
Multi-behavior Recommendation with Graph Convolutional
Networks

Bowen Jin1, Chen Gao1, Xiangnan He2, Depeng Jin1, Yong Li1,
1Beijing National Research Center for Information Science and Technology (BNRist),

Department of Electronic Engineering, Tsinghua University
2School of Information Science and Technology, University of Science and Technology of China

liyong07@tsinghua.edu.cn

ABSTRACT
Traditional recommendation models that usually utilize only one
type of user-item interaction are faced with serious data sparsity
or cold start issues. Multi-behavior recommendation taking use
of multiple types of user-item interactions, such as clicks and
favourites, can serve as an effective solution. Early efforts towards
multi-behavior recommendation fail to capture behaviors’ different
influence strength on target behavior. They also ignore behaviors’
semantics which is implied in multi-behavior data. Both of these
two limitations make the data not fully exploited for improving the
recommendation performance on the target behavior.

In this work, we approach this problem by innovatively con-
structing a unified graph to represent multi-behavior data and
proposing a new model named MBGCN (short for Multi-Behavior
Graph Convolutional Network). Learning behavior strength by user-
item propagation layer and capturing behavior semantics by item-
item propagation layer, MBGCN can well address the limitations of
existing works. Empirical results on two real-world datasets verify
the effectiveness of our model in exploiting multi-behavior data.
Our model outperforms the best baseline by 25.02% and 6.51% aver-
agely on two datasets. Further studies on cold-start users confirm
the practicability of our proposed model.

CCS CONCEPTS
• Information systems→ Recommender systems;

KEYWORDS
Multi-behavior-Recommendation, Collaborative Filtering, Graph
Convolutional Networks

ACM Reference Format:
Bowen Jin1, Chen Gao1, Xiangnan He2, Depeng Jin1, Yong Li1, . 2020. Multi-
behavior Recommendation with Graph Convolutional Networks. In Pro-
ceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’20), July 25–30, 2020, Virtual
Event, China. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3397271.3401072

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’20, July 25–30, 2020, Virtual Event, China
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8016-4/20/07. . . $15.00
https://doi.org/10.1145/3397271.3401072

1 INTRODUCTION
Personalized recommender system has become a widely used ser-
vice to alleviate the issue of information overload nowadays [28].
Collaborative filtering (CF) [29], the most extensively accepted
paradigm for building a recommendation model, can learn user
interest and estimate preference from the collected user behavioral
data, i.e., historical feedback such as purchase. Traditional CF mod-
els [17, 20, 21, 23, 27] are designed for a single type of behavior,
which is directly relevant to platform profit in most cases, such as
purchase behavior in e-commerce platform; However, in real-world
applications, this may lead to serious cold-start or data sparsity
issue. For example, on an e-commerce website, a CF model built
with only purchase behavior can hardly achieve good recommen-
dations for a new user without historical purchase. But the good
news is that the platforms can collect some other types of behav-
iors that easily happen, such as click and browse. In other words,
recommender systems should have the ability to make use of other
types of behaviors, auxiliary behaviors, to help predict users’ fu-
ture interaction on the target behavior, which is the multi-behavior
recommendation.

Existing researches [3, 7, 10, 22, 26, 31, 33] approach this task
from two aspects. The first category utilizes multi-behavior data
into the sampling process and builds multi-sampling pairs to rein-
force themodel learning process [22, 26, 27]. For example,MCBPR [22]
assumes that there exists an importance order between behaviors,
and it extends BPR [27] by building sampling pairs with a type
of positive behavior and another type of weaker behavior. This
is further extended by [26], designing a more complex training-
pair sampling method based on multi-behavior data. The second
category tries to design model to capture multi-behavior infor-
mation [3, 10, 31, 33]. For instance, matrix factorization based
models [31] conduct the factorization on multiple behavior ma-
trices at the same time; [33] designs a multi-objective optimization
method. [3, 10] respectively propose a deep model for multi-task
learning and assume an artificially given strength order between
behaviors.

Despite effectiveness, these works suffer from two limitations:
• The strength of multiple types of behaviors is not suffi-
ciently utilized. On one hand, ignoring to model the strength
of behaviors will make some useful signals lost. For example,
the adding-to-cart behavior is obviously a stronger signal com-
pared with the click behavior; thus, accurately modeling the close
relation between adding-to-cart and purchase can improve the
performance. On the other hand, it is not reasonable to roughly
regard all auxiliary behaviors as weaker ones comparing with

∗The first two authors contributed equally to this research.

https://doi.org/10.1145/3397271.3401072
https://doi.org/10.1145/3397271.3401072
https://doi.org/10.1145/3397271.3401072

the target behavior. For example, on the e-book recommender
system, sharing a book to friends reflect a stronger user pref-
erence compared with purchasing a book, which is the target
behavior. In short, the multi-feedback recommendation model
is required to reveal and further utilize the various strength of
different behavior types from the data.

• The semantics of multiple types of behaviors are not con-
sidered. The semantics of behaviors can be understood as the
meaning of a type of behavior or, in other words, the reason
why a user-item interaction happens under a specific type of
behavior. From another perspective, there should be some com-
mon characteristics or special relations among the interacted
items under each type of behavior. For example, when users are
clicking and viewing products on an e-commerce websites, the co-
clicked/viewed products may be replaceable (such as iPhone and
Google Pixel); when it comes to purchases, those co-purchased
products may be complementary (such as iPhone and AirPods).
The item-to-item relation can serve as the solution to reveal the
semantics for collaborative recommendation tasks when we have
no side information of items, such as category or brand.
In short, the limitations of existing methods lie in the fact that

they cannot thoroughly address the above two challenges: model-
ing user-to-item based strength and item-to-item based semantics of
multiple types of behaviors.

To address them, we propose to construct a unified heteroge-
neous graph based on multiple types of behavioral data. With
user/item represented as nodes and different types of behaviors
represented as multiple types of edges of the graph, the problem
of modeling user-to-item based strength and item-to-item based
semantics turns to model heterogeneous edges and item-user-item
meta-path. We further propose a solution named Multi-Behavior
Graph Convolutional Network (MBGCN) to take advantage of the
strong power of graph neural networks in learning from compli-
cated edges and high-order connectivity on graph for addressing
above two challenges.

To be more specific, we construct a heterogeneous graph consist-
ing of two kinds of nodes (users and items) and multiple types of
edges, where an edge connecting user node and item node refers to
a specific type of user-item feedback. First, such graph-structured
interaction data do not set any prior constraint or assumption on
the preference strength. In order to capture the various strength of
different behaviors, we propose behavior-aware item-to-user prop-
agation layers for each behavior to propagate neighboring item
nodes’ embedding to the user node. This makes the model able to
distinguish the different strengths of different auxiliary behaviors.
Secondly, we design item-to-item propagation layers operating on
item nodes’ embeddings and co-interacted neighboring (second-
order) items, which helps to capture different CF semantics of item
similarity for various behaviors and enhance the learning for item
embeddings. Through these designs, our MBGCN method effec-
tively addresses the main challenges and helps to exploit auxiliary
behaviors for a better recommendation on the target behavior.

