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ABSTRACT
Understanding the mix-and-match relationships of fashion items re-
ceives increasing attention in the fashion industry. Existingmethods
have primarily utilized the visual content to learn the compatibility
and performed matching in the latent visual space. Despite their ef-
fectiveness, these methods work like a black box and cannot reveal
the reasons that two items match well. The rich attributes associ-
ated with fashion items, e.g., off-shoulder dress and black skinny jean,
which describe the semantics of items in a human-interpretable
way, have been largely ignored. In this work, we address the in-
terpretable fashion matching task, aiming to inject interpretability
into the compatibility modeling of fashion items. Specifically, given
a corpus of matched pairs of items, we not only can predict the
compatibility score of unseen pairs, but also learn interpretable
patterns that lead to a good match, e.g., white T-shirt matches with
black trouser. We propose a new solution named Attribute-based
Interpretable Compatibility (AIC) method, which consists of three
modules: 1) a tree-based module that extracts decision rules on
matching prediction, 2) an embedding module that learns vector
representation for a rule by accounting for the attribute semantics
in the rule, and 3) a joint modeling module that unifies the visual
embedding and rule embedding to predict the matching score. To
justify our proposal, we contribute a new Lookastic dataset with
fashion attributes available. Extensive experiments show that AIC
not only outperforms several state-of-the-art methods, but also
provides reasonable interpretability on matching decisions.

CCS CONCEPTS
• Information systems→ Specialized information retrieval.

KEYWORDS
Multimedia recommendation, Clothing matching, Fashion compati-
bility learning
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1 INTRODUCTION
Fashion is a rapidly growing industry, which has motivated vari-
ous research topics in the fashion domain, such as recommenda-
tion [38, 39], search [23], and dialogue systems [22], etc. In this
paper, we focus on a newly-emerged topic of Mix-and-match-based
fashion recommendation [11, 20, 28–30, 35], for which the goal is
to predict the compatibility between fashion items. For example,
when a user views/buys an item (e.g., a red floral maxi dress), the
system matches it with the compatible fashion items from a comple-
mentary category (e.g., high-heel sandals). The key to solving this
problem is how to effectively model the item-item compatibility
relationships.

Existing methods have primarily leveraged the images of fashion
items to model the notion of visual compatibility and performed
matching in a latent visual space [5, 14, 24, 29, 31]. A common
assumption is that a pair of compatible items should stay close
with each other in the latent space . Then, the matching problem is
solved under a metric learning paradigm: first collect a corpus of
matched/unmatched item pairs, and then train a parameterized sim-
ilarity function that enforces matched pairs have a higher similarity
score than unmatched pairs. Despite their effectiveness, existing
methods mainly exploit the visual information that comprises of
low-level signals, forgo modeling the rich attributes associated with
fashion items, e.g., off-shoulder dress and black skinny jean. They
just work like a black box and cannot interpret the reasons that
two items match well, being insufficient to support downstream
applications. We argue that the rich attributes, which describe the
semantics of items in a human-interpretable way, should be care-
fully taken into account to improve both the matching accuracy
and interpretability.

Recent works have tried to alleviate the above-mentioned lim-
itations by augmenting the visual features of items with textual
descriptions [29], or refining pairwise visual compatibility with
category-category complementary relationships [30, 35]. However,
the textual description of items is directly encoded as a dense vector
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without language parsing, making it hard to reveal which attributes
contribute most to a match. The category-category relationships
only use coarse-grained categories to bridge two items from com-
plementary categories, which results in limited interpretability. In
summary, the semantics of rich attributes associated with fashion
items have not been fully explored in fashion matching.

This paper addresses the interpretable fashion matching task,
which is a new topic in this field. Our aim is to inject interpretabil-
ity into the compatibility modeling of fashion items by leveraging
the rich fashion attributes. Specifically, given a corpus of matched
pairs of items, we learn the interpretable matching patterns that
lead to a good match, e.g., white T-shirt matches with black trouser,
which is termed as attribute cross (analogous to feature cross [7])
in this work. Towards this end, we propose a new solution named
Attribute-based Interpretable Compatibility (AIC) method, which
discovers informative attribute crosses in an explicit and inter-
pretable way. Specifically, we first automatically extract decision
rules on matching prediction by using a decision tree method. Then,
we design an embedding module to explicitly learn the vector rep-
resentation for each rule by preserving the semantics of attributes
in the rule. We further propose a joint modeling module that uni-
fies the visual embedding and attribute-based rule embedding to
predict the matching score. To enhance the interpretability, we de-
sign an attention network to select the most informative matching
patterns, making the overall prediction process easy-to-interpret.
To the best of our knowledge, this is the first time to develop an
interpretable fashion matching framework that can explicitly learn
attributed-based matching patterns.

Our contributions are summarized as follows.
• We present an attribute-based interpretable compatibility frame-
work that not only can predict the compatibility score of unseen
pairs, but also learn interpretable matching patterns that lead to
a good match.

• We propose to capture the semantics of decision rules by mod-
eling attribute interaction, and unify the strengths of visual em-
bedding and attribute-based rule embedding.

• We contribute a dataset with fashion attributes available to jus-
tify the effectiveness of AIC on interpretable fashion matching.
Extensive experiments show that AIC not only outperforms sev-
eral state-of-the-art methods, but also provides reasonable inter-
pretability on matching decisions.

2 PROBLEM FORMULATION
Given a corpus of fashion items X = {xi }

|X |

i , and the binary pair
labels Y = {yi j }, defined by

yi j =

{
1 if(xi , x j ) ∈ C,

0 Otherwise, (1)

where C denotes the pairwise compatibility relationship (i.e., if xi is
compatible with x j , thenyi j = 1), the basic goal of fashionmatching
is to build a predictive model that estimates the compatibility score
between xi and x j :

ŷi j = f (xi , x j ), (2)

where f denotes the predictive model, and ŷi j denotes the predicted
compatibility score of a pair of items.

