Interpretable Fashion Matching with Rich Attributes

Xun Yang
National University of Singapore
xunyang@nus.edu.sg

Xiangnan He
University of Science and Technology of China
xiangnanhe@gmail.com

Xiang Wang
National University of Singapore
xiangwang1223@gmail.com

Yunshan Ma
Fuli Feng
National University of Singapore
yunshan.ma@u.nus.edu
fulifeng93@gmail.com

Meng Wang
Department of Computer Science
Hefei University of Technology
eric.mengwang@gmail.com

Xiang Wang
National University of Singapore
dcscts@nus.edu.sg

Tat-Seng Chua
National University of Singapore
dcscts@nus.edu.sg

ABSTRACT
Understanding the mix-and-match relationships of fashion items receives increasing attention in the fashion industry. Existing methods have primarily utilized the visual content to learn the compatibility and performed matching in the latent visual space. Despite their effectiveness, these methods work like a black box and cannot reveal the reasons that two items match well. The rich attributes associated with fashion items, e.g., off-shoulder dress and black skinny jean, which describe the semantics of items in a human-interpretable way, have been largely ignored. In this work, we address the interpretable fashion matching task, aiming to inject interpretability into the compatibility modeling of fashion items. Specifically, given a corpus of matched pairs of items, we not only can predict the compatibility score of unseen pairs, but also learn interpretable patterns that lead to a good match, e.g., white T-shirt matches with black trouser. We propose a new solution named Attribute-based Interpretable Compatibility (AIC) method, which consists of three modules: 1) a tree-based module that extracts decision rules on matching prediction, 2) an embedding module that learns vector representation for a rule by accounting for the attribute semantics in the rule, and 3) a joint modeling module that unifies the visual embedding and rule embedding to predict the matching score. To justify our proposal, we contribute a new Lookastic dataset with fashion attributes available. Extensive experiments show that AIC not only outperforms several state-of-the-art methods, but also provides reasonable interpretability on matching decisions.

CCS CONCEPTS
• Information systems → Specialized information retrieval.

KEYWORDS
Multimedia recommendation, Clothing matching, Fashion compatibility learning

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

SIGIR '19, June 21–25, 2019, Paris, France
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9999-9/18/06...$15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Fashion is a rapidly growing industry, which has motivated various research topics in the fashion domain, such as recommendation [38, 39], search [23], and dialogue systems [22], etc. In this paper, we focus on a newly-emerged topic of Mix-and-match-based fashion recommendation [11, 20, 28–30, 35], for which the goal is to predict the compatibility between fashion items. For example, when a user views/buys an item (e.g., a red floral maxi dress), the system matches it with the compatible fashion items from a complementary category (e.g., high-heel sandals). The key to solving this problem is how to effectively model the item-item compatibility relationships.

Existing methods have primarily leveraged the images of fashion items to model the notion of visual compatibility and performed matching in a latent visual space [5, 14, 24, 29, 31]. A common assumption is that a pair of compatible items should stay close with each other in the latent space. Then, the matching problem is solved under a metric learning paradigm: first collect a corpus of matched/unmatched item pairs, and then train a parameterized similarity function that enforces matched pairs have a higher similarity score than unmatched pairs. Despite their effectiveness, existing methods mainly exploit the visual information that comprises of low-level signals, forgo modeling the rich attributes associated with fashion items, e.g., off-shoulder dress and black skinny jean. They just work like a black box and cannot interpret the reasons that two items match well, being insufficient to support downstream applications. We argue that the rich attributes, which describe the semantics of items in a human-interpretable way, should be carefully taken into account to improve both the matching accuracy and interpretability.

Recent works have tried to alleviate the above-mentioned limitations by augmenting the visual features of items with textual descriptions [29], or refining pairwise visual compatibility with category-category complementary relationships [30, 35]. However, the textual description of items is directly encoded as a dense vector
without language parsing, making it hard to reveal which attributes contribute most to a match. The category-category relationships only use coarse-grained categories to bridge two items from complementary categories, which results in limited interpretability. In summary, the semantics of rich attributes associated with fashion items have not been fully explored in fashion matching.

This paper addresses the **interpretable fashion matching** task, which is a new topic in this field. Our aim is to inject interpretability into the compatibility modeling of fashion items by leveraging the rich fashion attributes. Specifically, given a corpus of matched pairs of items, we learn the interpretable matching patterns that lead to a good match, e.g., *white T-shirt* matches with *black trouser*, which is termed as **attribute cross** (analogous to feature cross [7]) in this work. Towards this end, we propose a new solution named **Attribute-based Interpretable Compatibility (AIC)** method, which discovers informative attribute crosses in an explicit and interpretable way. Specifically, we first automatically extract decision rules on matching prediction by using a decision tree method. Then, we design an embedding module to explicitly learn the vector representation for each rule by preserving the semantics of attributes in the rule. We further propose a joint modeling module that unifies the visual embedding and attribute-based rule embedding to predict the matching score. To enhance the interpretability, we design an attention network to select the most informative matching patterns, making the overall prediction process easy-to-interpret.

To the best of our knowledge, this is the first time to develop an interpretable fashion matching framework that can explicitly learn attributed-based matching patterns.

Our contributions are summarized as follows.

- We present an attribute-based interpretable compatibility framework that not only can predict the compatibility score of unseen pairs, but also learn interpretable matching patterns that lead to a good match.
- We propose to capture the semantics of decision rules by modeling attribute interaction, and unify the strengths of visual embedding and attribute-based rule embedding.
- We contribute a dataset with fashion attributes available to justify the effectiveness of AIC on interpretable fashion matching. Extensive experiments show that AIC not only outperforms several state-of-the-art methods, but also provides reasonable interpretability on matching tasks.