To summarize, the main contributions of this work are as follows:
• We propose to construct a heterogeneous graph for representing
multi-feedback data without any constraint on the preference
strength of each type of behavior.

• For the constructed graph, we propose a graph convolutional
network based model for recommendation. On the one hand,
we design behavior-aware user-to-item embedding propagation
layers to capture the diverse influence of different behaviors; on
the other hand, we design item-to-item embedding propagation
layers for modeling item-to-item similarity which reflects the
various semantics of different behavior.

• We conduct extensive experiments on two real-world datasets.
Experimental results show that our model can effectively im-
prove the recommendation performance by 25.02% and 6.51%,
respectively, comparing to the best performance baseline. Further
studies on cold-start users validate the high application value of
our model.
The remainder of the paper is as follows: First we formalize the

problem in Section 2 and then present our proposed method in
Section 3. After conducting experiments in Section 4, we review the
related work in Section 5. Last, we conclude the paper in Section 6.

2 PROBLEM FORMULATION
In real-world scenarios of the online information system, users can
interact with items provided by the platform in multiple manners,
click, collect, purchase, share, etc. Among various types of user-
item interactions, there is always one type that directly determines
the platform’s profit. Recommender systems are always designed
towards that single type of behavior. For example, e-commerce
recommender systems are always designed for purchase behavior,
and App recommender system are designed for download behavior.
As mentioned in the Introduction, due to the data sparsity and cold-
start issue, the single-behavior recommendation may achieve poor
performance. In this work, we aim to design a recommendation
model for the target behavior by exploiting other types of feedback.

$

$!

$"

�

�!

�"

�#

�%

(a) U-I Interaction Graph

�

�!

�"�#
$

(b) Local Graph of u1

Figure 1: An illustration of the user-item multi-behavior
graph,where nodeu1 is the target user to provide recommen-
dations for.

Assume that the number of behaviors is T , and interaction ma-
trice Y t denotes if user has interacted with item under behavior t
or not. All behavior matrices can be expressed as {Y 1,Y 2, ...,YT },
among which {Y 1,Y 2, ...,YT−1} are represented for auxiliary be-
haviors, and YT is expressed for the target behavior. Specifically,
interaction matrice Y t is in the binary form, of which each entry
has value 1 or 0, defined as follows for user u and item i ,

ytui =

{1, if u has interacted with i under behavior t ;
0, otherwise. (1)

Note that there is no constraint on temporal order or strength
order of behaviors. In other words, behavior t − 1 does not have
to happen before t , and behavior yt−1ui = 1 does not have to reflect
weaker or stronger user preference compared with ytui = 1. Then
the task of multi-behavior recommendation can be formulated as:

Input: The user-item interaction data of T types of behaviors,
{Y 1,Y 2, ...,YT }.

Output:A recommendation model that estimates the probability
that a user u will interact with an item i under the T -th behavior,
i.e. target behavior.

3 METHODOLOGY
We now come to the details of our method, the architecture of which
is presented in Figure 2. Our model has four important components:
1) a shared layer which provides initialization for the user and item
embedding; 2) a user-item propagation layer to learn the strength
of each behavior and extract collaborative filtering signal based
on multi-behavior user-item interaction at the same time; 3) an
item-item propagation layer to refine items’ special relation or in
other words, behavior semantics based on types of behavior; 4) a
joint predicting module.

3.1 Unified Heterogeneous Graph
We aim to use all kinds of behaviors to perform the recommendation
for the target user. Therefore, a unified heterogeneous graph is built
to model the investigated problem. The input interaction data is
represented by an undirected graph G = (V,E), where nodes are V
consisting of user nodes u ∈ U and item nodes i ∈ I. The edges in E
contain different user-item interaction edges of different behavior,
namely (u, i)t , t ∈ Nr , where Nr is the set of all behavior types that
occur between user and item. There will be an edge (u, i)t built,
when ytui = 1. We use different kinds of edges to represent different
behavior so that behavior-based information between user and
item can be extracted. Besides, some meta-paths are built between
items based on users’ co-behavior to extract item relevance better.
For example, if many users buy iPhone and AirPods at the same
time, there will be an item-purchase-user-purchase-item meta-path
between iPhone node and AirPods node. Since meta-paths are built
based on users’ co-behavior, the number of meta-path types equals
the number of behavior types.

3.2 Shared Embedding Layer
Similar to the existing graph models in [9, 31, 42, 43], we use em-
bedding vector p(0)i ∈ Rd and q

(0)
j ∈ Rd , where d is embedding

size, to describe a user and an item. User embedding vectors and
item embedding vectors can be expressed by embedding matrix P
and Q respectively,

P = {p
(0)
u1 ,p

(0)
u2 , ...,p

(0)
un }, Q = {q

(0)
i1
,q

(0)
i2
, ...,q

(0)
im

}.

To ensure the extensibility of our method, one hot vector is used
as input to describe the ID of a user or an item. We use matrix
multiplication here to obtain the embedding for such user (item)
with one hot vector as follows,

p
(0)
uk = P · IDU

k , q
(0)
i j
= Q · IDV

j .

where IDU
k and IDV

j are one-hot vector for user uk and item i j
respectively. It is worth noting that embeddings in matrix P and Q
are served as the initialization feature of users and items, which can
be seen as the input feature for each user and item in the framework
of graph neural network [19].

3.3 Behavior-aware User-Item Propagation
In order to capture the CF signal based on multi-behaviors, we
build upon a message-passing architecture between user and item.
With embedding propagation, for each node, information from its
neighbors will be fused into the embedding, which can reinforce
embedding learning and improve predicting effectiveness. When
coming to our task, we design a particular user-item propagation
method for better utilization of multi-behavior information. Our
user-item propagation architecture is made up of two components
shown in Figure 3 and Figure 4: an item-to-user embedding prop-
agation module, which learns the importance of each behavior
automatically and assigns different weight to items interacted un-
der different behavior when aggregating for user; and a user-to-item
embedding propagation module, which aggregates neighbour user
information for the item.

