e.g., passing more messages from the similar items. This not
only increases the model representation ability, but also boosts the
performance for recommendation (evidences in our experiments
Section 4.4.2).

Following the graph convolutional network [18], we set p,; as
the graph Laplacian norm 1/+/|Ny||N;|, where N, and N; denote
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Figure 3: Illustration of third-order embedding propagation
for user u. Best view in color.

the first-hop neighbors of user u and item i. From the viewpoint of
representation learning, p,; reflects how much the historical item
contributes the user preference. From the viewpoint of message
passing, py; can be interpreted as a discount factor, considering the
messages being propagated should decay with the path length.

Message Aggregation. In this stage, we aggregate the messages
propagated from u’s neighborhood to refine u’s representation.
Specifically, we define the aggregation function as:

eg) = LeakyReLU(mw_u + Z mu(—i), (4)
ieNy,

(1)

where e;;” denotes the representation of user u obtained after
the first embedding propagation layer. The activation function
of LeakyReLU [23] allows messages to encode both positive and
small negative signals. Note that in addition to the messages
propagated from neighbors Ny, we take the self-connection of u
into consideration: my,, = Wyey, which retains the information
of original features (W is the weight matrix shared with the one
used in Equation (3)). Analogously, we can obtain the representation

e(l.l) for item i by propagating information from its connected users.
To summarize, the advantage of the embedding propagation layer
lies in explicitly exploiting the first-order connectivity information
to relate user and item representations.

2.2.2 High-order Propagation. With the representations aug-
mented by first-order connectivity modeling, we can stack
more embedding propagation layers to explore the high-order
connectivity information. Such high-order connectivities are crucial
to encode the collaborative signal to estimate the relevance score
between a user and item.

By stacking I embedding propagation layers, a user (and an item)
is capable of receiving the messages propagated from its [-hop
neighbors. As Figure 2 displays, in the [-th step, the representation
of user u is recursively formulated as:

e = LeakyReLU(mSL)—u * 2 mg)%i)’ ©
ieNy,

wherein the messages being propagated are defined as follows,
1 I (I- n, (- -
{mili = pus(We! ™« W 0 elf ).

6)
I ) (I-1 (
il - wiel,

where W(ll),W(zl),e R91Xdi-1 are the trainable transformation

matrices, and d; is the transformation size; eglfl) is the item

representation generated from the previous message-passing steps,



memorizing the messages from its (I-1)-hop neighbors. It further
contributes to the representation of user u at layer [. Analogously,
we can obtain the representation for item i at the layer /.

As Figure 3 shows, the collaborative signal like u; « iz «
uy < i4 can be captured in the embedding propagation process.
Furthermore, the message from i4 is explicitly encoded in egz)
(indicated by the red line). As such, stacking multiple embedding
propagation layers seamlessly injects collaborative signal into the
representation learning process.

Propagation Rule in Matrix Form. To offer a holistic view
of embedding propagation and facilitate batch implementation,
we provide the matrix form of the layer-wise propagation rule
(equivalent to Equations (5) and (6)):

ED - o_(([: + I)E(l—l)w(ll) . _[:E(l_l) 1) E(l_l)w(zl)), (7

where E(!) € RN+*M)Xd1 gre the representations for users and items
obtained after [ steps of embedding propagation. E© is set as E at
the initial message-passing iteration, that is eﬁ)) = ey, and e(io) = ej;
and I denote an identity matrix. £ represents the Laplacian matrix
for the user-item graph, which is formulated as:

L£=D:AD 7 and A = ®)

0 R
RT 0] ’
where R € RN*M g the user-item interaction matrix, and 0 is all-
zero matrix; A is the adjacency matrix and D is the diagonal degree
matrix, where the t-th diagonal element D;; = |N;|; as such, the
nonzero off-diagonal entry £,; = 1/4/|[Ny||Ni|, which is equal to
pui used in Equation (3).

By implementing the matrix-form propagation rule, we can
simultaneously update the representations for all users and items
in a rather efficient way. It allows us to discard the node sampling
procedure, which is commonly used to make graph convolution
network runnable on large-scale graph [25]. We will analyze the
complexity in Section 2.5.2.