2 PROBLEM FORMULATION

Given a corpus of fashion items \(X = \{x_i\}_{i=1}^{N} \), and the binary pair labels \(Y = \{y_{ij}\} \), defined by

\[
y_{ij} = \begin{cases}
1 & \text{if } (x_i, x_j) \in C, \\
0 & \text{Otherwise},
\end{cases}
\]

where \(C \) denotes the pairwise compatibility relationship (i.e., if \(x_i \) is compatible with \(x_j \), then \(y_{ij} = 1 \)), the basic goal of fashion matching is to build a predictive model that estimates the compatibility score between \(x_i \) and \(x_j \):

\[
\hat{y}_{ij} = f(x_i, x_j),
\]

where \(f \) denotes the predictive model, and \(\hat{y}_{ij} \) denotes the predicted compatibility score of a pair of items.

Figure 1: An illustration of the mix-and-match relationship (Left) and rich fashion attributes associated with fashion items (Right). Fashion items are usually described by a diverse set of attributes that carry rich semantics of items, which have been largely ignored by existing fashion matching methods.

Traditional methods primarily leverage the visual content of item images to learn compatibility in a latent visual space. However, item images just describe the implicit and low-level visual content. Actually, in addition to the item image, a fashion item on most fashion e-commercial websites is usually described by a diverse set of attributes, which have been largely ignored by most existing methods. For example, the item of ID 001 in Figure 1(a) has diverse categorical attributes about category (midi-dress), pattern (floral), color (natural-white), neckline (V-Neck), style (casual), etc. The attributes not only provide good semantic description of items, but also have the potential to explicitly reveal the intra-connection between items. They can help to explain why two fashion items can be grouped together for a fashionable outfit by a set of attribute crosses\([7, 32]\), such as [Fullbody: pattern=floral] & [Fullbody: category=Mid-dresses] & [Footwear: category=Sandal]. Each attribute cross reflects a particular matching pattern.\(^1\)

This paper aims to address the task of **interpretable fashion matching**. We denote \(a \) and \(\mathcal{A} = \{a_k\}_{k=1}^{k} \) as an item attribute and the whole attribute set. For a given item \(x_i \), we construct its attribute set as \(\mathcal{A}_i \subset \mathcal{A} \). Then, we can formally define this new task as:

- **Inputs**: A corpus of fashion items with rich attributes and pairwise matching relationships \(X, \mathcal{A}, Y \).
- **Outputs**: (1) A pairwise ranking function for each pair of items \((x_i, x_j) \), i.e., \(f : X \times X \rightarrow \mathbb{R} \) which maps a pair of items to a compatibility score value by jointly considering the visual correlations and attribute correlations, and (2) a set of second-order attribute crosses \(\{a_p \& a_q\} \) or higher-order attribute crosses: \(\{a_p \& a_q \& \ldots \& a_l\} \) that explicitly reveals which attributes in \(x_i \) and \(x_j \) dominate the matching process.

\(^1\)Note that in this work we express the matching pattern as a **attribute cross**, which is a combination of multiple attributes. We use them exchangeable without specification.
The main goal of the interpretable fashion matching framework is to infer attribute-based matching patterns, i.e., attribute crosses. Then, the first problem is how to extract the attribute crosses. A popular solution in industry is to manually craft all the feature crosses, and the second-order attribute cross.

Another solution is to learn the weight of all feature crosses. Obviously, such straightforward solution is not scalable when we model higher-order attribute interactions on a large scale attribute set. Another solution is to manually define a set of matching rules [22, 26, 28] based on item attributes, such as *White shirt & black trousers*. However, manually defining matching rules usually needs strong domain knowledge and may not be expressive enough to capture complex matching patterns. It is highly desired to infer the rich matching patterns from data automatically.

Motivated by recent works [32, 41] in recommendation domain, we propose to leverage Tree-based models, e.g., CART [3], GBDT [8], XGBoost [6], for automatically constructing self-interpretable attribute crosses from categorical item attributes, due to the self-interpretable and scalability. As shown in Figure 3, a simple decision tree with binary node splits can be represented as \(Q = \{ \mathcal{V}, \mathcal{D}, \mathcal{E} \} \), where \(\mathcal{V} \) denotes two types of nodes: one is internal/root nodes that represent features (attributes) and the other is leaf nodes that represent outcomes for prediction. \(\mathcal{D} \) denotes binary decision nodes (yes, or no), and \(\mathcal{E} \) denotes the edge connecting two nodes. The paths from root to leaf represent decision rules, revealing the reasoning procedure. By training the decision tree using one-hot-encoded categorical attributes as inputs, each derived decision rule can be seen as a high-order attribute cross (i.e., matching pattern). As shown in Figure 3, the path from root node to the second leaf node on the left side represents a three-order attribute cross \(\{ \text{Top:Material=Wool} \} \& \{ \text{Bottom:Material=Wool} \} \& \{ \text{Top:Category=Blazers} \} \). When the last decision is changed from yes to no, the rule \(\{ \text{Top:Material=Wool} \} \& \{ \text{Bottom:Material=Wool} \} \& \{ \text{Top:Category=Blazers} \} \) still has high prediction score. It uncovers that sometimes the most dominant matching pattern may be a second-order attribute cross.

In this work, we adopt the boosted tree model, e.g., GBDT [8], which is defined as an ensemble of \(T \) decision trees \(\sum_{t=1}^{T} Q_t \). Then, given the one-hot-encoded categorical attributes \(\mathcal{A}_{ij} = (A_i, A_j) \) of \((x_i, x_j)\) as inputs, the boosted tree module will return \(T \) decision rules \(\{ r_{ij}^1, r_{ij}^2, \ldots, r_{ij}^T \} \), where \(r_{ij}^t \) (1 \(\leq \) \(t \) \(\leq \) \(T \)) denotes the \(t \)-th decision rule returned by its corresponding decision tree. Since a decision rule is directed and has different decision states between two attribute nodes, for clarity, we describe a decision rule in a path-like form

\[
r_{ij}^t : a_1^t \xrightarrow{s_1^t} a_2^t \xrightarrow{s_2^t} \cdots a_z^t \xrightarrow{s_z^t} Z,
\]

where \(a_z^t \) (1 \(\leq \) \(z \) \(\leq \) \(Z \)) denotes the \(z \)-th attribute in the rule \(r_{ij}^t \), \(s_z^t \) denotes the binary decision state of attribute \(a_z^t \), and \(Z \) denotes the number of attributes and decisions in the rule \(r_{ij}^t \). The leaf node is not shown in Eq. (3).