3.3.1 User Embedding Propagation. Our main idea is to
consider items’ influence on user preference differently accord-
ing to behavior type by two key factors: behavior inherent strength
and interaction sparsity. In terms of inherent strength, it is intu-
itive that different behaviors have different contributions to the
target behavior. However, we argue that the importance of each
behavior or, in other words, the contribution of each behavior to
the target behavior cannot be measured artificially and should be
learned by the model itself. Also, data sparsity should be taken into
consideration at the same time. The fact is that although target
behavior is of the highest significance among all the behaviors, it is
hard to mine a user’s interest only based on target behavior when
there are few target behavior interactions between the particular
user and all items. As a result, other behaviors may play a more
important role when we have a few target behavior. Based on these
two key factors, we design a behavior-sparsity based item-to-user
embedding propagation mechanism as follows.

User Behavior Propagation Weight Calculation. Since differ-
ent behavior contributes differently to the target behavior, we assign
a weight for each behavior, namelywt for behavior t . In order to
fuse behavior importance and behavior sparsity together, we define
propagation weight for a particular behavior t for user u denoted
as αut as follows,

αut =
wt · nut∑

m∈Nr wm · num
, (2)

where wt is a behavior-wised importance weight of behavior t
which is the same for all users, and nut is the count of behavior t
operated by user u which is different depending on user. To be spe-
cific, behavior with largerw will be of higher importance comparing
to behavior with smallerw .

∑
m∈Nr num is the total interaction of

user u. αut is the final propagation weight of behavior t for user u
which will be used in propagation layer and

∑
t ∈Nr αut = 1. Note

that wt is learned by the model so that the importance of each

Embedding

Module

U-I

First-order Propagation

U-I

K-order Propagation
() ()

…
()

…

()

()

()

()

()

()

Embedding

Module

I-I

First-order Propagation

I-I

K-order Propagation
()

()

() ()

()

()

…

()

()

()

()

()

()

…

()

()

()

()

()

()

… … …

,

U
-I

 E
m

b
e

d
d

in
g

P
ro

p
a

g
a

ti
o

n

U
se

-b
a

se
d

sc
o

ri
n

g
It

e
m

-b
a

se
d

sc
o

ri
n

g

I-
I

E
m

b
e

d
d

in
g

P
ro

p
a

g
a

ti
o

n

,

()

,

()

M

()

()

()

…

…

…

U
se

r-
It

e
m

In
te

ra
ct

io
n

g
ra

p
h

It
e

m
-I

te
m

M
e

ta
-p

a
th

g
ra

p
h

…

…

Figure 2: The illustration of MBGCN model, where node u1 is the target user and i5 is the target item.

�

�!

�"

#$

#%

#&
#'
�%

#"

#(

#!

(a) Local Graph

� !

("#!)

� $

("#!)

%&!

(")

%&'

("#!)

%&*

("#!)

� +

(")

……

Ego Network of +

Ego Network of &!

"-Oder Propagation

� '

("#!)

� ,

("#!)

� *

("#!)

� .

("#!)

� -

("#!)

%&!,0!

("#!)

%&!,0'

("#!)

%&!,0,

("#!)

1&!,0'

%&,

("#!)

2"#!

2"#!

(b) k-order Propagation Process

Figure 3: behavior-aware user-item propagation.

behavior can be learned automatically, without having us assigning
importance to each behavior.

Neighbour ItemAggregationBased on behavior. For each user,
different behavior contributes differently to the target behavior, but
it is intuitive that items that are interacted under the same behavior
reflect user’s similar preference strength. As a result, items that have
the same behavior interaction with user are aggregated together so
as to obtain one embedding for each behavior, namely p(l)u ,t for user
u under behavior t , which is defined as follows,

p
(l)
u ,t = aggregate(q(l)i |i ∈ N I

t (u)),

where l refers to the l-th layer, N I
t (u) is the set of items that user u

has interacted under behavior t , q(l)i is item embedding of item i

on l-th layer and p(l)u ,t is the item aggregated embedding for user u
under behavior t on l-th layer. Note that aggregation function can
be a function such as simple mean function, mean function with
sampling, max pooling and so on. We use simple mean function
here and leave other function for future exploring.

Behavior-level Item Propagation for User. We sum neighbor
item aggregation embedding together according to weight αut and
then go through an encoder matrix to obtain the final neighbor
item aggregation for user u. Similar to work [38], we use a graph
neural network without activate function here in order to refine
information based on multi-behavior as follows,

p
(l+1)
u =W (l) · (

∑
t ∈Nr

αutp
(l)
u ,t),

where p(l+1)u is the embedding of user u in the (l+1)-th layer and
W (l) is the encoding matrix for information aggregation in the l-th
layer. It is worth mentioning that different behavior has a different
contribution to user embedding based on coefficient αu ,r , which
depends on both behavior significance and user interaction quantity
under each behavior.

3.3.2 Item Embedding Propagation. In the item-to-user em-
bedding propagation layer above, we assign different weights for
different behavior aggregation embedding based on the fact that
behaviors are subjectively conducted by users so that items inter-
acted under different behavior should reflect different user feature.
However, the case is not the same to user-to-item propagation,
since the feature of the item is static. Regardless of different kinds
of behaviors, we assume that different user has the same contri-
bution to one item. Hence, a user-to-item propagation method is
shown below, aggregating user embedding p(l)j for the next layer
item embedding q(l+1)i as follows,

q
(l+1)
i =W (l) · aggregate(p(l)j |j ∈ NU (i)),

where NU (i) is the set of user that item i has interacted with, p(l)j
is the embedding for user j on l-th layer andW (l) is the encoding
matrix for information aggregation on the l-th layer. Although
behavior types are not considered here in user-to-item propagation,
it is inappropriate to say that multi-behavior can not be used in
item feature learning. In fact, item relevance or in other words,
behavior semantics can be learned from multi-behavior data from
item-to-item perspective which will be shown in Section 3.4.

3.4 Item-Relevance Aware Item-Item
Propagation

As discussed above, item information reflected in multi-behavior
is not reasonable to be utilized from the user-to-item propagation
perspective; we need to design a better method for item information
extracting. What is ignored in previous work [3, 10] approaching
multi-behavior recommendation is the semantic of different behav-
ior or, in other words, the relevance of items reflected in behaviors.
Items that are co-interacted by user may have special connection.
Therefore, it is reasonable to diffuse an item’s information to items
co-interacted according to behavior type.

�

�!

�"�#
$

$"

$!
$%

$#

(a) Local Graph

� !,"#

($%#)

& #,"#

($)

Behaviour "# propagation of #
$-Oder Propagation

& ',"#

($%#)
."#

($%#)

& +,"!

($%#)

& #,"!

($)& -,"!

($%#)

."!

($%#)

Behaviour "! propagation of #

(b) k-order Propagation Process

Figure 4: behavior-aware Item-Item Propagation.