 0:�"�%���2

:�"�%���2

���		�
���		�

���		�

���		�

��A�� 1���%04�
(a)

��04���$4�: �	%%#��&%2$�
(b)


�%23:#)

�2�$: 
��22'2-�2 3%4

�20��� 2
��%%2# 

��%2#���


:�:#
�00�$�: 

�%)�2

�� %-#�$2-%)"2

�4:2$-%:2-$4�"2

Midi-dresses 
Short-sleeve 
V-neckline 
Summer 
Floral 
Viscose 
Natural-white 
Casual 
Beach

Skinny jeans 
High-rise 
Light-blue 
Cotton 
Denim 
Street-style 

Tank 
Multi-color 
Viscose 
Dry-clean 
Relaxed 
stripes 
Sleeveless 
Summer 
School

���		� ���		� ���		� ���		�
Sandals  
Polyester 
Red  
High-heels 
Open-toed   
Casual 
Dating 

Figure 1: An illustration of themix-and-match relationship
(Left) and rich fashion attributes associated with fashion
items (Right). Fashion items are usually described by a di-
verse set of attributes that carry rich semantics of items,
which have been largely ignored by existing fashion match-
ing methods.

Traditional methods primarily leverages the visual content of
item images to learn compatibility in a latent visual space. How-
ever, item images just describe the implicit and low-level visual
content. Actually, in addition to the item image, a fashion item
on most fashion e-commercial websites is usually described by a
diverse set of attributes, which have been largely ignored by most
existing methods. For example, the item of ID 001 in Figure 1(a)
has diverse categorical attributes about category (midi-dress), pat-
tern (floral), color (natural-white), neckline (V-Neck), style (causal),
etc. The attributes not only provide good semantic description of
items, but also have the potential to explicitly reveal the intra-
connectivity between items. They can help to explain why two
fashion items can be grouped together for a fashionable outfit by a
set of attribute crosses[7, 32], such as [Fullbody: pattern=floral] &
[Fullbody: category=Midi-dresses] & [Footwear: category=Sandals].
Each attribute cross reflects a particular matching pattern.1

This paper aims to address the task of interpretable fashionmatch-
ing. We denote a and A = {ak }

|A |

k=1 as an item attribute and the
whole attribute set. For a given item xi , we construct its attribute
set as Ai ⊂ A. Then, we can formally define this new task as:
• Inputs: A corpus of fashion items with rich attributes and pair-
wise matching relationships {X,A,Y}.

• Outputs: (1) A pairwise ranking function for each pair of items
(xi , x j ), i.e., f : X × X → R which maps a pair of items to
a compatibility score value by jointly considering the visual
correlations and attribute correlations, and (2) a set of second-
order attribute crosses {ap&aq } or higher-order attribute crosses:
{ap&aq& · · ·al } that explicitly reveals which attributes in xi and
x j dominate the matching process.

3 OUR PROPOSED APPROACH
This paper proposes to address the interpretable fashion matching
task, aiming to inject interpretability into the compatibility model-
ing of fashion items. The key to tackling such interpretable fashion
matching task is 1) how to extract the self-interpretable attribute
crosses from data, 2) how to learn the representation of the derived
1Note that in this work we express the matching pattern as a attribute cross, which is a
combination of multiple attributes. We use them exchangeable without specification.
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Figure 2: An illustration of our Attribute-based Inter-
pretable Fashion Compatibility (AIC) framework.

attribute crosses, and 3) how to unify the strengths of attribute
crosses and item images for joint prediction.

We address the three problems by developing an attribute-based
interpretable compatibility (AIC) framework, as shown in Figure 2,
which mainly consists of three modules:

• A Tree-based decision rule extraction module that automatically
derive a set of self-interpretable decision rules, in which each
decision rule can be seen as a high-order attribute cross or a set
of second-order attribute crosses.

• An embedding module that learns vector representation for a
decision rule by accounting for the attribute semantics.

• A joint modeling module that unifies the visual embedding and
attribute-based rule embedding in the same space to predict the
compatibility score.

3.1 Tree-based Decision Rule Extraction
Themain goal of the interpretable fashionmatching framework is to
infer attribute-based matching patterns, i.e., attribute crosses. Then,
the first problem is how to extract the attribute crosses. A popular
solution in industry is to manually craft all the feature crosses, and
learn the weight of all feature crosses. Obviously, such straightfor-
ward solution is not scalable when we model higher-order attribute
interactions on a large scale attribute set. Another solution is to
manually define a set of matching rules [22, 26, 28] based on item
attributes, such as White shirt & black trousers. However, manually
defining matching rules usually needs strong domain knowledge
and may not be expressive enough to capture complex matching
patterns. It is highly desired to infer the rich matching patterns
from data automatically.

Motivated by recent works[32, 41] in recommendation domain,
we propose to leverage Tree-based models, e.g., CART[3], GBDT[8],

T:P=Embellished

yes no

T:Ca=Blazers

B:M=Wool

yes

T:M=Wool

no

B:P=Ripped B:LBL=Calf_length

yes no

B:M=Satin

yes yes yes yes nononono

0.56 1.83 0.60 -0.51 -1.01 0.01-0.96 -0.25

 Top (T)

 Bottom (B)

 Material (M)

 Pattern (P)

 Category (Ca)

 Lower Body Length (LBL)

Decision nodes

Leaf nodes

Attribute nodes

Decision rule

Figure 3: A simple decision tree for a Top-Bottommatching.