Note that we only utilize the GBDT model to automatically extract the decision rules and do not use its prediction scores on the leaf nodes for prediction, since it suffers from poor generalization ability [32]. For unseen attribute vector inputs \(\mathcal{A}_{ij} \), it would return a decision rule with all no decisions, such as the path from the root node to the first leaf node on the right side in Figure 3.
3.2 Attribute-based Decision Rule Embedding

After extracting a set of decision rules via the boosted tree model, the next question is how to transform the decision rules to vector representations for predicting compatibility score. Since each rule has a unique leaf node which corresponds to a unique ID, prior work [32] proposed to encode rule ID as a vector, while ignoring the semantics of decision rules. To be more specific, such ID embedding method fails to model the semantic correlation between similar rules. To address this problem, we propose to embed the semantics of each rule into a low-dimensional vector by taking the attribute interactions into consideration. We elaborate this solution as follows:

Attribute and Decision Embedding. Recall that each rule is composed by attributes, decisions, and edges connecting two nodes, as shown in Figure 3 and 4. To represent the attribute, we first set up a lookup layer to transform the one-hot encodings of all the attributes \(\{a_k\}_{k=1}^{|A|} \) into low-dimensional dense embedding vectors \(\{a_k\}_{k=1}^{|A|} \in \mathbb{R}^{d \times |A|} \). While, as shown in Figure 3, each attribute has two decision states (yes and no) in two mutually exclusive decision edges. How to model such decision states into the attribute representation? A simple way is to directly treat the attribute (e.g., [Top:Material=Wool]) and its opposite [Top:Material≠Wool] as two independent attributes. Then, we need to optimize \(2 \times |A| \) attribute embedding vectors. While, such a solution directly ignores the exclusive relationship between attribute embedding vectors. To model the exclusive relationship, we propose to combine the attribute embedding and its corresponding decision embedding by a simple vector translating operation[2]:

\[
\overrightarrow{a}_k = a_k + s_k, \tag{4}
\]

where \(\overrightarrow{a}_k \) denotes the translated embedding vector of \(a_k \). For simplicity, we use \(\overrightarrow{a}_k \) to denote the attribute \(a_k \) with decision state \(s_k \), then \(\overrightarrow{a}_k \) denotes its vector representation. In this way, we only need to optimize \((2 + |A|) \) embedding vectors and preserve the exclusive relationship between attribute and decision.

Rule Embedding. After injecting the embedding vectors of binary decision states into the attribute embeddings by Eq. (4), we can reformulate Eq. (3) as \(r_{ij}^L : \overrightarrow{a}_1 \rightarrow \overrightarrow{a}_2 \rightarrow \cdots \rightarrow \overrightarrow{a}_L \), which is a sequence of inner-connected attributes. Then, the popular pooling operation, such as max-pooling or average-pooling, can be used to compute the embedding vector of decision rules based on the attribute embeddings. But this way does not explicitly model the second-order or higher-order attribute interactions, and then cannot identify which attribute cross in the decision rule is the most informative one.

We propose to learn the representation of decision rule based on the interaction of attribute crosses in the rule. As shown in Figure 4, the second-order and higher-order attribute crosses in the rule are respectively described and represented by

- **Second-order attribute cross** \(\overrightarrow{d}_t^2 \& \overrightarrow{d}_{z+1}^t \), which is represented by \(v_{2}^{t(i)} = \overrightarrow{a}_t^z \otimes \overrightarrow{a}_{z+1}^t \).

\[\text{Figure 4: An illustration of the proposed attribute-based decision rule Embedding.}\]

- Higher-order attribute cross \(\overrightarrow{d}_t^3 \& \overrightarrow{d}_{z+1}^t \& \cdots \& \overrightarrow{d}_{z+O-1}^t \), which is represented by \(v_{O}^{t(i)} = \overrightarrow{a}_t^z \otimes \overrightarrow{a}_{z+1}^t \otimes \cdots \otimes \overrightarrow{a}_{z+O-1}^t \), where \(v_{O}^{t(i)} \in \mathbb{R}^d \) (2 \(\leq O \leq Z \)) denotes the embedding vector of the \(z \)-th higher-order attribute cross. The \(v_2^z \) is a specific form of \(v_2^z \) when \(O = 2 \). The \(\otimes \) denotes the element-wise multiplication, i.e., Hadamard Product. Finally, the embedding of the rule \(r^L \) is defined as the linear aggregation of all the attribute crosses embedding with an average pooling operation

\[
r_{ij}^L = \frac{1}{N} \sum_{o=2}^{O} \sum_{z=1}^{Z} v_{o}^{t(i)}, \tag{5}
\]

where \(r_{ij}^L \in \mathbb{R}^d \), and \(N \) is the number of all attribute crosses in the decision rule.

3.3 Visual-Rule Joint Modeling

In this section, we describe how to jointly model visual embedding of item images and attribute-based rule embedding for predicting fashion compatibility. It mainly consists of three submodules: 1) learning low-dimensional visual embeddings of item images with a pretrained CNN, 2) reweighting the embeddings of decision rules with an attention network, 3) jointly leveraging visual embedding and attribute-based rule embedding for compatibility prediction.