According to discussion above, we design an item-to-item prop-
agation layer based on behavior to seize behavior semantics. We
aggregate the embedding s(l)jt of items j that are co-behaviored un-
der behavior t with item i to obtain next layer embedding s(l+1)it .
Through this mechanism, features of items which are co-behaved
with item i will be aggregate to i’s embedding, which contributes
to better embedding learning and final predicting.

s
(l+1)
it =W

(l)
t · aggregate(s(l)jt |j ∈ N I

t (i)),

where N I
t (i) is the set of items which are interacted together with

item i by users under behavior t andW (l)
t is an encoding matrix

for behavior t which can help aggregate information in l-th layer.
We have s(0)it = q

(0)
i for all t ∈ Nr . After this process, each item will

have |Nr | propagation embeddings.

3.5 Joint Prediction
After propagating through L layers, we obtain multiple representa-
tions, namely {p

(0)
u , ...,p

(L)
u } for user u and namely {q

(0)
i , ...,q

(L)
i }

and {s
(0)
it , ..., s

(L)
it }, t ∈ Nr for item i . Representations obtained in

different layer emphasize messages received from different degree
neighbour. To be more specific, p(0)u contains information of user u
itself, p(1)u contains information of items which are interacted by
useru, namely one-degree neighbour and p(k)u contains information
of user u’s k-degree neighbour. Case is the same for qi and sit . For
final prediction, information from different kinds of neighbour are
all important. As a result, we concatenate them together to get the
final embedding for user and item:

p∗u = p
(0)
u | |...| |p

(L)
u ,

q∗i = q
(0)
i | |...| |q

(L)
i ,

s∗it = s
(0)
it | |...| |s

(L)
it , t ∈ Nr ,

where | | is the concatenation operation. By doing so, we can not only
enrich the final embedding used for prediction with information
from different layers but also allow controlling of the range of
propagation by adjusting L.

Since user-item propagation layer learns user embedding p∗u
and item embedding q∗i from user-item interaction directly, we
can calculate a user-based score with p∗u and q∗i [27, 37], which is
called user-based score. Furthermore, s∗it learned from item-to-item
propagation contains information of item relevance, which can be
used to calculate a score of target item together with items the user
has interacted with, namely item-based score.

3.5.1 User-based CF Scoring. We employ simple interaction
function of inner product here in order to calculate the score based
on user-item propagation, as follows,

y1(u, i) = p
∗T
u · q∗i

It’s worth noting that user embedding utilized here contains
auto-learned behavior strength information.

3.5.2 Item-basedCFScoring. Asmentioned above, theremay
exist behavior semantics in multi-behavior recommendation, that
user’s co-behavior toward two items may imply relevance between
these two items, and the relevance between items may influence
user’s behavior (purchase or not). Therefore, a scoring mechanism
is deployed here so as to mine behavior semantics and calculate
relevance score y2(u, i) between the target item i and items user u
has interacted with. Item relevance scores calculated from different
behavior are summed up to obtain the final relevance score,

y2(u, i) =
∑
t ∈Nr

∑
j ∈N I

t (u)

s∗Tjt ·Mt · s
∗
it

|N I
t (u)|

,

where N I
t (u) is the set of items that has been interacted by user u

under behavior t andMt ∈ Rd
′×d ′ with d ′ = d×(L+1) is a trainable

matrix which measures relevance between two item embeddings
based on behavior t .

3.5.3 Combined Scoring. User-based CF score and Item-based
CF score are combined together with a hyperparameter λ, which

Table 1: Dataset statistics.

Dataset Users Items purchase cart collect click
Tmall 41,738 11,953 255,586 1,996 221,514 1,813,498
Beibei 21,716 7,977 304,576 642,622 — 2,412,586

adjusts the weight of user-based scoring and item-based scoring in
final score as follows,

y(u, i) = λ · y1(u, i) + (1 − λ) · y2(u, i).

By summing the two scores up, the final score not only extracts
the collaborative filtering signal between user and item but also
considers behavior semantics.

3.6 Model Training
To learn the parameters, we optimize the model with BPR loss,
which is widely used in the recommendation system [27, 37, 43]. It
emphasizes the relative order between observed and unobserved
user-item interaction and claims that observed interaction, which
is instructional for user’s preference learning, should be assigned a
higher prediction score than unobserved ones.

Thus, we can define the loss function as follows,

Loss =
∑

(u ,i , j)∈O

−lnσ (y(u, i) − y(u, j)) + β · | |Θ| |2,

where O = {(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−} denotes the set of pair-
wise target behavior training data, R+ represents observed target
behavior and R− represents unobserved target behavior; σ (·) is the
sigmoid function, Θ denotes all trainable parameters and β is the
L2 normalization coefficient which controls the strength of the L2
normalization to prevent overfitting.

Although today’s deep learning models have strong representa-
tion ability, they usually suffer from overfitting problems. Following
recent work [2, 37], we propose to employ two widely used dropout
methods: message dropout and node dropout to some user nodes
and item nodes. Message dropout randomly drops out some flowing
message with a possibility p, while node dropout randomly deletes
a particular node and withdraws all its flowing information.

4 EXPERIMENT
In this section, we conduct experiments on two real-world e-commerce
datasets to evaluate our proposed MBGCN method. Our purpose is
to answer the following four research questions.
• RQ1: Does introducing multi-behavior data improve recommen-
dation performance? How does our method perform compar-
ing to the state-of-the-art models that aim to learn from multi-
behavior data?

• RQ2: How do different settings of item-to-user propagation
weight and item-to-item propagationmethod influence ourmodel’s
effectiveness?

• RQ3: How can MBGCN alleviate the cold-start problem?
• RQ4: How do the model hyperparameters (λ, message dropout,
and node dropout) affect the final performance of our model?

4.1 Experimental Settings
4.1.1 Dataset. To evaluate the performance of MBGCN, we

experiment on two real-world e-commerce datasets: Tmall and
Beibei. We summarize the statistics of the two datasets in Table 1.
• Tmall∗ This is an open dataset collected from Tmall, the largest
e-commerce platform in China. There are 41738 users and 11953
items with four types of behavior: purchasing, carting, collecting,
and clicking recorded in this dataset.

• Beibei† This is the dataset obtained from Beibei, the largest
infant product e-commerce platform in China. There are 21716
users and 7977 items with three types of behaviors, including
purchasing, carting, and clicking collected in this dataset.

4.1.2 Evaluation Metrics. To evaluate the performance of each
model, we use two widely used metrics called Recall and NDCG
which are defined as follows,
• Recall@K measures the ratio of test items that have been suc-
cessfully recommended in the top-K ranking list.

• NDCG@K assigns higher scores to hits at a higher position in
the top-K ranking list, which emphasizes that test items should
be ranked as higher as possible.