2.3 Model Prediction

After propagating with L layers, we obtain multiple representations
for user u, namely {eg), s eSJL)}. Since the representations
obtained in different layers emphasize the messages passed over
different connections, they have different contributions in reflecting
user preference. As such, we concatenate them to constitute the

final embedding for a user; we do the same operation on items,

concatenating the item representations {e(il) S ,eE.L) } learned by
different layers to get the final item embedding:

ci= el Nl e = el el ©)

where || is the concatenation operation. By doing so, we not only
enrich the initial embeddings with embedding propagation layers,
but also allow controlling the range of propagation by adjusting
L. Note that besides concatenation, other aggregators can also be
applied, such as weighted average, max pooling, LSTM, etc., which
imply different assumptions in combining the connectivities of
different orders. The advantage of using concatenation lies in its
simplicity, since it involves no additional parameters to learn, and

it has been shown quite effectively in a recent work of graph neural
networks [36], which refers to layer-aggregation mechanism.

Finally, we conduct the inner product to estimate the user’s
preference towards the target item:

. . T

INGeF(u, i) = €, €. (10)
In this work, we emphasize the embedding function learning thus
only employ the simple interaction function of inner product.

Other more complicated choices, such as neural network-based
interaction functions [14], are left to explore in the future work.

2.4 Optimization

To learn model parameters, we optimize the pairwise BPR loss [26],
which has been intensively used in recommender systems [2, 13].
It considers the relative order between observed and unobserved
user-item interactions. Specifically, BPR assumes that the observed
interactions, which are more reflective of a user’s preferences,
should be assigned higher prediction values than unobserved ones.
The objective function is as follows,

Loss = Z

(u,i,j)€O
where O = {(u,1,j)|(u, i) € R, (u,j) € R™} denotes the pairwise
training data, R* indicates the observed interactions, and R~
denotes the unobserved interactions; © = {E, {W(ll),W(zl)}{“=1
denotes all trainable model parameters, and A controls the L
regularization strength to prevent overfitting. We adopt mini-batch
Adam [17] to optimize the prediction model and update the model
parameters. In particular, for a batch of randomly sampled triples
(u, i, ) € O, we establish their representations [e©, ... eM)] after
L steps of propagation, and then update model parameters by using
the gradients of the loss function.

—Insigmoid(Ju; — Juj) + A1OI5,  (11)

24.1 Model Size. It is worth pointing out that although NGCF
obtains an embedding matrix (ED) at each propagation layer [, it
only introduces very few parameters — two weight matrices of
size dj X dj_. Specifically, these embedding matrices are derived
from the embedding look-up table E©, with the transformation
based on the user-item graph structure and weight matrices.
As such, compared to MF — the most concise embedding-
based recommender model, our NGCF uses only 2Ld;d;_; more
parameters. Such additional cost on model parameters is almost
negligible, considering that L is usually a number smaller than
5, and dj is typically set as the embedding size, which is much
smaller than the number of users and items. For example, on our
experimented Gowalla dataset (20K users and 40K items), when the
embedding size is 64 and we use 3 propagation layers of size 64 X 64,
MF has 4.5 million parameters, while our NGCF uses only 0.024
million additional parameters. To summarize, NGCF uses very few
additional model parameters to achieve the high-order connectivity
modeling.

24.2 Message and Node Dropout. Although deep learning
models have strong representation ability, they usually suffer from
overfitting. Dropout is an effective solution to prevent neural
networks from overfitting. Following the prior work on graph
convolutional network [28], we propose to adopt two dropout
techniques in NGCF: message dropout and node dropout. Message



dropout randomly drops out the outgoing messages. Specifically,
we drop out the messages being propagated in Equation (6), with a
probability p;. As such, in the [-th propagation layer, only partial
messages contribute to the refined representations. We also conduct
node dropout to randomly block a particular node and discard all
its outgoing messages. For the [-th propagation layer, we randomly
drop (M + N)psz nodes of the Laplacian matrix, where py is the
dropout ratio.

Note that dropout is only used in training, and must be disabled
during testing. The message dropout endows the representations
more robustness against the presence or absence of single
connections between users and items, and the node dropout focuses
on reducing the influences of particular users or items. We perform
experiments to investigate the impact of message dropout and node
dropout on NGCF in Section 4.4.3.