Deep Visual Embedding of Items. The deep visual embedding learning module on the left side down of Figure 2 has been widely used in existing visual compatibility learning models due to the strong transferability of deep features. This work adopts a pre-trained deep CNN (e.g., ResNet-50[12]) to extract visual features from item images. Given an image of item \(x_i \), the output of a pretrained CNN is \(x_i^{cnn} \in \mathbb{R}^{d \times c_{nn}} \) where \(x_i^{cnn} \) is a high-dimensional visual feature representation of item \(x_i \). Then we apply a one-layer feed forward network to transform the high-dimensional output of CNN into a \(d \)-dimensional visual embedding \(x_i \in \mathbb{R}^{d} \):

\[
x_i = g(x_i^{cnn}) = W^{g} x_i^{cnn} + b^{g}, \tag{6}
\]

where \(g(\cdot) \) is a one-layer feed forward network with weight parameters \(W^g \in \mathbb{R}^{d \times d_{cnn}} \) and \(b^g \in \mathbb{R}^d \). The visual embedding module enables our framework generalize to unseen fashion items.

Attentive Decision Rules Re-weighting. Given inputs \((\mathcal{A}_i, \mathcal{A}_j) \) of \((x_i, x_j) \), our boosted tree module (GBDT) returns \(T \) decision rules

[RAW_TEXT_END]
Interpretable Fashion Matching with Rich Attributes

Interpretable Fashion Matching with Rich Attributes

where the attribute cross (\(r_{ij}^t\)) Note that not every rule has the equal contribution to \((x_i, x_j)\), and some rules may also be invalid. Therefore, it is necessary to design an attention module to modulate the contribution of each rule. Inspired by the recent work [4, 28, 32], we apply a multi-layer perceptrons (MLPs) to learn the attention weight of each derived rule:

\[
w'_{ijt} = w^T \sigma(W((x_i + r_{ij}^t) \otimes x_j, r_{ij}^t) + b),
\]

\[
w_{ijt} = \frac{\exp(w'_{ijt})}{\sum^T_t \exp(w'_{ijt})}
\]

where \(w_{ijt}\) denotes the weight of the \(t\)-th rule corresponding to \((x_i, x_j)\), \(W \in \mathbb{R}^{d \times 2d}\) and \(b\) denotes the weight matrix and bias vector of the hidden layer in our attention module, and \(w \in \mathbb{R}^{d \times 1}\) is the weight vector of the regression layer. The \([\cdot, \cdot]\) denotes the concatenation operation of two vectors. The \(\sigma\) is the non-linear activation function ReLu. In Eq. (7), we project \((x_i + r_{ij}^t) \otimes x_j\) into the attention module, which aims to directly capture the interaction \(x_i \otimes x_j\) and \(r_{ij}^t \otimes x_j\) in the same embedding space. Note that Eq. (7) is implemented as an asymmetrical form by considering the directed matching order (e.g., Top-Bottom[28, 29] and Top-Footwear) in the fashion matching task. Then, we can obtain a unified vector representation of all the derived decision rules corresponding to \((x_i, x_j)\):

\[
r_{ij} = \frac{1}{T} \sum^T_t w_{ijt} r_{ijt}
\]

The attention module enables the first-time message passing between visual space and attribute-based rule space for learning the importance of decision rules. Note that the attention module endows our framework with interpretability. For each matching pair, we can return the most informative decision rule to explain the matching result.

Joint Prediction. Given the visual embedding vectors \(x_i\) and \(x_j\) of items \(x_i\) and \(x_j\), and the unified rule embedding vector \(r_{ij}\), we design a joint modeling solution that can use the visual part and rule part perform separately and mutually. The complete predictive function is defined by

\[
f(x_i, x_j, A_{ij}) = h^T_1 (x_i \otimes x_j) + h^T_2 r_{ij} + h^T_3 ((x_i + x_j) \otimes r_{ij}),
\]

where \(h_1 \in \mathbb{R}^{d \times 1}\), \(h_2 \in \mathbb{R}^{d \times 1}\), and \(h_3 \in \mathbb{R}^{d \times 1}\) denote the weight parameters of three regression layers, respectively, which yields compatibility predictions from three parts: the first is visual compatibility \((h_1)\), the second is rule-based compatibility \((h_2)\), and the third is visual-rule joint compatibility \((h_3)\). To identify the contribution of each attribute cross in a decision rule, the second term can be rewritten as

\[
h^T_2 r_{ij} = \frac{1}{T} \sum^T_t w_{ijt} h^T_2 r_{ijt} = \frac{1}{T \times N} \sum^T_t \sum_{i=1}^N \sum_{j=1}^N \sum_{z=1}^{O+z-1} w_{ijt} h^T_2 v^{z(t)},
\]

where the \(w_{ijt}(h^T_2 v^{z(t)})\) is the prediction score contributed by the attribute cross \(\overrightarrow{a}_z \otimes \overrightarrow{a}_{z+1} \otimes \cdots \otimes \overrightarrow{a}_{z+a-1}\) in the \(t\)-th decision rule.

The third part is equal to \(h^T_2 (x_i \otimes r_{ij}) + h^T_2 (x_j \otimes r_{ij})\), which transforms the interaction of \(r_{ij}\) and \(x_i\) and the interaction of \(r_{ij}\) and \(x_j\) to the compatibility scores, respectively. The third part aims to capture the complex interaction between low-level visual concept and high-level semantic concept (i.e., attributes) in a joint space. It refines the item-item visual compatibility with the intra-connectivity between two items, which enables the second-time message passing between visual space and attribute-based rule space in a mutually enhanced way.

3.4 Learning

We formulate the fashion matching task as a ranking problem, and minimize the Bayesian Personalized Ranking (BPR) objective [25] which forces the prediction score of a matched pair \((x_i, x_j) \in C\) to be larger than that of unmatched pair \((x_i, x_k) \notin C\):

\[
L = \sum \ln \frac{f(x_i, x_j, A_{ij})}{f(x_i, x_k, A_{ik})}.
\]

where \(f(\cdot)\) is the widely-used logistic sigmoid function. The regularization term has been omitted for clarity. \(T\) denotes a training set of 5-tuples \(\{\langle x_i, x_j, x_k, A_{ij}, A_{ik} \rangle | (x_i, x_j) \in C, (x_i, x_k) \notin C\}\). The matched pair \((x_i, x_j)\) is extracted from the same outfit. The negative item \(x_k\) is randomly selected from a different category with \(x_i\), which has not matched with \(x_i\) before. Note that our tree-based module is first trained and then fixed as a decision rule extractor.