4.1.3 Baselines. To demonstrate the effectiveness of ourMBGCN
model, we compare it with several state-of-the-art methods. The
baselines are classified into two categories: one-behavior models
that only utilize target behavior records, and multi-behavior models
that take all kinds of behavior into consideration.
One-behavior Model:
• MF-BPR[27] BPR is a widely used method which optimizes pair-
wise loss with the assumption that observed interaction should
have higher score than unobserved ones.

• NeuMF[15] This is the state-of-the-art neural CF method which
uses GMF and MLP at the same time to capture user-item inter-
action signal.

• GraphSAGE-OB[13] GraphSAGE is one of the most widely used
deep graph neural network model which enriches node embed-
ding with its neighbours’ information by embedding propagation
and aggregation. Here only target behavior is used to build the
user-item bipartite graph and we call this model GraphSAGE-OB.

• NGCF-OB[37] NGCF is the state-of-the-art graph neural net-
work model which has some special design to fit graph neural
network into recommender system. Similar to GraphSAGE-OB,
here only target behavior is used to build the user-item bipartite
graph.

Multi-behavior Model:
• NMTR[10] This is a state-of-the-art deepmodel formulti-behavior
recommendation. The authors assume that there exists a strict
importance order between behaviors and propose a sequential
deep model that adopts NCF [15] for each type of behavior under
a multi-task learning framework. [3] propose a similar model,
combining NCF and multi-task learning, with another loss func-
tion [16]. However, in our problem, we do not make any prior
assumptions about the sequence of behaviors. Thus, we only
choose NMTR for comparison. To make it applicable, we follow
the specified sequential order in the original paper.

∗https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
†https://www.beibei.com

• MC-BPR[22] MC-BPR is one of the first paper that focuses on
utilizing multi-behavior data in recommender system. It assumes
that different behavior reflects different order preference between
user and item, and this can be used as prior knowledge to build
more diverse training pairs.

• GraphSAGE-MB[13] Different from GraphSAGE-OB, here we
use all kinds of behavior to construct the user-item bipartite
graph and different behaviors are treated as the same so that
there is only one kind of edge in the graph.

• NGCF-MB[37] We use the same method with GraphSAGE-MB
to build the graph for NGCF-MB. Since all kinds of behavior are
used for NGCF, the embedding learned by the model might have
stronger representation ability.

• RGCN[30] RGCN is the first paper in graph neural network
field that considers edge difference. The author designs different
propagation layers for different types of edge to capture edge
information, which fits our task of multi-behavior recommenda-
tion.
4.1.4 Parameters Settings. Our MBGCN is implemented in Py-

torch‡. The embedding size is fixed to 32 for all models, which
is suitable for the model to learn a strong representation embed-
ding [6, 35]. We optimize all models with Adam optimizer [18],
having train batch size fixed to 2048. Xavier initialization [11] is
used here to initialize the parameters. For all BPR-based methods,
we build user-item pairs on-the-fly with eight sampling processes
at the same time. When coming to MCBPR, the sampling rate is
carefully searched according to the original paper. For NMTR, the
loss coefficient is set according to the original paper on two datasets.
In terms of hyperparameters, we apply a grid search method here:
learning rate is searched in [1e−6, 3e−6, 1e−5, 3e−5, 1e−4], and L2
normalization coefficient is tuned in [1e−7, 1e−6, 1e−5, 1e−4, 1e−3].
Besides, we perform node dropout and message dropout for Graph-
SAGE, NGCF, RGCN, and MBGCN, and pretrain [15] them with
embeddings gotten from MF to obtain better performance. Further-
more, we use early stop here to detect over-fitting, and the training
process will be stopped if Recall@10 on the validation set does not
increase for 40 epochs. We try several layers for MBGCN and find
l = 1 to be good enough for the two datasets here.

4.2 Overall Performance (RQ1)
We start by comparing the performance of our composed MBGCN
with all other baselines. The result on two datasets are reported
on Table 2 and Table 3. From the results, we have the following
observations.
• Model Effectiveness. From both tables, we can find that our
MBGCN overperforms all baselines substantially on all Recall@K
and NDCG@K metrics. The average improvement of our model
to the best baseline is 25.27% and 24.78% for Recall and NDCG on
the Tmall dataset and 9.95% and 3.07% on Beibei dataset, which
justifies the effectiveness of our model.

• Graph models require special designs to work well on rec-
ommender systems. At the one-behavior category, NGCF can
outperform traditional matrix factorization and simple neural
models in most metrics. This demonstrates the strong power of
graph convolutional networks since information of the neigh-
bors of users (items) are fused into their embeddings, which

‡https://pytorch.org/

empowers the effectiveness of representation learning. However,
GraphSAGE and RGCN fail to capture the CF signal on Tmall
dataset, since they do not have special designs that make them
fit into recommender system. Therefore, efforts in this work to
make graph neural networks work well in the multi-behavior
recommendation is necessary.

• Multi-behaviormodels workwell than one-behaviormod-
els. In the comparison of MCBPR, NMTR, MF-BPR, and NCF, we
can find that adding multi-behavior information into predict-
ing (MCBPR and NMTR) can improve the performance. The
best multi-behavior model can outperform the best one-behavior
model on Tmall by 39.28% on Recall and 14% on NDCG, while
14.65% and 11.07% on Beibei, which clarifies the necessity of
introducing multi-behavior data.

• Ourmodel is the best model which can utilize graph struc-
ture andmulti-behavior information at the same time.Com-
paring with the graph neural network models that can extract
information from multi-behavior data such as GraphSAGE-MB,
NGCF-MB, and RGCN, our MBGCN performs the best. That
can be explained in two folds. First, SAGE-MB and NGCF-MB
cannot distinguish different behaviors, which may lead to the
loss of some of the information in original data; second, RGCN
only considers edge types but ignores the contribution strength
of each behavior to the target behavior. However, our MBGCN
can extract user behavior weight and item relevance from multi-
behavior data, which strongly improves the effectiveness. Besides,
our MBGCN, with the strong power of graph neural network,
can outperform state-of-the-art multi-behavior recommendation
model NMTR.

4.3 Ablation Study (RQ2)
4.3.1 Comparison of Different Behavior Weight Design. In order

to evaluate the effect of behavior-based user-item propagation, we
compare the performance of our model on Tmall dataset with equal
α for all behavior, equal w for all behavior and learn-able w in
Equation 2, respectively. The result is recorded in Table 4.

It is shown that the model with learn-able w performs better
than model with equalw and the model with equal α by 28.82% and
2.38% on Recall and 23.78% and 1.42% on NDCG respectively. This
demonstrates that importance weights of behaviors are essential
and should be learned by the model itself.