2.5 Discussions

In the subsection, we first show how NGCF generalizes SVD++ [19].

In what follows, we analyze the time complexity of NGCF.

2.5.1 NGCF Generalizes SVD++. SVD++ can be viewed as a
special case of NGCF with no high-order propagation layer. In
particular, we set L to one. Within the propagation layer, we

disable the transformation matrix and nonlinear activation function.

Thereafter, es) and egl) are treated as the final representations for
user u and item i, respectively. We term this simplified model as
NGCF-SVD, which can be formulated as:

INGCF-sVD = (eu + purer) (e + > piwe). (1)
i"eNy weN;

Clearly, by setting p,;» and p,; as 1/4/|NVy| and 0 separately, we

can exactly recover SVD++ model. Moreover, another widely-used

item-based CF model, FISM [16], can be also seen as a special case
of NGCF, wherein p;, in Equation (12) is set as 0.

2.5.2 Time Complexity Analysis. As we can see, the layer-wise
propagation rule is the main operation. For the I-th propagation
layer, the matrix multiplication has computational complexity
O(|R*|d;d;_1), where |R*| denotes the number of nonzero entires
in the Laplacian matrix; and dj and d;_; are the current and previous
transformation size. For the prediction layer, only the inner product
is involved, for which the time complexity of the whole training
epoch is O(Z{“=1 |R*|d;). Therefore, the overall complexity for
evaluating NGCF is O(Z{“=1 |R*|dydy_q + Z%:l |R*|d}). Empirically,
under the same experimental settings (as explained in Section 4), MF
and NGCF cost around 20s and 80s per epoch on Gowalla dataset
for training, respectively; during inference, the time costs of MF
and NGCF are 80s and 260s for all testing instances, respectively.

3 RELATED WORK

We review existing work on model-based CF, graph-based CF, and
graph neural network-based methods, which are most relevant with
this work. Here we highlight the differences with our NGCF.

3.1 Model-based CF Methods

Modern recommender systems [5, 14, 31] parameterize users and
items by vectorized representations and reconstruct user-item

interaction data based on model parameters. For example, MF [20,
26] projects the ID of each user and item as an embedding vector,
and conducts inner product between them to predict an interaction.
To enhance the embedding function, much effort has been devoted
to incorporate side information like item content [2, 29], social
relations [32], item relations [35], user reviews [3], and external
knowledge graph [30, 33]. While inner product can force user and
item embeddings of an observed interaction close to each other, its
linearity makes it insufficient to reveal the complex and nonlinear
relationships between users and items [14, 15]. Towards this end,
recent efforts [11, 14, 15, 34] focus on exploiting deep learning
techniques to enhance the interaction function, so as to capture
the nonlinear feature interactions between users and items. For
instance, neural CF models, such as NeuMF [14], employ nonlinear
neural networks as the interaction function; meanwhile, translation-
based CF models, such as LRML [27], instead model the interaction
strength with Euclidean distance metrics.

Despite great success, we argue that the design of the embedding
function is insufficient to yield optimal embeddings for CF, since the
CF signals are only implicitly captured. Summarizing these methods,
the embedding function transforms the descriptive features (e.g.,
ID and attributes) to vectors, while the interaction function serves
as a similarity measure on the vectors. Ideally, when user-item
interactions are perfectly reconstructed, the transitivity property of
behavior similarity could be captured. However, such transitivity
effect showed in the Running Example is not explicitly encoded,
thus there is no guarantee that the indirectly connected users
and items are close in the embedding space. Without an explicit
encoding of the CF signals, it is hard to obtain embeddings that
meet the desired properties.

3.2 Graph-Based CF Methods

Another line of research [12, 24, 38] exploits the user-item
interaction graph to infer user preference. Early efforts, such as
ItemRank [7] and BiRank [12], adopt the idea of label propagation
to capture the CF effect. To score items for a user, these methods
define the labels as her interacted items, and propagate the labels
on the graph. As the recommendation scores are obtained based on
the structural reachness (which can be seen as a kind of similarity)
between the historical items and the target item, these methods
essentially belong to neighbor-based methods. However, these
methods are conceptually inferior to model-based CF methods, since
there lacks model parameters to optimize the objective function of
recommendation.