3.5 Discussion

3.5.1 Interpretability.

The main goal of the interpretable fashion matching task is to learn self-interpretable attribute crosses for revealing the reasons behind each matching decision. Our proposed AIC method injects interpretability into the fashion compatibility modeling, which is able to provide two levels of interpretation.

- Given a pair of items \(x_i\) and \(x_j\) from different categories, the tree module first returns a set of decision rules. Then, our attention model re-weights each rule embedding and selects informative decision rules by the importance \(w_{ijt}\) to \(x_i\) and \(x_j\) as the first-level interpretation. (Rule-based)
- Given a selected decision rule \(r_{ij}^t\), our predictive model in Eq. (11) can identify which attribute cross in the rule dominates this matching. (Attribute cross-based)

In summary, we not only can yield a decision rule to explain the matching process, but also can identify the most dominant attribute cross in the rule. We have conducted a case study in section 4.4 on the interpretability of AIC.

3.5.2 Relation to Tree-enhanced Embedding (TEM).

Our proposed AIC has a similar two-way (embedding + tree) architecture with TEM[32]. The key difference lies in the decision rule embedding module. TEM simply encodes ID information as a dense vector to represent a rule, while ignoring the semantics of rules. To be more specific, TEM treats all rules independently and fails to explicitly model the semantic correlation between rules. Moreover, its parameter size is linear with the scale of decision rules, which easily leads to overfitting when the tree number is large (as verified in section 4.3.2). AIC overcomes the limitation of TEM by linearly modeling the attribute interactions into semantics-preserving rule embedding, thus can not only achieve better performance than
TEM, but also provides higher interpretability. Besides, AIC enforces interaction between visual embedding and rule embedding in the prediction layer, which yields better performance.

In summary, 1) AIC learns the attribute-based rule embedding while TEM only learns ID-based rule embedding, 2) AIC not only provides decision rules as an interpretation but also can identify the most informative attribute cross as the second-level interpretation, while TEM only provides rule-level interpretation, and 3) AIC models the interaction of visual embedding and rule embedding in the same embedding space.

4 EXPERIMENTS

To justify the effectiveness of AIC, we conduct extensive experiments to answer the following questions:

- **RQ1**: Can our AIC framework outperform the state-of-the-art approaches?
- **RQ2**: How do different modules of our AIC (e.g., the attribute-based rule embedding module) contribute to the performance?
- **RQ3**: How can our AIC provide easy-to-interpret fashion matching results?

4.1 Dataset Description

The most popular fashion matching dataset is the Polyvore[11, 29, 35]. However, this dataset does not have fashion attribute annotation. To the best of our knowledge, there is not available dataset for this fashion matching task, due to the absence of fine-grained attribute annotations. To effectively evaluate our AIC framework, we collect a large outfit dataset from a personal outfit recommendation website Lookastic2 which provides diverse and fashionable outfit collections with detailed product attribute annotations. We collected 30,790 fashionable outfits from the website, in which both male and female outfits are collected. Each outfit contains a set of items from multiple complementary categories (e.g., Top, Outwear, Bottom, Footwear).

Following the setting in [10, 29], we extract matched item pairs that are co-occurring in the same outfit as the ground truth for training, and filter out some improper or incomplete pairs. Finally, we obtain 124,665 matched pairs for men with 5,069 items, 158,755 matched pairs for women with 10,016 items. Apart from the attributes provided by Lookastic, we also use the Visenze3 API to extract more item attributes and filter out overlapped attributes. This final dataset has diverse item attribute annotations consisting of 65 item colors, 38 materials, 40 patterns, 253 fine-grained categories, 11 styles, and 114 category-specific attributes.

We evaluate our proposed AIC with baseline methods on Lookastic-Men, and Lookastic-Women, respectively. We randomly split the dataset by 70% for training, 20% for testing, and 10% for validation. The validation set is used to tune hyper-parameters and the final comparison is conducted on the test set.

4.2 Experimental Settings

4.2.1 Evaluation Protocols. To evaluate the effectiveness of our model more fairly, we repeat the random dataset split for five times and report the average performance of all methods on the testing set with significance test. For each matched item-item pair in the training sets, we pair it with three randomly sampled negative items from a different category. Each query item and its negative items must not co-occur in the same outfit. For each matched pair in the testing set, we pair it with 500 negative items. Then each method outputs prediction scores for these 501 items. If not mentioned, all the negative items are sampled from the whole dataset but from a different category with the query item.

To evaluate the prediction performance of a ranked list, we use three widely-used information retrieval metrics: the Mean Reciprocal Rank (MRR), Hit Ratio at rank K (hit@K), and Normalized Discounted Cumulative Gain at rank K (ndcg@K). The MRR is the average of the reciprocal ranks of results for a sample of queries. The hit@K intuitively measures whether the test item is present on the top-K list, and the ndcg@K accounts for the position of the hit by assigning higher scores to hits at top-K list. A higher MRR, hit@K, or ndcg@K score denotes a better performance. We calculated all metrics for each test query item and reported the average score. Without special mention, we truncate the ranked list at K = 5 and K = 10 for hit@K and ndcg@K.