4.3.2 Comparison of Different I2I Propagation Method. Item-to-
item propagation is designed here to extract item relevance based
on multi-behavior. We do an ablation study to test the effectiveness
of item-to-item propagation by comparing the performance of the
model with no item-to-item propagation, the model with only target
behavior item-to-item propagation and model with all behavior
item-to-item propagation. The results are shown in Table 5.

It is shown that model with all behavior item-to-item propa-
gation outperforms model with no item-to-item propagation and
model with target behavior item-to-item propagation by 2.81% and
2.91% on Recall and 3.34% and 1.93% on NDCG respectively. This
demonstrates that adding behavior based item propagation can
help improve performance, especially when all kinds of behavior
information are injected into the model.

Table 2: Comparisons on Tmall and improvement comparing with the best baseline.

Method Recall@10 NDCG@10 Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80

One-behavior
MF-BPR 0.02331 0.01306 0.03161 0.01521 0.04239 0.01744 0.05977 0.02049
NCF 0.02507 0.01472 0.03319 0.01683 0.04502 0.01931 0.06352 0.02252

GraphSAGE-OB 0.01993 0.01157 0.02521 0.01296 0.03368 0.01474 0.04617 0.01693
NGCF-OB 0.02608 0.01549 0.03409 0.01757 0.04612 0.02010 0.06415 0.02324

Multi-behavior

MCBPR 0.02299 0.01344 0.03178 0.01558 0.04360 0.01813 0.06190 0.02132
NMTR 0.02732 0.01445 0.04130 0.01831 0.06391 0.02279 0.09920 0.02891

GraphSAGE-MB 0.02094 0.01223 0.02805 0.01406 0.03804 0.01616 0.05351 0.01887
NGCF-MB 0.03076 0.01754 0.04196 0.02042 0.05857 0.02389 0.08408 0.02833
RGCN 0.01814 0.00955 0.02627 0.01165 0.03877 0.01426 0.05749 0.01750

MBGCN 0.04006 0.02088 0.05797 0.02548 0.08348 0.03079 0.12091 0.03730

Improvement 30.23% 19.04% 37.04% 24.78% 24.91% 28.88% 8.90% 26.40%

Table 3: Comparisons on Beibei and improvement comparing with the best baseline.

Method Recall@10 NDCG@10 Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80

One-behavior
MF-BPR 0.03873 0.02286 0.05517 0.02676 0.08984 0.03388 0.14137 0.04258
NCF 0.04209 0.02394 0.05609 0.02579 0.09118 0.03410 0.15426 0.04022

GraphSAGE-OB 0.034536 0.01728 0.06907 0.02594 0.11567 0.03547 0.18626 0.04747
NGCF-OB 0.04112 0.02199 0.06336 0.02755 0.11051 0.03712 0.19524 0.05153

Multi-behavior

MCBPR 0.03914 0.02264 0.04950 0.02525 0.09592 0.03467 0.15422 0.04462
NMTR 0.03628 0.01901 0.06239 0.02559 0.10683 0.03461 0.18907 0.04855

GraphSAGE-MB 0.04204 0.02267 0.05862 0.02679 0.09707 0.03451 0.18272 0.04911
NGCF-MB 0.04241 0.02415 0.06152 0.02893 0.10370 0.03741 0.01771 0.04987
RGCN 0.04204 0.02051 0.06354 0.02591 0.09859 0.03309 0.16121 0.04363

MBGCN 0.04825 0.02446 0.07354 0.03077 0.11926 0.04005 0.20201 0.05409

Improvement 13.77% 1.28% 11.76% 3.85% 7.68% 3.30% 6.58% 3.84%

Table 4: Ablation study of user-item propagation weight.

Model Recall20 NDCG20 Recall40 NDCG40

αur =1 0.04508 0.02068 0.06468 0.02476
Uniform w 0.05586 0.02481 0.08265 0.03075
Learn-able w 0.05797 0.02548 0.08347 0.03079

Table 5: Ablation study of item-item propagation method.
Model Recall20 NDCG20 Recall40 NDCG40

No propagation 0.05575 0.02451 0.08212 0.02997
Only target 0.05632 0.02458 0.08112 0.03073
All behavior 0.05797 0.02548 0.08347 0.03079

4.4 Cold-start Problem (RQ3)
When a new user enters recommendation platform, it is hard for
most recommender models to recommend item to him since he
has no target behavior record, and this problem is called cold-start
problem. Different from most models, our model has a item-based
scoring module which can assess target item through comparing it
with items that the user has interacted with. Owe to this design, we
can solve this problem without retraining the model when a new
user enters. Since a item relevance calculating module is added into
our model, we can predict a score for a test item by calculating the
similarity of the particular item with items that user has interacted
with, which improves the effectiveness of recommending when
user embedding is zero on every dimension.

We compare our MBGCN’s ability to alleviate the cold start
issue with the best baseline NGCF-MB on the Tmall dataset. We
randomly choose 1000 users as the cold-start users by deleting their
interaction in the training set and then train the model with the
remaining users. We follow the same setting with that in section
4.1.4. When these two models reach convergence, we use them to

10 20 40 80

#top@K

0

0.02

0.04

#
R

e
c
a
ll

NGCF-MB

MBGCN

(a) Recall

10 20 40 80

#top@K

0

0.01

0.02

0.03

#
N

D
C

G

NGCF-MB

MBGCN

(b) NDCG

Figure 5: Comparison ofNGCF-MBandMBGCNsolving cold
start problem on Tmall.
directly perform recommendation to these 1000 cold start users
only with their auxiliary-behavior records. The performance of
Recall and NDCG is shown in Figure 5.

The result of our MBGCN model outperforms NGCF-MB by
87.96% and 125.37% on Recall and NDCG, respectively. Averagely,
the performance of MBGCN under the cold-start setting is 91.43%
the performance of MF-BPR under the normal setting, demonstrat-
ing the strong power of our MBGCN model.

4.5 Hyper-parameter Study (RQ4)
As our model uses a joint predicting function which fuses user-
based score and item-based score together with hyperparameter λ,
we start by investigating the impact of λ on the performance first.
Moreover, we analyze the influences of node dropout and message
dropout.

Firstly, we start experiment with different λ on Tmall dataset to
check on its influence. We evaluate λ in [0, 0.1, 0.3, 0.5, 0.7, 0.9, 1]
and the result is presented in Figure 6. When λ = 0, the model only
has an item-based scoring component, and it performs bad. With

0 0.1 0.3 0.5 0.7 0.9 1

#lambda

0

0.02

0.04

0.06

R
e
c
a
ll@

2
0

0

0.01

0.02

0.03

N
D

C
G

@
2
0

recall

ndcg

(a) Study of λ

0 0.1 0.2 0.3 0.4 0.5

#drop-out

0.052

0.054

0.056

0.058

0.06

R
e
c
a
ll@

2
0

0.024

0.025

0.026

0.027

0.028

N
D

C
G

@
2
0

recall

ndcg

(b) Study of message/node drop-out
Figure 6: Study of λ and dropout ratio on Tmall.