XGBoost [6], for automatically constructing self-interpretable at-
tribute crosses from categorical item attributes, due to the self-
interpretability and scalability. As shown in Figure 3, a simple
decision tree with binary node splits can be represented as Q =
{V,D, E}, where V denotes two types of nodes: one is inter-
nal/root nodes that represent features (attributes) and the other
is leaf nodes that represent outcomes for prediction, D denotes
binary decision nodes (yes, or no), and E denotes the edge con-
necting two nodes. The paths from root to leaf represent decision
rules, revealing the reasoning procedure. By training the decision
tree using one-hot-encoded categorical attributes as inputs, each
derived decision rule can be seen as a high-order attribute cross
(i.e., matching pattern). As shown in Figure 3, the path from root
node to the second leaf node on the left side represents a three-
order attribute cross [Top:Material=Wool]&[Bottom:Material=Wool]
& [Top:Category,Blazers]. When the last decision is changed from
yes to no, the rule [Top:Material=Wool] & [Bottom:Material=Wool]
& [Top:Category=Blazers] still has high prediction score. It uncov-
ers that sometimes the most dominant matching pattern may be a
second-order attribute cross.

In this work, we adopt the boosted tree model, e.g., GBDT [8],
which is defined as an ensemble of T decision trees

∑T
t=1 Qt . Then,

given the one-hot-encoded categorical attributes Ai j = (Ai ,Aj )

of (xi , x j ) as inputs, the boosted tree module will return T decision
rules {r1i j , · · · , r

t
i j , · · · , r

T
i j }, where r

t
i j (1 ≤ t ≤ T ) denotes the t-th

decision rule returned by its corresponding decision tree. Since a
decision rule is directed and has different decision states between
two attribute nodes, for clarity, we describe a decision rule in a
path-like form

r ti j : a
t
1
s t1
−−→at2

s t2
−−→ · · ·atZ

s tZ
−−→, (3)

where atz (1 ≤ z ≤ Z ) denotes the z-th attribute in the rule r ti j , s
t
z

denotes the binary decision state of attribute atz , and Z denotes the
number of attributes and decisions in the rule r ti j . The leaf node is
not shown in Eq. (3).

Note that we only utilize the GBDT model to automatically
extract the decision rules and do not use its prediction scores on the
leaf nodes for prediction, since it suffers from poor generalization
ability[32]. For unseen attribute vector inputs Ai j , it would return
a decision rule with all no decisions, such as the path from the root
node to the first leaf node on the right side in Figure 3.
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3.2 Attribute-based Decision Rule Embedding
After extracting a set of decision rules via the boosted tree model,
the next question is how to transform the decision rules to vector
representations for predicting compatibility score. Since each rule
has a unique leaf node which corresponds to a unique ID, prior
work [32] proposed to encode rule ID as a vector, while ignoring
the semantics of decision rules. To be more specific, such ID em-
bedding method fails to model the semantic correlation between
similar rules. To address this problem, we propose to embed the
semantics of each rule into a low-dimensional vector by taking the
attribute interactions into consideration. We elaborate this solution
as follows:
Attribute and Decision Embedding. Recall that each rule is com-
posed by attributes, decisions, and edges connecting two nodes,
as show in Figure 3 and 4. To represent the attribute, we first set
up a lookup layer to transform the one-hot encodings of all the
attributes {ak }

|A |

k=1 into low-dimensional dense embedding vectors

{ak }
|A |

k=1 ∈ Rd×|A | . While, as shown in Figure 3, each attribute
has two decision states (yes and no) in two mutually exclusive
decision edges. How to model such decision states into the at-
tribute representation? A simple way is to directly treat the attribute
(e.g., [Top:Material=Wool]) and its opposite [Top:Material,Wool])
as two independent attributes. Then, we need to optimize 2 × |A|

attribute embedding vectors. While, such a solution directly ig-
nores the exclusive relationship between [Top:Material=Wool] and
[Top:Material,Wool]. We propose to embed the two decision states
as the same dimensional vector representations sk ∈ Rd with the
attribute embeddings ak via the look up operation. To model the
exclusive relationship, we propose to combine the attribute embed-
ding and its corresponding decision embedding by a simple vector
translating operation[2]:

−→a k = ak + sk , (4)

where −→a k denotes the translated embedding vector of ak . For sim-
plicity, we use −→a k to denote the attribute ak with decision state
sk , then

−→a k denotes its vector representation. In this way, we only
need to optimize (2 + |A|) embedding vectors and preserve the
exclusive relationship between attribute and its opposite.
Rule Embedding. After injecting the embedding vectors of binary
decision states into the attribute embeddings by Eq. (4), we can
reformulate Eq. (3) as r ti j :

−→a t
1→

−→a t
2 → · · ·

−→a t
Z , which is a sequence

of inner-connected attributes. Then, the popular pooling operation,
such as max-pooling or average-pooling, can be used to compute
the embedding vector of decision rules based on the attribute em-
beddings. But this way does not explicitly model the second-order
or higher-order attribute interactions, and then cannot identify
which attribute cross in the decision rule is the most informative
one.

We propose to learn the representation of decision rule based on
the interaction of attribute crosses in the rule. As shown in Figure
4, the second-order and higher-order attribute crosses in the rule
are respectively described and represented by

• Second-order attribute cross −→a t
z & −→a t

z+1, which is represented
by v2(t )z = −→a tz ⊗

−→a tz+1,

yes no yes yes

Average Pooling

2-order

Attribute Crosses

3-order

Attribute Crosses

Rule Embedding

Decision Embedding

Attribute Embedding

Attribute Cross Embedding

Decision Rule

𝐚𝑧
𝑡

𝐬𝑧
𝑡

𝐚𝑧+1
𝑡

𝐬𝑧+1
𝑡

Figure 4: An illustration of the proposed attribute-based de-
cision rule Embedding.