The recently proposed method HOP-Rec [38] alleviates the
problem by combining graph-based with embedding-based method.
It first performs random walks to enrich the interactions of a
user with multi-hop connected items. Then it trains MF with BPR
objective based on the enriched user-item interaction data to build
the recommender model. The superior performance of HOP-Rec
over MF provides evidence that incorporating the connectivity
information is beneficial to obtain better embeddings in capturing
the CF effect. However, we argue that HOP-Rec does not fully
explore the high-order connectivity, which is only utilized to
enrich the training data!, rather than directly contributing to the

The enriched trained data can be seen as a regularizer to the original training.



Table 1: Statistics of the datasets.

Dataset ‘ #Users ‘ #Items ‘ #Interactions | Density
Gowalla 29,858 | 40,981 1,027,370 | 0.00084
Yelp2018 31,831 | 40,841 1,666,869 | 0.00128
Amazon-Book | 52,643 | 91,599 2,984,108 | 0.00062

model’s embedding function. Moreover, the performance of HOP-
Rec depends heavily on the random walks, which require careful
tuning efforts such as a proper setting of decay factor.

3.3 Graph Convolutional Networks

By devising a specialized graph convolution operation on user-
item interaction graph (cf. Equation (3)), we make NGCF effective
in exploiting the CF signal in high-order connectivities. Here we
discuss existing recommendation methods that also employ graph
convolution operations [28, 40, 41].

GC-MC [28] applies the graph convolution network (GCN) [18]
on user-item graph, however it only employs one convolutional
layer to exploit the direct connections between users and
items. Hence it fails to reveal collaborative signal in high-order
connectivities. PinSage [40] is an industrial solution that employs
multiple graph convolution layers on item-item graph for Pinterest
image recommendation. As such, the CF effect is captured on the
level of item relations, rather than the collective user behaviors.
SpectralCF [41] proposes a spectral convolution operation to
discover all possible connectivity between users and items in
the spectral domain. Through the eigen-decomposition of graph
adjacency matrix, it can discover the connections between a
user-item pair. However, the eigen-decomposition causes a high
computational complexity, which is very time-consuming and
difficult to support large-scale recommendation scenarios.

4 EXPERIMENTS

We perform experiments on three real-world datasets to evaluate
our proposed method, especially the embedding propagation layer.
We aim to answer the following research questions:

o RQ1: How does NGCF perform as compared with state-of-the-art
CF methods?

e RQ2: How do different hyper-parameter settings (e.g., depth
of layer, embedding propagation layer, layer-aggregation
mechanism, message dropout, and node dropout) affect NGCF?

e RQ3: How do the representations benefit from the high-order
connectivity?

4.1 Dataset Description

To evaluate the effectiveness of NGCF, we conduct experiments on
three benchmark datasets: Gowalla, Yelp2018, and Amazon-book,
which are publicly accessible and vary in terms of domain, size, and
sparsity. We summarize the statistics of three datasets in Table 1.
Gowalla: This is the check-in dataset [21] obtained from Gowalla,
where users share their locations by checking-in. To ensure the
quality of the dataset, we use the 10-core setting [10], i.e., retaining
users and items with at least ten interactions.

Yelp2018: This dataset is adopted from the 2018 edition of the Yelp
challenge. Wherein, the local businesses like restaurants and bars

are viewed as the items. We use the same 10-core setting in order
to ensure data quality.

Amazon-book: Amazon-review is a widely used dataset for
product recommendation [9]. We select Amazon-book from the
collection. Similarly, we use the 10-core setting to ensure that each
user and item have at least ten interactions.

For each dataset, we randomly select 80% of historical
interactions of each user to constitute the training set, and treat
the remaining as the test set. From the training set, we randomly
select 10% of interactions as validation set to tune hyper-parameters.
For each observed user-item interaction, we treat it as a positive
instance, and then conduct the negative sampling strategy to pair
it with one negative item that the user did not consume before.

4.2 Experimental Settings

4.2.1 Evaluation Metrics. For each user in the test set, we treat
all the items that the user has not interacted with as the negative
items. Then each method outputs the user’s preference scores over
all the items, except the positive ones used in the training set. To
evaluate the effectiveness of top-K recommendation and preference
ranking, we adopt two widely-used evaluation protocols [14, 38]:
recall@K and ndcg@K. By default, we set K = 20. We report the
average metrics for all users in the test set.