λ increasing from 0.1 to 0.9, MBGCN performs nearly the same.
But when λ = 1, which corresponds to the case when the model
only has a user-based CF scoring component, the performance
decreases. It can be found that λ = 0.7 is the best choice for our
model. In conclusion, the model with both user-based scoring and
item-based scoring performs better than the model with only user-
based scoring or only item-based scoring, and user-based scoring
is more critical than item-based scoring.

Since we employ message dropout and node dropout techniques
here to prevent MBGCN from overfitting, we do experiment on
Tmall dataset with ratio selected in [0, 0.1, 0.3, 0.4, 0.5] to explore
how message dropout ratio and node dropout ratio (they are as-
signed the same value) can affect the performance of MBGCN. The
result is shown in Figure 6. With the dropout ratio increases from 0
to 0.5, the performance of our model increases and then decreases.
The best performance is reached at 0.3. When the dropout ratio
is less than 0.3, the model suffers from overfitting, and when the
dropout ratio is larger than 0.3, the model degenerates. In conclu-
sion, it is appropriate to choose the message dropout ratio and node
dropout ratio around 0.3, which can prevent overfitting without
making the model degenerate.

5 RELATEDWORK
5.1 Multi-behavior Recommendation
Multi-behavior recommendation [3, 7, 10, 22, 33] utilizes multiple
user-item feedback for enhancing recommendation on target behav-
iors. In general, existing works on multi-behavior recommendation
can be divided into two categories.

The first category of works [3, 10, 33] approached this task in a
multi-task manner. Specifically, these works considered modeling
multiple types of behaviors as multiple tasks and introduced pa-
rameter sharing across tasks for joint learning from multi-behavior
data. Tang et al. [33] proposed to share user embedding matrices
among several matrix factorization tasks for each behavioral matrix.
Gao et al. [10] proposed to take advantage of the advance in neural
network based recommendation and made user and item embed-
ding layer shared across multiple types of behaviors. Chen et al. [3]
proposed a transfer-based prediction model for multiple behaviors
with shared embedding matrices.

The second category of works [7, 22] regarded auxiliary user-
item interactions as weaker signals of user preferences and pro-
posed negative sampling based solutions for the multi-behaviour
recommendation. Loni et al. [22] proposed to divide other types of
user-item interaction into several levels, and proposed a negative

sampler, which samples items from different levels with level-aware
probability, to help train a matrix factorization based model. This is
further extended by [7] to better exploit view data with an improved
negative sampler.

In this work, we approach the task of multi-behavior recommen-
dation without any prior knowledge on preference strengths, and
propose an effective graph convolutional network based model to
automatically learn the strength of each behaviour.

5.2 Graph-based Recommendation
Graph-based recommendation constructs input data in the form of
graphs and designs graph-learning models for the recommendation.
To be specific, the key goal of recommendation, predicting the prob-
ability of user-item interaction, can be regarded as a link prediction
task on the graph, of which users and items are represented as
nodes. Thus, the development of graph-based recommendation is
in line with the progress of graph-learning models.

Some works [1, 8, 12, 25] apply random-walk based methods to
graph-based recommendation. Baluja et al. [1] proposed to start
a random walk from videos in a user’s historical records through
the videos’ co-view graph. Then the reaching probability of video
candidates is used for the prediction value of the target user’s pref-
erence. Gori et al. [12] proposed an ItemRank model based on the
PageRank algorithm [24] on item-item correlation graph for rec-
ommendation. Recently, the random-walk based recommendation
is demonstrated to be very efficient in industrial systems [8]. Some
other works [4, 5, 32, 41] rely on the graph-embedding techniques
to learn user/item embeddings for recommendation. Chen et al. [4]
proposed to build a graph consisting of four kinds of nodes—user,
album, track, and artists— for music recommendation. User pref-
erence and query words are both encoded with latent vectors by
graph-embedding techniques. Yang et al. [41] proposed to first
capture user-item high-order connectivity on the graph and then
combined it with traditional matrix factorization for recommen-
dation. Chen et al. [5] further considered the neighboring-nodes
based user-item similarity for learning embeddings of nodes for
recommendation.

Recently, graph convolutional networks (GCN) [19, 34, 40] achieve
a quantum leap in graph learning tasks. The basic idea of GCN is
performing embedding propagation to capture node feature and
graph structure at the same time. With the strong power of learn-
ing representations, GCN is widely applied in recommender sys-
tems [2, 36, 37, 39, 42, 43]. Ying et al. [42] proposed to apply GCN
to pin-board graph with neighboring sampling technique for the
pin-based recommendation. Berg et al. [2] introduced embedding
propagation to five kinds of user-item rating matrices for factor-
ization. This was further extended by [37] to more general implicit
user-item interaction data. Recently, He et al. [14] proposed to re-
move the non-linear activation function and feature transformation
in embedding propagation layers to improve the performance of
CF tasks further. Besides these works on user-item interaction data,
GCN is also utilized in more complicated recommendation tasks.
Wu et al. [39] built graph from session interaction data and adopted
GCN to learn representations for session-based recommendation.
Wang et al. [36] utilized graph attentional networks for knowledge-
aware recommendation with a unified graph containing user-item

relations and knowledge-graph relations. Zheng et al. [43] consid-
ered items’ category and price as nodes in the graph, built a graph
consisting of four types of nodes, and then applied GCN for the
price-aware recommendation.

In our work, we build a heterogeneous graph based on users’
multi-feedback and rely on the strong ability of graph convolutional
networks in learning representation of users’ and items’ embedding
vectors for recommendation.
6 CONCLUSIONS AND FUTUREWORK
In this work, we study the problem of multi-behavior recommen-
dation that considers multiple types of user-item interactions. To
fully model the different preference strengths reflected by different
behaviors and various behavioral semantics, we propose a graph-
based solution that re-constructs the multiple user-item interaction
matrices into the unified graph. We then propose an MBGCNmodel
that takes advantage of graph convolutional network’s ability in
learning node representations from complex graph structure. Ex-
tensive experimental results on real-world datasets demonstrate
the superiority of our MBGCN model. Further ablation studies
verify the effectiveness of modeling preference strength and behav-
ioral semantics, respectively. We also evaluate the performance of
cold-start users, and results confirm the applicability of MBGCN in
real-world applications.

For future work, we plan to conduct experiments on online sys-
tems with A/B testing to evaluate the recommendation performance
of our proposed solution. We also plan to explore the fine-grained
multiple interactions in session level, which is also known as mul-
tiple micro-behaviors.