• Higher-order attribute cross −→a t
z & −→a t

z+1& · · · &−→a t
z+O−1, which

is represented by vO (t )
z = −→a tz ⊗

−→a tz+1 ⊗ · · · ⊗
−→a tz+O−1,

where vO (t )
z ∈ Rd (2 ≤ O ≤ Z ) denotes the embedding vector of

the z-th high-order attribute cross. The v2z is a specific form of vOz
when O = 2. The ⊗ denotes the element-wise multiplication, i.e.,
Hadamard Product. Finally, the embedding of the rule r t is defined
as the linear aggregation of all the attribute crosses embedding with
an average pooling operation

rti j =
1
N

O∑
o=2

Z+o−1∑
z=1

vo(t )z , (5)

where rti j ∈ R
d , and N is the number of all attribute crosses in the

decision rule.

3.3 Visual-Rule Joint Modeling
In this section, we describe how to jointly model visual embedding
of item images and attribute-based rule embedding for predicting
fashion compatibility. It mainly consists of three submodules: 1)
learning low-dimensional visual embeddings of item images with a
pretrained CNN, 2) reweighting the embeddings of decision rules
with an attention network, 3) jointly leveraging visual embedding
and attribute-based rule embedding for compatibility prediction.
Deep Visual Embedding of Items. The deep visual embedding
learning module on the left down side of Figure 2 has been widely
used in existing visual compatibility learning models due to the
strong transferability of deep features. This work adopts a pre-
trained deep CNN (e.g., ResNet-50[12]) to extract visual features
from item images. Given an image of item xi , the output of a pre-
trained CNN is xcnni ∈ Rd

cnn
where xcnni is a high-dimensional

visual feature representation of item xi . Then we apply a one-layer
feed forward network to transform the high-dimensional output of
CNN into a d-dimensional visual embedding xi ∈ Rd :

xi = д
(
xcnni

)
=Wдxcnni + bд, (6)

where д(·) is a one-layer feed forward network with weight param-
etersWд ∈ Rd×d

cnn
and bд ∈ Rd . The visual embedding module

enables our framework generalize to unseen fashion items.
Attentive Decision Rules Re-weighting. Given inputs (Ai ,Aj )

of (xi , x j ), our boosted tree module (GBDT) returnsT decision rules
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[r1i j , · · · , r
t
i j , · · · , r

T
i j ]. Note that not every rule has the equal contri-

bution to (xi , x j ), and some rules may also be invalid. Therefore, it
is necessary to design an attention module to modulate the contri-
bution of each rule. Inspired by the recent work [4, 28, 32], we apply
a multi-layer perceptrons (MLPs) to learn the attentive weight of
each derived rule:

w ′
i jt = wT σ (W([(xi + rti j ) ⊗ xj , rti j ]) + b), (7)

wi jt =
exp(w ′

i jt )∑T
t exp(w ′i jt )

(8)

where wi jt denotes the weight of the t-th rule corresponding to
(xi , x j ), W ∈ Rd×2d and b denotes the weight matrix and bias
vector of the hidden layer in our attention module, and w ∈ Rd×1

is the weight vector of the regression layer. The [·, ·] denotes the
concatenation operation of two vectors. The σ is the non-linear
activation function ReLu. In Eq. (7), we project (xi + rti j ) ⊗ xj into
the attention module, which aims to directly capture the interaction
xi ⊗xj and r ti j ⊗xj in the same embedding space. Note that Eq. (7) is
implemented as an asymmetrical form by considering the directed
matching order (e.g., Top-Bottom[28, 29] and Top-Footwear) in
the fashion matching task. Then, we can obtain a unified vector
representation of all the derived decision rules corresponding to
(xi , x j ):

ri j =
1
T

T∑
t=1

wi jt rti j (9)

The attention module enables the first-time message passing
between visual space and attribute-based rule space for learning
the importance of decision rules. Note that the attention module
endows our framework with interpretability. For each matching
pair, we can return the most informative decision rule to explain
the matching result.
Joint Prediction. Given the visual embedding vectors xi and xj
of items xi and x j , and the unified rule embedding vector ri j , we
design a joint modeling solution that can enable the visual part and
rule part perform separately and mutually. The complete predictive
function is defined by

f
(
xi , x j ,Ai j

)
= hT1

(
xi ⊗ xj

)︸         ︷︷         ︸
V isual

+ hT2 ri j︸︷︷︸
Rule

+ hT3
(
(xi + xj ) ⊗ ri j

)︸                   ︷︷                   ︸
V isual−Rule

,

(10)
where h1 ∈ Rd×1, h2 ∈ Rd×1, and h3 ∈ Rd×1 denote the weight
parameters of three regression layers, respectively, which yields
compatibility predictions from three parts: the first is visual compat-
ibility (h1), the second is rule-based compatibility (h2), and the third
is visual-rule joint compatibility (h3). To identify the contribution
of each attribute cross in a decision rule, the second term can be
rewritten as

hT2 ri j =
1
T

T∑
t=1

wi jthT2 r
t
i j =

1
T × N

T∑
t=1

O∑
o=2

Z+o−1∑
z=1

wi jthT2 v
o(t )
z ,

(11)
where thewi jt (hT2 v

o(t )
z ) is the prediction score contributed by the

attribute cross −→a t
z & −→a t

z+1& · · · &−→a t
z+o−1 in the t-th decision rule.

The third part is equal to hT3 (xi ⊗ ri j ) + hT3 (xj ⊗ ri j ), which
transforms the interaction of ri j and xi and the interaction of ri j
and xj to the compatibility scores, respectively. The third part aims
to capture the complex interaction between low-level visual con-
cept and high-level semantic concept (i.e., attributes) in a joint
space. It refines the item-item visual compatibility with the intra-
connectivity between two items, which enables the second-time
message passing between visual space and attribute-based rule
space in a mutually enhanced way.