4.2.2 Baselines. We compare our proposed AIC with the following baseline methods to justify its effectiveness:

- **Siamese Nets[31]** (SiaNet). It measures the visual compatibility using f2-normalized Euclidean distance. (Image only)
- **BPR-DAE[29]**. This work models the pairwise visual compatibility as the inner-product of item embeddings. (Image only)
- **TransNFCM[35]**. It is a state-of-the-art fashion matching method that leverages category-level complementary relationships to refine the item-item compatibility. (Image + coarse category)
- **VBPR[13]**. It is a strong baseline for visually-aware user-item interaction modeling. It fuses visual information and ID embedding to enhance the item representation. (Image + ID)
- **Neural Factorization Machines[15]** (NFM). It is a state-of-the-art embedding-based learning method that implicitly models higher-order feature interaction in a nonlinear way. We implement it by encoding all item attributes and item images with embedding vectors. (Image + attributes)
- **TEM[32]**. It is a state-of-the-art embedding-based learning method that combines the strength of traditional embedding-based models and the tree-based models. Different with AIC, it learns the ID-based embedding to represent rule. (Image + attributes)

Note that we use the same deep visual embeddings of item images for all baselines. The ID embeddings of items in TEM are replaced by visual embeddings of images for a fair comparison. We only use the visual modules of BPR-DAE and TransNFCM in our experiments, due to the absence of textual descriptions in our dataset. We implement all the baseline method, using the same BPR loss, except SiaNet4.

4.2.3 Parameter Settings. We implement AIC by stochastic gradient descent (SGD) using Pytorch5. The pretrained ResNet-50[12] model is applied to extract visual feature of item images using the output of the pool5 layer. The size of hidden layer for learning low-dimensional visual embedding is set to d = 64 as well as the

2https://lookastic.com/
4We empirically found that SiaNet performs much better with margin ranking loss
5https://pytorch.org
Table 1: Overall Performance Comparison (%) with baseline methods. * and ** denote the statistical significance for $p_{value} < 0.05$ and $p_{value} < 0.01$, respectively, compared to the best baseline.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Lookastic-Men</th>
<th>Methods</th>
<th>MRR</th>
<th>hit@5</th>
<th>hit@10</th>
<th>ndcg@5</th>
<th>ndcg@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lookastic-Men</td>
<td></td>
<td>BPR-DAE</td>
<td>23.35</td>
<td>30.97</td>
<td>30.90</td>
<td>23.28</td>
<td>26.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Siamese</td>
<td>23.05</td>
<td>31.37</td>
<td>40.92</td>
<td>23.04</td>
<td>26.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TransNFCM</td>
<td>26.14</td>
<td>34.94</td>
<td>44.27</td>
<td>26.28</td>
<td>29.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VBPR</td>
<td>28.32</td>
<td>36.83</td>
<td>45.40</td>
<td>28.57</td>
<td>31.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFM</td>
<td>28.92</td>
<td>37.49</td>
<td>46.37</td>
<td>29.16</td>
<td>32.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEM</td>
<td>29.10</td>
<td>37.88</td>
<td>46.97</td>
<td>29.33</td>
<td>32.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AIC</td>
<td>30.74</td>
<td>39.51</td>
<td>48.23</td>
<td>31.06</td>
<td>33.88**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rel. Imp.</td>
<td>5.6%</td>
<td>4.3%</td>
<td>2.6%</td>
<td>5.8%</td>
<td>4.9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Lookastic-Women</th>
<th>Methods</th>
<th>MRR</th>
<th>hit@5</th>
<th>hit@10</th>
<th>ndcg@5</th>
<th>ndcg@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lookastic-Women</td>
<td>BPR-DAE</td>
<td>23.69</td>
<td>32.97</td>
<td>42.25</td>
<td>24.02</td>
<td>27.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Siamese</td>
<td>24.00</td>
<td>33.71</td>
<td>44.23</td>
<td>24.25</td>
<td>27.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TransNFCM</td>
<td>29.88</td>
<td>41.01</td>
<td>51.08</td>
<td>30.70</td>
<td>33.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VBPR</td>
<td>29.46</td>
<td>39.32</td>
<td>48.33</td>
<td>30.06</td>
<td>32.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NFM</td>
<td>30.49</td>
<td>40.90</td>
<td>50.60</td>
<td>31.15</td>
<td>34.29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEM</td>
<td>31.63</td>
<td>42.35</td>
<td>52.33</td>
<td>32.32</td>
<td>35.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AIC</td>
<td>33.19**</td>
<td>43.83*</td>
<td>53.09**</td>
<td>33.94*</td>
<td>37.01**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rel. Imp.</td>
<td>4.9%</td>
<td>5.4%</td>
<td>1.4%</td>
<td>5.0%</td>
<td>4.0%</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5: Comparison (MRR (%)) of the attribute-based (AIC (Attri.)) and ID-based (AIC (ID)) rule embeddings.

latent embedding size of item attributes. The mini-batch size is set to 1024 and the learning rate η is searched in $\{0.001, 0.01, 0.05, 0.1\}$ on validation set. We use XGBoost\(^6\) to generate the tree-structure where the number of trees and the maximum depth of trees are searched in $\{1, 10, 30, 50, 80, 100\}$ and $\{4, 6, 8, 10\}$ on validation set, respectively. If not mentioned, the tree number and maximum depth are fixed as 10 and 6 on testing set, respectively. We employ SGD to optimize all methods with momentum factor as 0.9. We run all methods until convergence and drop the learning rate η to $\eta/10$ every 10 epochs.

4.3 Performance Comparison

We first compare the performance of all the methods. We then justify how our method can effectively learn the semantics of decision rules for enhancing the compatibility modeling.

4.3.1 Overall Comparison. (R1) Table 1 displays the performance comparison w.r.t. MRR, hit@K (K=5, 10), and ndcg@K (K=5, 10) among the baseline methods on the Lookastic-Men and Lookastic-Women datasets. We have the following findings:

- BPR-DAE and SiaNet, which merely rely on visual information, achieve poor performance. TransNFCM and VBPR perform much better, since TransNFCM exploits the category-level complementary relationship as the connection between compatible items and VBPR combines the ID embedding of items and visual embedding for feature augmentation. It indicates the necessity of exploiting the side information for modeling the complex fashion compatibility beyond the visual information, since visual embeddings of items just comprise of low-level signals, which cannot effectively capture the complex interaction patterns.
- NFM and TEM achieve competitive performance, which can be attributed to the utilization of feature interaction. NFM exploits high-order feature interaction with a multi-layer MLPs in a nonlinear way, which consistently outperforms the strong baseline VBPR. While, TEM uses a tree-based model to automatically derive higher-order feature crosses with an attention mechanism. It slightly outperforms NFM on both datasets, especially the Lookastic-Women dataset where more diverse item-item interactions are provided. It indicates the effectiveness of modeling the high-order feature interactions.
- Our proposed AIC substantially outperforms the state-of-the-art methods, NFM and TEM, on both datasets. This demonstrates the effectiveness of AIC. It not only integrates the predictions from both visual space and attribute-based rule space in the prediction layer, but also explicitly learns the semantics of decision rules based on the attribute interaction in the rule. Such semantics-preserving rule embedding is jointly modeled with visual information in a unified space, which leads to better performance and also reveals the complex matching patterns in a more explicit way.