ACKNOWLEDGMENTS
This work was supported in part by The National Key Research
and Development Program of China under grant 2018YFB1800804,
the National Natural Science Foundation of China under U1936217,
61971267, 61972223, 61941117, 61861136003, Beijing Natural Sci-
ence Foundation under L182038, Beijing National Research Center
for Information Science and Technology under 20031887521, and
research fund of Tsinghua University - Tencent Joint Laboratory
for Internet Innovation Technology. This work was also supported
by the National Natural Science Foundation of China (U19A2079).

REFERENCES
[1] Shumeet Baluja, Rohan Seth, Dharshi Sivakumar, Yushi Jing, Jay Yagnik, Shankar

Kumar, Deepak Ravichandran, and Mohamed Aly. 2008. Video suggestion and
discovery for youtube: taking random walks through the view graph. In WWW.

[2] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph convolu-
tional matrix completion. arXiv preprint arXiv:1706.02263 (2017).

[3] Chong Chen, Min Zhang, Yongfeng Zhang, Weizhi Ma, Yiqun Liu, and Shaoping
Ma. 2020. Efficient Heterogeneous Collaborative Filtering without Negative
Sampling for Recommendation. In AAAI.

[4] Chih-Ming Chen,Ming-Feng Tsai, Yu-Ching Lin, and Yi-Hsuan Yang. 2016. Query-
based music recommendations via preference embedding. In Recsys. ACM, 79–82.

[5] Chih-Ming Chen, Chuan-Ju Wang, Ming-Feng Tsai, and Yi-Hsuan Yang. 2019.
Collaborative Similarity Embedding for Recommender Systems. In WWW.

[6] Zhiyong Cheng, Ying Ding, Xiangnan He, Lei Zhu, Xuemeng Song, and Mohan S
Kankanhalli. 2018. Aˆ 3NCF: An Adaptive Aspect Attention Model for Rating
Prediction.. In IJCAI. 3748–3754.

[7] Jingtao Ding, Guanghui Yu, Xiangnan He, Yuhan Quan, Yong Li, Tat-Seng Chua,
Depeng Jin, and Jiajie Yu. 2018. Improving Implicit Recommender Systems with
View Data.. In IJCAI. 3343–3349.

[8] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma,
Charles Sugnet, Mark Ulrich, and Jure Leskovec. 2018. Pixie: A system for
recommending 3+ billion items to 200+ million users in real-time. In WWW.

[9] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph Neural Networks for Social Recommendation. In WWW.

[10] Chen Gao, Xiangnan He, Danhua Gan, Xiangning Chen, Fuli Feng, Yong Li, Tat-
Seng Chua, Lina Yao, Yang Song, and Depeng Jin. 2019. Learning to Recommend
with Multiple Cascading Behaviors. TKDE (2019).

[11] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In AISTATS. 249–256.

[12] Marco Gori, Augusto Pucci, V Roma, and I Siena. 2007. Itemrank: A random-walk
based scoring algorithm for recommender engines.. In IJCAI, Vol. 7. 2766–2771.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NIPS. 1024–1034.

[14] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network
for Recommendation. In SIGIR.

[15] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW. 173–182.

[16] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast
matrix factorization for online recommendation with implicit feedback. In SIGIR.
549–558.

[17] Santosh Kabbur, Xia Ning, and George Karypis. 2013. Fism: factored item simi-
larity models for top-n recommender systems. In KDD. 659–667.

[18] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. ICLR (2015).

[19] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. ICLR (2017).

[20] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In KDD. 426–434.

[21] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009).

[22] Babak Loni, Roberto Pagano, Martha Larson, and Alan Hanjalic. 2016. Bayesian
personalized ranking with multi-channel user feedback. In RecSys. 361–364.

[23] Xia Ning and George Karypis. 2011. Slim: Sparse linear methods for top-n
recommender systems. In ICDM. IEEE, 497–506.

[24] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
pagerank citation ranking: Bringing order to the web. Technical Report.

[25] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In KDD. 701–710.

[26] Huihuai Qiu, Yun Liu, Guibing Guo, Zhu Sun, Jie Zhang, and Hai Thanh Nguyen.
2018. BPRH: Bayesian personalized ranking for heterogeneous implicit feedback.
Information Sciences 453 (2018), 80–98.

[27] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI.

[28] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to rec-
ommender systems handbook. In Recommender systems handbook. Springer,
1–35.

[29] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In WWW. 285–295.

[30] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European Semantic Web Conference. Springer, 593–607.

[31] Ajit P Singh and Geoffrey J Gordon. 2008. Relational learning via collective
matrix factorization. In KDD. ACM, 650–658.

[32] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In WWW. 1067–1077.

[33] Liang Tang, Bo Long, Bee-Chung Chen, and Deepak Agarwal. 2016. An empirical
study on recommendation with multiple types of feedback. In KDD. 283–292.

[34] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. ICLR (2018).

[35] Hao Wang, Huawei Shen, Wentao Ouyang, and Xueqi Cheng. 2018. Exploiting
POI-Specific Geographical Influence for Point-of-Interest Recommendation.. In
IJCAI. 3877–3883.

[36] XiangWang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. KGAT:
Knowledge Graph Attention Network for Recommendation. In KDD.

[37] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In SIGIR. 165–174.

[38] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying Graph Convolutional Networks. In ICML. PMLR.

[39] ShuWu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.
Session-based recommendation with graph neural networks. In AAAI.

[40] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? ICLR (2018).

[41] Jheng-Hong Yang, Chih-Ming Chen, Chuan-Ju Wang, and Ming-Feng Tsai. 2018.
HOP-rec: high-order proximity for implicit recommendation. In Recsys.

[42] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In KDD. ACM, 974–983.

[43] Yu Zheng, Chen Gao, Xiangnan He, Yong Li, and Depeng Jin. 2020. Price-aware
Recommendation with Graph Convolutional Networks. In ICDE.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Methodology
	3.1 Unified Heterogeneous Graph
	3.2 Shared Embedding Layer
	3.3 Behavior-aware User-Item Propagation
	3.4 Item-Relevance Aware Item-Item Propagation
	3.5 Joint Prediction
	3.6 Model Training

	4 Experiment
	4.1 Experimental Settings
	4.2 Overall Performance (RQ1)
	4.3 Ablation Study (RQ2)
	4.4 Cold-start Problem (RQ3)
	4.5 Hyper-parameter Study (RQ4)

	5 Related Work
	5.1 Multi-behavior Recommendation
	5.2 Graph-based Recommendation

	6 Conclusions and Future Work
	Acknowledgments
	References