3.4 Learning
We formulate the fashion matching task as a ranking problem, and
minimize the Bayesian Personalized Ranking (BPR) objective [25]
which forces the prediction score of a matched pair (xi , x j ) ∈ C to
be larger than that of unmatched pair (xi , xk ) < C:

L =
∑
T

− lnσ
(
f
(
xi , x j ,Ai j

)
− f (xi , xk ,Aik )

)
, (12)

where σ (·) is the widely-used logistic sigmoid function. The regular-
ization term has been omitted for clarity. T denotes a training set
of 5-tuples :

{
(xi , x j , xk ,Ai j ,Aik )|(xi , x j ) ∈ C, (xi , xk ) < C

}
. The

matched pair (xi , x j ) is extracted from the same outfit. The nega-
tive item xk is randomly selected from a different category with
xi , which has not matched with xi before. Note that our tree-based
module is first trained and then fixed as a decision rule extractor.

3.5 Discussion
3.5.1 Interpretability. The main goal of the interpretable fashion
matching task is to learn self-interpretable attribute crosses for
revealing the reasons behind each matching decision. Our proposed
AIC method injects interpretability into the fashion compatibility
modeling, which is able to provide two levels of interpretation.
• Given a pair of items xi and x j from different categories, the tree
module first returns a set of decision rules. Then, our attention
model re-weights each rule embedding and selects informative
decision rules by the importancewi jt to xi and x j as the first-level
interpretation. (Rule-based)

• Given a selected decision rule r ti j , our predictive model in Eq.
(11) can identify which attribute cross in the rule dominates this
matching. (Attribute cross-based)

In summary, we not only can yield a decision rule to explain the
matching process, but also can identify the most dominant attribute
cross in the rule. We have conducted a case study in section 4.4 on
the interpretability of AIC.

3.5.2 Relation to Tree-enhanced Embedding (TEM). Our proposed
AIC has a similar two-way (embedding + tree) architecture with
TEM[32]. The key difference lies in the decision rule embedding
module. TEM simply encodes ID information as a dense vector to
represent a rule, while ignoring the semantics of rules. To be more
specific, TEM treats all rules independently and fails to explicitly
model the semantic correlation between rules. Moreover, its pa-
rameter size is linear with the scale of decision rules, which easily
leads to overfitting when the tree number is large (as verified in
section 4.3.2). AIC overcomes the limitation of TEM by linearly
modeling the attribute interactions into semantics-preserving rule
embedding, thus can not only achieve better performance than
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TEM, but also provides higher interpretability. Besides, AIC en-
forces interaction between visual embedding and rule embedding
in the prediction layer, which yields better performance.

In summary, 1) AIC learns the attribute-based rule embedding
while TEM only learns ID-based rule embedding, 2) AIC not only
provides decision rules as an interpretation but also can identify
the most informative attribute cross as the second-level interpreta-
tion, while TEM only provides rule-level interpretation, and 3) AIC
models the interaction of visual embedding and rule embedding in
the same embedding space.

4 EXPERIMENTS
To justify the effectiveness of AIC, we conduct extensive experi-
ments to answer the following questions:
• RQ1: Can our AIC framework outperform the state-of-the-art
approaches?

• RQ2: How do different modules of our AIC (e.g., the attribute-
based rule embedding module) contribute to the performance?

• RQ3: How can our AIC provide easy-to-interpret fashion match-
ing results?

4.1 Dataset Description
The most popular fashion matching dataset is the Polywore [11, 29,
35]. However, this dataset does not have fashion attribute anno-
tation. To the best of our knowledge, there is not available dataset
for this fashion matching task, due to the absence of fine-grained
attribute annotations. To effectively evaluate our AIC framework,
we collect a large outfit dataset from a personal outfit recommen-
dation website Lookastic2 which provides diverse and fashionable
outfit collections with detailed product attribute annotations. We
collected 30,790 fashionable outfits from the website, in which both
male and female outfits are collected. Each outfit contains a set of
items from multiple complementary categories (e.g., Top, Outwear,
Bottom, Footwear).

Following the setting in [10, 29], we extract matched item pairs
that are co-occurring in the same outfit as the ground truth for train-
ing, and filter out some improper or incomplete pairs. Finally, we
obtain 124,665 matched pairs for men with 5,069 items, 158,755
matched pairs for women with 10,016 items. Apart from the at-
tributes provided by Lookastic, we also use the Visenze3 API to
extract more item attributes and filter out overlapped attributes.
This final dataset has diverse item attribute annotations consist-
ing of 65 item colors, 38 materials, 40 patterns, 253 fine-grained
categories, 11 styles, and 114 category-specific attributes.

We evaluate our proposedAICwith baselinemethods on Lookastic-
Men, and Lookastic-Women, respectively. We randomly split the
dataset by 70% for training, 20% for testing, and 10% for validation.
The validation set is used to tune hyper-parameters and the final
comparison is conducted on the test set.

4.2 Experimental Settings
4.2.1 Evaluation Protocols. To evaluate the effectiveness of our
model more fairly, we repeat the random dataset split for five times
and report the average performance of all methods on the testing
2https://lookastic.com/
3https://www.visenze.com/automated-product-tagging

set with significance test. For each matched item-item pair in the
training sets, we pair it with three randomly sampled negative items
from a different category. Each query item and its negative items
must not co-occur in the same outfit. For each matched pair in the
testing set, we pair it with 500 negative items. Then each method
outputs prediction scores for these 501 items. If not mentioned, all
the negative items are sampled from the whole dataset but from a
different category with the query item.