4.2.2 Baselines. To demonstrate the effectiveness, we compare
our proposed NGCF with the following methods:

e MF [26]: This is matrix factorization optimized by the Bayesian
personalized ranking (BPR) loss, which exploits the user-item
direct interactions only as the target value of interaction function.
NeuMF [14]: The method is a state-of-the-art neural CF model
which uses multiple hidden layers above the element-wise and
concatenation of user and item embeddings to capture their non-
linear feature interactions. Especially, we employ two-layered
plain architecture, where the dimension of each hidden layer
keeps the same.

e CMN [5]: It is a state-of-the-art memory-based model, where
the user representation attentively combines the memory slots
of neighboring users via the memory layers. Note that the first-
order connections are used to find similar users who interacted
with the same items.

e HOP-Rec [38]: This is a state-of-the-art graph-based model,

where the high-order neighbors derived from random walks

are exploited to enrich the user-item interaction data.

PinSage [40]: PinSage is designed to employ GraphSAGE [8]

on item-item graph. In this work, we apply it on user-item

interaction graph. Especially, we employ two graph convolution
layers as suggested in [40], and the hidden dimension is set equal
to the embedding size.

GC-MC [28]: This model adopts GCN [18] encoder to generate

the representations for users and items, where only the first-order

neighbors are considered. Hence one graph convolution layer,
where the hidden dimension is set as the embedding size, is used

as suggested in [28].

We also tried SpectralCF [41] but found that the eigen-decomposition
leads to high time cost and resource cost, especially when the
number of users and items is large. Hence, although it achieved



Table 2: Overall Performance Comparison.

Gowalla Yelp2018 Amazon-Book

recall ndcg recall ndcg recall ndcg
MF 0.1291 0.1878 0.0317 0.0617 0.0250 0.0518
NeuMF 0.1326 0.1985 0.0331 0.0840 0.0253 0.0535
CMN 0.1404  0.2129 0.0364 0.0745 0.0267 0.0516

HOP-Rec | 0.1399 0.2128 0.0388  0.0857 | 0.0309 0.0606

GC-MC 0.1395 0.1960 0.0365 0.0812 0.0288 0.0551
PinSage 0.1380 0.1947 0.0372 0.0803 0.0283 0.0545

NGCF 0.1547* 0.2237* | 0.0438" 0.0926" | 0.0344* 0.0630"

%Improv. | 10.18% 5.07% 12.88% 8.05% 11.32% 3.96%
p-value 1.0le-4  5.38e-3 | 4.05e-3  2.00e-4 | 4.34e-2  7.26e-3

promising performance in small datasets, we did not select it for
comparison. For fair comparison, all methods optimize the BPR loss
as shown in Equation (11).

4.2.3 Parameter Settings. We implement our NGCF model in
Tensorflow. The embedding size is fixed to 64 for all models. For
HOP-Rec, we search the steps of random walks in {1,2,3} and
tune the learning rate in {0.025, 0.020, 0.015, 0.010}. We optimize
all models except HOP-Rec with the Adam optimizer, where the
batch size is fixed at 1024. In terms of hyperparameters, we apply a
grid search for hyperparameters: the learning rate is tuned amongst
{0.0001, 0.0005, 0.001, 0.005}, the coefficient of Ly normalization
is searched in {107°,107%,-- -, 10!, 102}, and the dropout ratio in
{0.0,0.1,---,0.8}. Besides, we employ the node dropout technique
for GC-MC and NGCF, where the ratio is tuned in {0.0, 0.1, - - -, 0.8}.
We use the Xavier initializer [6] to initialize the model parameters.
Moreover, early stopping strategy is performed, i.e., premature
stopping if recall@20 on the validation data does not increase for
50 successive epochs. To model the CF signal encoded in third-
order connectivity, we set the depth of NGCF L as three. Without
specification, we show the results of three embedding propagation
layers, node dropout ratio of 0.0, and message dropout ratio of 0.1.

4.3 Performance Comparison (RQ1)

We start by comparing the performance of all the methods, and
then explore how the modeling of high-order connectivity improves
under the sparse settings.