4.3.2 Effect of Attribute-based Decision Rules Embedding. (R2) One of the contributions of AIC is that it learns the semantics of decision rules by explicitly modeling the attribute interaction. While, the prior work [32] proposes to learn the ID embedding of each rule without considering the content of each rule. To justify the effect of our attribute-based rule embedding, we compare the performance of this two rule embeddings in Table 2 and Figure 5, which are termed as AIC(Attri.) and AIC(ID), respectively. Note that we fix the maximum depth of tree as 6 and vary the number of decision trees $T \in \{1, 5, 10, 50, 100\}$ to generate different tree structures for comparison. We have the following observations from Table 2 and Figure 5.

Overall, the attribute-based rule embedding consistently outperforms the ID-based rule embedding. When the tree number is 5 or 10, AIC (ID) performs comparable to AIC (Attri.). However, when the tree number is increased to 50 or 100, the performance of AIC (ID) drops significantly. It reflects that the AIC (ID) is sensitive to the tree numbers. It easily suffers from overfitting when the tree number is large, since its parameter size is linear with the scale of all the leaf nodes in GBDT. While AIC(Attri.) directly optimizes the attribute embedding, thus could effectively capture the semantic correlation between similar rules. The performance comparison justifies the effectiveness of AIC on the semantic encoding of rules.

4.3.3 Effect of Visual-Rule Joint Modeling. (R2) As shown in Eq. (10), AIC not only predicts the visual compatibility and semantic compatibility with two regression vectors (h_1 and h_2) respectively,
Table 2: Comparison (hit@5, ndcg@5, %) of the attribute-based (AIC (Attri.)) and ID-based (AIC (ID)) rule embeddings.

<table>
<thead>
<tr>
<th>TreeNum</th>
<th>Datasets</th>
<th>Lookastic-Men</th>
<th>Lookastic-Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Methods</td>
<td>hit@5</td>
<td>ndcg@5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hit@5</td>
<td>ndcg@5</td>
</tr>
<tr>
<td>T=1</td>
<td>AIC (Attri.)</td>
<td>37.16</td>
<td>28.92</td>
</tr>
<tr>
<td></td>
<td>AIC (ID)</td>
<td>35.99</td>
<td>27.60</td>
</tr>
<tr>
<td>T=5</td>
<td>AIC (Attri.)</td>
<td>39.34</td>
<td>30.88</td>
</tr>
<tr>
<td></td>
<td>AIC (ID)</td>
<td>39.05</td>
<td>30.59</td>
</tr>
<tr>
<td>T=10</td>
<td>AIC (Attri.)</td>
<td>39.51</td>
<td>31.06</td>
</tr>
<tr>
<td></td>
<td>AIC (ID)</td>
<td>39.25</td>
<td>30.83</td>
</tr>
<tr>
<td>T=50</td>
<td>AIC (Attri.)</td>
<td>39.32</td>
<td>30.77</td>
</tr>
<tr>
<td></td>
<td>AIC (ID)</td>
<td>38.85</td>
<td>30.33</td>
</tr>
<tr>
<td>T=100</td>
<td>AIC (Attri.)</td>
<td>39.45</td>
<td>30.90</td>
</tr>
<tr>
<td></td>
<td>AIC (ID)</td>
<td>37.88</td>
<td>29.55</td>
</tr>
</tbody>
</table>

Table 3: Ablation study on the effect of visual-rule interaction (VRI) term.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Lookastic-Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>MRR hit@5 hit@10 ndcg@5 ndcg@10</td>
</tr>
<tr>
<td>AIC (Rule only)</td>
<td>18.90 25.17 34.11 18.37 21.25</td>
</tr>
<tr>
<td>AIC (VRI only)</td>
<td>29.22 38.03 46.98 29.49 32.38</td>
</tr>
<tr>
<td>AIC (without VRI)</td>
<td>30.38 39.13 47.92 30.68 33.52</td>
</tr>
<tr>
<td>AIC (with VRI)</td>
<td>30.74 39.51 48.23 31.06 33.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Lookastic-Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>MRR hit@5 hit@10 ndcg@5 ndcg@10</td>
</tr>
<tr>
<td>AIC (Rule only)</td>
<td>23.40 30.97 39.82 23.30 26.16</td>
</tr>
<tr>
<td>AIC (VRI only)</td>
<td>33.12 43.64 53.28 33.83 36.95</td>
</tr>
<tr>
<td>AIC (without VRI)</td>
<td>32.73 43.19 52.62 33.45 36.49</td>
</tr>
<tr>
<td>AIC (with VRI)</td>
<td>33.18 43.83 53.09 33.94 37.00</td>
</tr>
</tbody>
</table>

4.4 Case Study on Interpretation (R3)

To demonstrate the interpretability of AIC, we visualize two item-item matching cases on Lookastic-Women in Figure 7. Figure 7 (a) is a Top-Bottom case, and Figure 7 (b) is a Fullbody-Footwear case. Each item-item matching pair is sampled on the testing set (positive). For simplicity, the maximum depth of GBDT is set to 4 and only second-order attribute crosses are computed. As shown in Figure 7, the abbreviations of attributes are shown on the right side of each decision rule and the normalized score of each second-order attribute cross is shown on the left side.