To evaluate the prediction performance of a ranked list, we use
three widely-used information retrieval metrics: the Mean Recip-
rocal Rank (MRR), Hit Ratio at rank K (hit@K), and Normalized
Discounted Cumulative Gain at rank K (ndcg@K ). The MRR is the
average of the reciprocal ranks of results for a sample of queries.
The hit@K intuitively measures whether the test item is present
on the top-K list, and the ndcg@K accounts for the position of
the hit by assigning higher scores to hits at top-K list. A higher
MRR, hit@K , or ndcg@K score denotes a better performance. We
calculated all metrics for each test query item and reported the
average score. Without special mention, we truncate the ranked
list at K = 5 and K = 10 for hit@K and ndcg@K

4.2.2 Baselines. We compare our proposed AIC with the following
baseline methods to justify its effectiveness:
- Siamese Nets[31] (SiaNet). It measures the visual compatibility
using ℓ2-normalized Euclidean distance. (Image only)

- BPR-DAE[29]. This work models the pairwise visual compati-
bility as the inner-product of item embeddings. (Image only)

- TransNFCM[35]. It is a state-of-the-art fashionmatchingmethod
that leverages category-level complementary relationships to re-
fine the item-item compatibility. (Image + coarse category)

- VBPR[13]. It is a strong baseline for visually-aware user-item in-
teraction modeling. It fuses visual information and ID embedding
to enhance the item representation. (Image + ID)

- Neural FactorizationMachines[15] (NFM). It is a state-of-the-
art embedding-based learning method that implicitly models
higher-order feature interaction in a nonlinear way. We imple-
ment it by encoding all item attributes and item images with
embedding vectors. (Image + attributes)

- TEM[32]. It is a state-of-the-art embedding-based learningmethod
that combines the strength of traditional embedding-based mod-
els and the tree-based models. Different with AIC, it learns the
ID-based embedding to represent rule. (Image + attributes)

Note that we use the same deep visual embeddings of item images
for all baselines. The ID embeddings of items in TEM are replaced
by visual embeddings of images for a fair comparison. We only
use the visual modules of BPR-DAE and TransNFCM in our exper-
iments, due to the absence of textual descriptions in our dataset.
We implement all the baseline method, using the same BPR loss,
except SiaNet4.

4.2.3 Parameter Settings. We implement AIC by stochastic gradi-
ent descent (SGD) using Pytorch5. The pretrained ResNet-50[12]
model is applied to extract visual feature of item images using the
output of the pool5 layer. The size of hidden layer for learning
low-dimensional visual embedding is set to d = 64 as well as the

4We empirically found that SiaNet performs much better with margin ranking loss
5https://pytorch.org
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Table 1: Overall Performance Comparison (%) with base-
line methods. * and ** denote the statistical significance for
pvalue < 0.05 and pvalue < 0.01, respectively, compared to
the best baseline.

Dataset Lookastic-Men
Methods MRR hit@5 hit@10 ndcg@5 ndcg@10
BPR-DAE 23.35 30.97 30.90 23.28 26.17
Siamese 23.05 31.37 40.92 23.04 26.12
TransNFCM 26.14 34.94 44.27 26.28 29.30
VBPR 28.32 36.83 45.40 28.57 31.34
NFM 28.92 37.49 46.37 29.16 32.02
TEM 29.10 37.88 46.97 29.33 32.27
AIC 30.74** 39.51** 48.23** 31.06** 33.88**
Rel. Impro. 5.6% 4.3% 2.6% 5.8% 4.9%
Dataset Lookastic-Women
Methods MRR hit@5 hit@10 ndcg@5 ndcg@10
BPR-DAE 23.69 32.97 42.25 24.02 27.02
Siamese 24.00 33.71 44.23 24.25 27.65
TransNFCM 29.88 41.01 51.08 30.70 33.96
VBPR 29.46 39.32 48.33 30.06 32.98
NFM 30.49 40.90 50.60 31.15 34.29
TEM 31.63 42.35 52.33 32.32 35.55
AIC 33.19** 43.83* 53.09** 33.94* 37.01**
Rel. Impro. 4.9% 3.4% 1.4% 5.0% 4%
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Figure 5: Comparison (MRR (%)) of the attribute-based (AIC
(Attri.)) and ID-based (AIC (ID)) rule embeddings.

latent embedding size of item attributes. The mini-batch size is set
to 1024 and the learning rate η is searched in {0.001, 0.01, 0.05, 0.1 }
on validation set. We use XGBoost6 to generate the tree-structure
where the number of trees and the maximum depth of trees are
searched in {1, 10, 30, 50, 80, 100 } and {4, 6, 8, 10} on validation
set, respectively. If not mentioned, the tree number and maximum
depth are fixed as 10 and 6 on testing set, respectively. We employ
SGD to optimize all methods with momentum factor as 0.9. We run
all methods until convergence and drop the learning rate η to η/10
every 10 epochs.

4.3 Performance Comparison
We first compare the performance of all the methods. We then jus-
tify how our method can effectively learn the semantics of decision
rule for enhancing the compatibility modeling.

4.3.1 Overall Comparison. (R1) Table 1 displays the performance
comparison w.r.t. MRR, hit@K (K=5, 10), and ndcg@K (K=5, 10)
among the baseline methods on the Lookastic-Men and Lookastic-
Women datasets. We have the following findings:

6https://xgboost.readthedocs.io/en/latest/

• BPR-DAE and SiaNet, which merely rely on visual information,
achieve poor performance. TransNFCM and VBPR perform much
better, since TransNFCM exploits the category-level complemen-
tary relationship as the connection between compatible items
and VBPR combines the ID embedding of items and visual em-
bedding for feature augmentation. It indicates the necessity of
exploiting the side information for modeling the complex fashion
compatibility beyond the visual information, since visual embed-
dings of items just comprise of low-level signals, which cannot
effectively capture the complex interaction patterns.

• NFM and TEM achieve competitive performance, which can be
attributed to the utilization of feature interaction. NFM exploits
high-order feature interaction with a multi-layer MLPs in a non-
linear way, which consistently outperforms the strong baseline
VBPR. While, TEM uses a tree-based model to automatically de-
rive higher-order feature crosses with an attention mechanism.
It slightly outperforms NFM on both datasets, especially the
Lookastic-Women dataset where more diverse item-item interac-
tions are provided. It indicates the effectiveness of modeling the
high-order feature interactions.