4.3.1 Overall Comparison. Table 2 reports the performance
comparison results. We have the following observations:

o MF achieves poor performance on three datasets. This indicates
that the inner product is insufficient to capture the complex
relations between users and items, further limiting the
performance. NeuMF consistently outperforms MF across all
cases, demonstrating the importance of nonlinear feature
interactions between user and item embeddings. However,
neither MF nor NeuMF explicitly models the connectivity in
the embedding learning process, which could easily lead to
suboptimal representations.

e Compared to MF and NeuMF, the performance of GC-MC
verifies that incorporating the first-order neighbors can improve
the representation learning. However, in Yelp2018, GC-MC
underperforms NeuMF w.r.t. ndcg@20. The reason might be that
GC-MC fails to fully explore the nonlinear feature interactions
between users and items.

o CMN generally achieves better performance than GC-MC in
most cases. Such improvement might be attributed to the neural
attention mechanism, which can specify the attentive weight of
each neighboring user, rather than the equal or heuristic weight
used in GC-MC.

e PinSage slightly underperforms CMN in Gowalla and Amazon-
Book, while performing much better in Yelp2018; meanwhile,
HOP-Rec generally achieves remarkable improvements in most
cases. It makes sense since PinSage introduces high-order
connectivity in the embedding function, and HOP-Rec exploits
high-order neighbors to enrich the training data, while CMN
considers the similar users only. It therefore points to the positive
effect of modeling the high-order connectivity or neighbors.

o NGCF consistently yields the best performance on all the datasets.
In particular, NGCF improves over the strongest baselines w.r.t.
recall@20 by 10.18%, 12.88%, and 11.32% in Gowalla, Yelp2018,
and Amazon-Book, respectively. By stacking multiple embedding
propagation layers, NGCF is capable of exploring the high-order
connectivity in an explicit way, while CMN and GC-MC only
utilize the first-order neighbors to guide the representation
learning. This verifies the importance of capturing collaborative
signal in the embedding function. Moreover, compared with
PinSage, NGCF considers multi-grained representations to infer
user preference, while PinSage only uses the output of the
last layer. This demonstrates that different propagation layers
encode different information in the representations. And the
improvements over HOP-Rec indicate that explicit encoding CF
in the embedding function can achieve better representations.
We conduct one-sample t-tests and p-value < 0.05 indicates
that the improvements of NGCF over the strongest baseline are
statistically significant.

4.3.2 Performance Comparison w.r.t. Interaction Sparsity
Levels. The sparsity issue usually limits the expressiveness of
recommender systems, since few interactions of inactive users are
insufficient to generate high-quality representations. We investigate
whether exploiting connectivity information helps to alleviate this
issue.

Towards this end, we perform experiments over user groups of
different sparsity levels. In particular, based on interaction number
per user, we divide the test set into four groups, each of which has
the same total interactions. Taking Gowalla dataset as an example,
the interaction numbers per user are less than 24, 50, 117, and
1014 respectively. Figure 4 illustrates the results w.r.t. ndcg@20 on
different user groups in Gowalla, Yelp2018, and Amazon-Book; we
see a similar trend for performance w.r.t. recall@20 and omit the
part due to the space limitation. We find that:

o NGCF and HOP-Rec consistently outperform all other baselines
on all user groups. It demonstrates that exploiting high-order
connectivity greatly facilitates the representation learning for
inactive users, as the collaborative signal can be effectively
captured. Hence, it might be promising to solve the sparsity
issue in recommender systems, and we leave it in future work.

e Jointly analyzing Figures 4(a), 4(b), and 4(c), we observe that
the improvements achieved in the first two groups (e.g., 6.78%
and 3.75% over the best baselines separately for < 24 and < 50
in Gowalla) are more significant than that of the others (e.g.,
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Figure 4: Performance comparison over the sparsity distribution of user groups on different datasets. Wherein, the background
histograms indicate the number of users involved in each group, and the lines demonstrate the performance w.r.t. ndcg@ 20.

Table 3: Effect of embedding propagation layer numbers (L).

Table 4: Effect of graph convolution layers.