For the first case in Figure 7 (a), the input is a navy coat paired with low rise gray jeans. We observe that the first decision rule encodes some common sense matching patterns, such as Sophisticated knee

length
top doesn’t match with
shorts, and Sophisticated knee
length top
matches with
low rise bottom. In most cases, high rise bottom is more likely to match with short body length top, thus could make women’s beautiful waist curve be seen clear. By our proposed AIC, we also identify the most dominant attribute cross in a decision rule. The second-order attribute cross with the highest score in the first rule is [Bottom: Rise Type=Low rise][Top: Style=Sophisticated]. For the second decision rule, it still cares about the clothing length. The most dominant attribute cross is [Top: Sleeve Length=Long] & [Bottom: Lower Body Length=7/8], which can be explained as long sleeve top goes with long body length bottom. For the Fullbody-Footwear case, the input is a white sleeveless cutout dress paired with white heels. The first decision rule is mainly dominated by the attribute cross [Fullbody: Color=White][Footwear: Color=White], which is a common matching pattern. The second decision rule is dominated by the attribute cross [Fullbody: Pattern=Cutout][Footwear: Heel Type=Common heels].

Overall, the derived matching patterns are consistent with the given matched pairs, and the discovered second-order attribute crosses have higher readability and are also easy-to-interpret. The two matching cases demonstrates AIC’s capability of providing more informative and easy-to-interpret matching patterns.
Interpretable Fashion Matching with Rich Attributes

5 RELATED WORK

Fashion Matching. Existing works can be mainly classified into two groups: one is outfit creation [11, 20] aiming to automatically compose fashion outfits, and the other one is item-item compatibility [5, 14, 24, 28–30, 35], which is close to our work. Most existing methods of the second group cast fashion matching as a metric learning [36, 37] problem by assuming that a pair of matched items should be close to each other in a latent space. Earlier works model the pairwise compatibility with data-independent interaction functions, e.g., inner-product [29], or Euclidean distance [5, 24], which are improved by data-dependent interaction function, such as probabilistic mixtures of non-metric embeddings [14], and category-aware conditional similarity [30, 35]. Our work is related to the second direction but addresses the new and challenging task of interpretable fashion matching, where we not only predict compatibility for unseen pairs but also aim to learn self-interpretable matching patterns to uncover the reasons behind each matching decision. Our work is different with the recent work [28] which first manually constructs a set of matching rules and then use these rules to guide the item embedding learning. The main limitation of [28] is that manually constructing matching rules usually rely on strong domain knowledge, thus resulting in poor scalability.

Fashion Attributes. In recent years, substantial works [1, 10, 19, 21, 23, 27] have been devoted to extract and analyse visual descriptive attributes from fashion images or related textual descriptions for cross modal retrieval [21], interactive fashion search [9, 40], classification [23, 27], and fashion trend prediction [1]. Unlike prior work, this paper prefers to use the rich product attributes associated with fashion items to design an interpretable fashion matching framework. Current visual analysis methods can facilitate our work when the attribute annotation is unavailable.

User-item Recommendation. Our work is also related to personalized recommendation [16, 17, 33], and multimedia recommendation methods [4, 34, 38], which leverage the ID information and visual information of items to model user-item interaction. In this work, we only focus on cross-category item matching without considering the user information. While, the user attributes can be easily incorporated into AIC for personalized compatibility modeling, which is left for our future work.

6 CONCLUSION

In this paper, we developed an attribute-based interpretable compatibility (AIC) method, which aims to inject interpretability into the pairwise compatibility modeling. Specifically, we devised a two-way compatibility architecture. Given a matched pair of items, we automatically extract a set of decision rules from a boosted tree model and learn the semantics-preserved rule embedding by explicitly modeling the attribute interaction. Then, we introduced a joint modeling module to unify the strengths of visual information and attribute-based rule information in a shared embedding space, which facilitates the information propagation between visual space and rule space in a mutually-enhanced way. By such a two-way architecture, AIC could not only predict the compatibility score of unseen pairs, but also derive self-interpretable matching patterns to reveal the reasons behind each matching decision. In summary, this work contributes a self-interpretable way for fashion compatibility modeling by deriving the intra-connectivity between items from rich fashion attributes.

As future work, we will consider discovering informative extra-connectivity between items from a domain-specific knowledge graph which could encode richer information, e.g., designer, celebrity, fashion show, country, religion, etc., to further enrich the interpretability of AIC. We are also interested in incorporating the user profile, such as age, occupy, gender, city, social relationships, etc., into AIC for personalized fashion matching and personalized outfit composition. We will also try to extend AIC to facilitate other attribute-based visual matching/retrieval tasks [18, 22].

7 ACKNOWLEDGMENTS

This research is part of NEt+ research and also supported in part by the Thousand Youth Talents Program 2018, and in part by the National Natural Science Foundation of China (NSFC) under Grant 61725203 and Grant 61732008. NEt+ research is supported by the National Research Foundation, Prime Minister’s Office, Singapore under its IRC@SG Funding Initiative.

REFERENCES

Xintong Han, Zuxuan Wu, Phoenix X Huang, Xiao Zhang, Menglong Zhu, Yuanrui He and Julian McAuley. 2016. VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback. In AAAI. AAAI Press, 144–150.

Wei-Lin Hsiao and Kristen Grauman. 2017. Learning the latent "look": Unsupervised discovery of a style-coherent embedding from fashion images. In ICCV.

Andreas Veit, Balazs Kovacs, Sean Bell, Julian McAuley, Kavita Bala, and Serge Belongie. 2015. Learning visual clothing style with heterogeneous dyadic co-occurrences. In ICCV. IEEE, 4642–4650.

Xun Yang, Yunshan Ma, Lizi Mao, Meng Wang, and Tat-Seng Chua. 2019. TransNFCM: Translation-Based Neural Fashion Compatibility Modeling. In AAAI.