• Our proposed AIC substantially outperforms the state-of-the-art
methods, NFM and TEM, on both datasets. This demonstrates
the effectiveness of AIC. It not only integrates the predictions
from both visual space and attribute-based rule space in the
prediction layer, but also explicitly learns the semantics of de-
cision rules based on the attribute interaction in the rule. Such
semantics-preserving rule embedding is jointly modeled with
visual information in a unified space, which leads to better per-
formance and also reveals the complex matching patterns in a
more explicit way.

4.3.2 Effect of Attribute-based Decision Rules Embedding. (R2) One
of the contributions of AIC is that it learns the semantics of decision
rules by explicitly modeling the attribute interaction. While, the
prior work [32] proposes to learn the ID embedding of each rule
without considering the content of each rule. To justify the effect of
our attribute-based rule embedding, we compare the performance
of this two rule embeddings in Table 2 and Figure 5, which are
termed as AIC(Attri.) and AIC(ID), respectively. Note that we fix
the maximum depth of tree as 6 and vary the number of decision
trees T ∈ [1, 5, 10, 50, 100] to generate different tree structures for
comparison. We have the following observations from Table 2 and
Figure 5.

Overall, the attribute-based rule embedding consistently outper-
forms the ID-based rule embedding. When the tree number is 5 or
10, AIC (ID) performs comparable to AIC (Attri.). However, when
the tree number is increased to 50 or 100, the performance of AIC
(ID) drops significantly. It reflects that the AIC (ID) is sensitive to
the tree numbers. It easily suffers from overfitting when the tree
number is large, since its parameter size is linear with the scale of
all the leaf nodes in GBDT. While AIC(Attri.) directly optimizes the
attribute embedding, thus could effectively capture the semantic
correlation between similar rules. The performance comparison
justifies the effectiveness of AIC on the semantic encoding of rules.

4.3.3 Effect of Visual-Rule Joint Modeling. (R2) As shown in Eq.
(10), AIC not only predicts the visual compatibility and semantic
compatibility with two regression vectors (h1 and h2) respectively,
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Table 2: Comparison (hit@5, ndcg@5, %) of the attribute-
based (AIC (Attri.)) and ID-based (AIC (ID)) rule embeddings.

TreeNum Datasets Lookastic-Men Lookastic-Women
Methods hit@5 ndcg@5 hit@5 ndcg@5

T=1 AIC (Attri.) 37.16 28.92 42.05 32.22
AIC (ID) 35.99 27.60 41.05 31.27

T=5 AIC (Attri.) 39.34 30.88 43.66 33.80
AIC (ID) 39.05 30.59 43.57 33.69

T=10 AIC (Attri.) 39.51 31.06 43.83 33.94
AIC (ID) 39.25 30.83 43.46 33.78

T=50 AIC (Attri.) 39.32 30.77 43.81 33.97
AIC (ID) 38.85 30.33 42.85 33.16

T=100 AIC (Attri.) 39.45 30.90 43.87 34.06
AIC (ID) 37.88 29.55 41.99 32.38

Table 3: Ablation study on the effect of visual-rule interac-
tion (VRI) term.

Dataset Lookastic-Men
Methods MRR hit@5 hit@10 ndcg@5 ndcg@10
AIC (Rule only) 18.90 25.17 34.11 18.37 21.25
AIC (VRI only) 29.22 38.03 46.98 29.49 32.38
AIC (without VRI) 30.38 39.13 47.92 30.68 33.52
AIC (with VRI) 30.74 39.51 48.23 31.06 33.88
Dataset Lookastic-Women
Methods MRR hit@5 hit@10 ndcg@5 ndcg@10
AIC (Rule only) 23.40 30.97 39.82 23.30 26.16
AIC (VRI only) 33.12 43.64 53.28 33.83 36.95
AIC (without VRI) 32.73 43.19 52.62 33.43 36.49
AIC (with VRI) 33.18 43.83 53.09 33.94 37.00

but also transforms the visual-rule interaction (VRI) (xi + xj ) ⊗ Ri j
to a compatibility score with the regression vector h3. This section
investigates how AIC perform with/without the VRI term, and how
AIC perform with the rule term or VRI term only.

The performance comparison is shown in Table 3. If only using
the rule term, AIC achieves poor performance, since tree-based
module has poor generalization ability [32]. If only using the VRI
term, AIC achieves comparable performance to the combination of
other two predictions (h1(·) + h2(·)) on the Lookastic-Men dataset,
and even better performance on the Lookastic-Women dataset which
has richer item-item interactions. It yields 38.03% hit@5 score and
43.64% hit@5 score, respectively, on the two datasets, which out-
performs most of the baseline methods in Table 1. When the VSI
term is integrated with the other two terms, it effectively improves
the prediction from 39.13% to 39.51% on Lookastic-Men and from
43.19% to 43.83% on Lookastic-Women in terms of hit@5 score. On
Lookastic-Women, the VRI term has dominated the prediction. It
shows the necessity and effectiveness of modeling the interaction
of visual embedding and rule embedding in a shared embedding
space.

4.3.4 Effect of the Attention Network. (R2) As mentioned in section
3.3, we design an attention network to re-weight the decision rule
embeddings. This section investigates how this attention network
improve the performance. We replace the attention module with
average pooling/max-pooling and then compare the performance
of AIC with the two variants. As shown in Figure 6, the attention
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Figure 6: Ablation study on the effect of the attention net-
work using hit@5 (Left) and ndcg@5 (Right).

network consistently outperforms the average pooling and max-
pooling operations in terms of hit@5 and ndcg@5. It indicates that
some derived rules are invalid. It will degrade the performance by
simply aggregating all the rule embedding with average pooling.
Although the max-pooling operation obtains better performance
than average pooling, it is an element-wise nonlinear operation,
which makes the matching process hard-to-interpret. Overall, the
attention network not only makes the item-item matching easy-to-
interpret but also further improves the performance.