Gowalla Yelp2018 Amazon-Book Gowalla Yelp2018 Amazon-Book

recall ndcg | recall ~ndcg | recall ndcg recall ndcg | recall ndcg | recall ndcg
NGCF-1 | 0.1511 0.2218 | 0.0417 0.0889 | 0.0315 0.0618 NGCF-1 0.1511  0.2218 | 0.0417 0.0889 | 0.0315 0.0618
NGCF-2 | 0.1535 0.2238 | 0.0429  0.0909 | 0.0319  0.0622 NGCF-1syp++ | 0.1447  0.2160 | 0.0380  0.0828 | 0.0277  0.0556
NGCF-3 | 0.1547 0.2237 | 0.0438 0.0926 | 0.0344 0.0630 NGCF-1gc-mc | 0.1451  0.2165 | 0.0369  0.0812 | 0.0288  0.0562
NGCF-4 | 0.1560 0.2240 | 0.0427 0.0907 | 0.0342 0.0636 NGCF-1pinsage | 0.1457 02170 | 0.0390 0.0845 | 0.0285 0.0563

0.49% for < 117 Gowalla groups). It verifies that the embedding
propagation is beneficial to the relatively inactive users.

4.4 Study of NGCF (RQ2)

As the embedding propagation layer plays a pivotal role in NGCF,
we investigate its impact on the performance. We start by exploring
the influence of layer numbers. We then study how the Laplacian
matrix (i.e., discounting factor p; between user u and item i) affects
the performance. Moreover, we analyze the influences of key factors,
such as node dropout and message dropout ratios. We also study
the training process of NGCF.

4.4.1 Effect of Layer Numbers. To investigate whether NGCF
can benefit from multiple embedding propagation layers, we vary
the model depth. In particular, we search the layer numbers in
the range of {1,2,3,4}. Table 3 summarizes the experimental
results, wherein NGCF-3 indicates the model with three embedding
propagation layers, and similar notations for others. Jointly
analyzing Tables 2 and 3, we have the following observations:

o Increasing the depth of NGCF substantially enhances the
recommendation cases. Clearly, NGCF-2 and NGCF-3 achieve
consistent improvement over NGCF-1 across all the board,
which considers the first-order neighbors only. We attribute the
improvement to the effective modeling of CF effect: collaborative
user similarity and collaborative signal are carried by the second-
and third-order connectivities, respectively.

o When further stacking propagation layer on the top of NGCF-3,
we find that NGCF-4 leads to overfitting on Yelp2018 dataset.
This might be caused by applying a too deep architecture might
introduce noises to the representation learning. The marginal
improvements on the other two datasets verifies that conducting
three propagation layers is sufficient to capture the CF signal.

e When varying the number of propagation layers, NGCF is
consistently superior to other methods across three datasets.
It again verifies the effectiveness of NGCF, empirically showing
that explicit modeling of high-order connectivity can greatly
facilitate the recommendation task.

4.4.2 Effect of Embedding Propagation Layer and Layer-
Aggregation Mechanism. To investigate how the embedding
propagation (i.e., graph convolution) layer affects the performance,
we consider the variants of NGCF-1 that use different layers. In
particular, we remove the representation interaction between a node
and its neighbor from the message passing function (cf. Equation (3))
and set it as that of PinSage and GC-MC, termed NGCF-1pinsage
and NGCF-1gc-Mmc respectively. Moreover, following SVD++, we
obtain one variant based on Equations (12), termed NGCF-1gyp++.-
We show the results in Table 4 and have the following findings:

o NGCF-1 is consistently superior to all variants. We attribute
the improvements to the representation interactions (i.e.,
ey O e;), which makes messages being propagated dependent
on the affinity between e; and e, and functions like the
attention mechanism [2]. Whereas, all variants only take linear
transformation into consideration. It hence verifies the rationality
and effectiveness of our embedding propagation function.

e In most cases, NGCF-1syp++ underperforms NGCF-1piygage and
NGCF-1gc-Mc. It illustrates the importance of messages passed
by the nodes themselves and the nonlinear transformation.

o Jointly analyzing Tables 2 and 4, we find that, when concatenating
all layers’ outputs together, NGCF-1pinsage and NGCF-1gc-mc
achieve better performance than PinSage and GC-MC, respectively.
This emphasizes the significance of layer-aggregation mechanism,
which is consistent with [36].

4.4.3 Effect of Dropout. Following the prior work [28], we
employ node dropout and message dropout techniques to prevent
NGCF from overfitting. Figure 5 plots the effect of message dropout
ratio p; and node dropout ratio py against different evaluation
protocols on different datasets.

Between the two dropout strategies, node dropout offers better
performance. Taking Gowalla as an example, setting po as 0.2 leads
to the highest recall@20 of 0.1514, which is better than that of
message dropout 0.1506. One reason might be that dropping out
all outgoing messages from particular users and items makes the
representations robust against not only the influence of particular
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Figure 6: Test performance of each epoch of MF and NGCF.

edges, but also the effect of nodes. Hence, node dropout is more
effective than message dropout, which is consistent with the
findings of prior effort [28]. We believe this is an interesting finding,
which means that node dropout can be an effective strategy to
address overfitting of graph neural networks.

4.44 Test Performance w.r.t. Epoch. Figure 6 shows the test
performance w.r.t. recall of each epoch of MF and NGCF. Due to the
space limitation, we omit the performance w.r.t. ndcg which has the
similar trend. We can see that, NGCF exhibits fast convergence than
MF on three datasets. It is reasonable since indirectly connected
users and items are involved when optimizing the interaction pairs
in mini-batch. Such an observation demonstrates the better model
capacity of NGCF and the effectiveness of performing embedding
propagation in the embedding space.

4.5 Effect of High-order Connectivity (RQ3)

In this section, we attempt to understand how the embedding
propagation layer facilitates the representation learning in the
embedding space. Towards this end, we randomly selected six users
from Gowalla dataset, as well as their relevant items. We observe
how their representations are influenced w.r.t. the depth of NGCF.

Figures 7(a) and 7(b) show the visualization of the representations
derived from MF (i.e., NGCF-0) and NGCF-3, respectively. Note that
the items are from the test set, which are not paired with users in
the training phase. There are two key observations:

e The connectivities of users and items are well reflected in the
embedding space, that is, they are embedded into the near part
of the space. In particular, the representations of NGCF-3 exhibit
discernible clustering, meaning that the points with the same
colors (i.e., the items consumed by the same users) tend to form
the clusters.

e Jointly analyzing the same users (e.g., 12201 and 6880) across
Figures 7(a) and 7(b), we find that, when stacking three
embedding propagation layers, the embeddings of their historical
items tend to be closer. It qualitatively verifies that the proposed
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Figure 7: Visualization of the learned t-SNE transformed
representations derived from MF and NGCF-3. Each star
represents a user from Gowalla dataset, while the points
with the same color denote the relevant items. Best view in
color.

embedding propagation layer is capable of injecting the explicit
collaborative signal (via NGCF-3) into the representations.

5 CONCLUSION AND FUTURE WORK

In this work, we explicitly incorporated collaborative signal
into the embedding function of model-based CF. We devised a
new framework NGCF, which achieves the target by leveraging
high-order connectivities in the user-item integration graph. The
key of NGCF is the newly proposed embedding propagation
layer, based on which we allow the embeddings of users and
items interact with each other to harvest the collaborative signal.
Extensive experiments on three real-world datasets demonstrate
the rationality and effectiveness of injecting the user-item
graph structure into the embedding learning process. In future,
we will further improve NGCF by incorporating the attention
mechanism [2] to learn variable weights for neighbors during
embedding propagation and for the connectivities of different
orders. This will be beneficial to model generalization and
interpretability. Moreover, we are interested in exploring the
adversarial learning [13] on user/item embedding and the graph
structure for enhancing the robustness of NGCF.

This work represents an initial attempt to exploit structural
knowledge with the message-passing mechanism in model-based
CF and opens up new research possibilities. Specifically, there
are many other forms of structural information can be useful
for understanding user behaviors, such as the cross features [39]
in context-aware and semantics-rich recommendation [22], item
knowledge graph, and social networks. For example, by integrating
item knowledge graph with user-item graph, we can establish
knowledge-aware connectivities between users and items, which
help unveil user decision-making process in choosing items. We
hope the development of NGCF is beneficial to the reasoning of
user online behavior towards more effective and interpretable
recommendation.
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