4.4 Case Study on Interpretation (R3)
To demonstrate the interpretability of AIC, we visualize two item-
itemmatching cases on Lookastic-Women in Figure 7. Figure 7 (a) is a
Top-Bottom case, and Figure 7 (b) is a Fullbody-Footwear case. Each
item-item matching pair is sampled on the testing set (positive).
For simplicity, the maximum depth of GBDT is set to 4 and only
second-order attribute crosses are computed. As shown in Figure
7, the abbreviations of attributes are shown on the right side of
each decision rule and the normalized score of each second-order
attribute cross is shown on the left side.

For the first case in Figure 7 (a), the input is a navy coat paired
with low rise gray jeans. We observe that the first decision rule
encodes some common sense matching patterns, such as Sophisti-
cated knee length top doesn’t match with shorts, and Sophisticated
knee length top matches with low rise bottom. In most case, high
rise bottom is more likely to match with short body length top, thus
could make women’s beautiful waist curve be seen clear. By our
proposed AIC, we also identify the most dominant attribute cross
in a decision rule. The second-order attribute cross with the high-
est score in the first rule is [Bottom: Rise Type=Low rise]&[Top:
Style=Sophisticated]. For the second decision rule, it still cares about
the clothing length. Themost dominant attribute cross is [Top: Sleeve
Length=Long] &[Bottom: Lower Body Length=7/8], which can be
explained as long sleeve top goes with long body length bottom. For
the Fullbody-Footwear case, the input is a white sleeveless cutout
dress paired with white heels. The first decision rule is mainly dom-
inated by the attribute cross [Fullbody: Color=White]&[Footwear:
Color=White], which is a common matching pattern. The second
decision rule is dominated by the attribute cross [Fullbody: Pat-
tern=Cutout]&[Footwear: Heel Type=Common heels].

Overall, the derived matching patterns are consistent with the
given matched pairs, and the discovered second-order attribute
crosses have higher readability and are also easy-to-interpret. The
two matching cases demonstrates AIC’s capability of providing
more informative and easy-to-interpret matching patterns.
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Figure 7: Visualization of the derived decision rules and the
normalized prediction score of each second-order attribute
cross in the rule. The highest score is marked in red. Note
that the binary decision state has been merged with its cor-
responding attribute for simplicity.

5 RELATEDWORK
Fashion Matching. Existing works can be mainly classified into
two groups: one is outfit creation [11, 20] aiming to automatically
compose fashion outfits , and the other one is item-item compatibil-
ity [5, 14, 24, 28–30, 35], which is close to our work. Most existing
methods of the second group cast fashion matching as a metric
learning [36, 37] problem by assuming that a pair of matched items
should be close to each other in a latent space. Earlier works model
the pairwise compatibility with data-independent interaction func-
tions, e.g., inner-product[29], or Euclidean distance[5, 24], which
are improved by data-dependent interaction function, such as prob-
abilistic mixtures of non-metric embeddings [14], and category-
aware conditional similarity [30, 35]. Our work is related to the
second direction but addresses the new and challenging task of
interpretable fashion matching, where we not only predict com-
patibility for unseen pairs but also aim to learn self-interpretable
matching patterns to uncover the reasons behind each matching
decision. Our work is different with the recent work [28] which
first manually constructs a set of matching rules and then use these
rules to guide the item embedding learning. The main limitation of
[28] is that manually constructing matching rules usually rely on
strong domain knowledge, thus resulting in poor scalability.
Fashion Attributes. In recent years, substantial works [1, 10, 19,
21, 23, 27] have been devoted to extract and analyse visual descrip-
tive attributes from fashion images or related textual descriptions
for cross modal retrieval [21], interactive fashion search [9, 40],
classification [23, 27], and fashion trend prediction [1]. Unlike prior
work, this paper prefers to use the rich product attributes associ-
ated with fashion items to design an interpretable fashion matching

framework. Current visual analysis methods can facilitate our work
when the attribute annotation is unavailable.
User-item Recommendation. Our work is also related to person-
alized recommendation [16, 17, 33], and multimedia recommenda-
tion methods [4, 34, 38], which leverage the ID information and
visual information of items to model user-item interaction. In this
work, we only focus on cross-category item matching without con-
sidering the user information. While, the user attributes can be
easily incorporated into AIC for personalized compatibility model-
ing, which is left for our future work.

6 CONCLUSION
In this paper, we developed an attribute-based interpretable com-
patibility (AIC) method, which aims to inject interpretability into
the pairwise compatibility modeling. Specifically, we devised a two-
way compatibility architecture. Given a matched pair of items, we
automatically extract a set of decision rules from a boosted tree
model and learn the semantics-preserved rule embedding by ex-
plicitly modeling the attribute interaction. Then, we introduced a
joint modeling module to unify the strengths of visual information
and attribute-based rule information in a shared embedding space,
which facilitates the information propagation between visual space
and rule space in a mutually-enhanced way. By such a two-way
architecture, AIC could not only predict the compatibility score of
unseen pairs, but also derive self-interpretable matching patterns to
reveal the reasons behind each matching decision. In summary, this
work contributes a self-interpretable way for fashion compatibility
modeling by deriving the intra-connectivity between items from
rich fashion attributes.

As future work, we will consider discovering informative extra-
connectivity between items from a domain-specific knowledge
graphwhich could encode richer information, e,g, designer, celebrity,
fashion show, country, religion, etc, to further enrich the inter-
pretability of AIC. We are also interested in incorporating the user
profile, such as age, occupy, gender, city, social relationships, etc.,
into AIC for personalized fashion matching and personalized out-
fit composition. We will also try to extend AIC to facilitate other
attribute-based visual matching/retrieval tasks [18, 22].
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