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ABSTRACT
Recommendation is a prevalent and critical service in information
systems. To provide personalized suggestions to users, industry
players embrace machine learning, more specifically, building
predictive models based on the click behavior data. This is known
as the Click-Through Rate (CTR) prediction, which has become the
gold standard for building personalized recommendation service.
However, we argue that there is a significant gap between clicks
and user satisfaction — it is common that a user is “cheated” to click
an item by the attractive title/cover of the item. This will severely
hurt user’s trust on the system if the user finds the actual content
of the clicked item disappointing. What’s even worse, optimizing
CTR models on such flawed data will result in the Matthew Effect,
making the seemingly attractive but actually low-quality items be
more frequently recommended.

In this paper, we formulate the recommendation models
as a causal graph that reflects the cause-effect factors in
recommendation, and address the clickbait issue by performing
counterfactual inference on the causal graph. We imagine a
counterfactual world where each item has only exposure features
(i.e., the features that the user can see before making a click
decision). By estimating the click likelihood of a user in the
counterfactual world, we are able to reduce the direct effect of
exposure features and eliminate the clickbait issue. Experiments
on real-world datasets demonstrate that our method significantly
improves the post-click satisfaction of CTR models.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies → Learning from implicit feedback.
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1 INTRODUCTION
Recommender systems have been increasingly used to alleviate
information overloading for users in awide spectrum of information
systems such as e-commerce [59], digital streaming [50], and
social networks [19]. To date, the most recognized way for
training recommender model is to optimize the Click-Through
Rate (CTR), which aims to maximize the likelihood that a user
clicks the recommended items. Despite the wide deployment of
CTR optimization in recommender systems, we argue that the
user experience may be hurt unintentionally due to the clickbait
issue. That is, some items with attractive exposure features (e.g.,
title and cover image) are easy to attract user clicks [20, 57], and
thus are more likely to be recommended, but their actual content
does not match the exposure features and disappoints the users.
Such clickbait issue is very common, especially in the present era
of self-media, posing great obstacles for the platform to provide
high-quality recommendations (cf. Figure 4 for the evidence).

To illustrate, Figure 1 shows an example that a user clicks two
recommended videos with observation of their exposure features
only. After watching the video, i.e., examining the video content
after clicking, the user gives the ratings of whether like or dislike
the recommendations. 𝐼𝑡𝑒𝑚2 receives a dislike since the title
deliberately misleads the user to click it, whereas 𝑖𝑡𝑒𝑚1 receives a
like since its actual content matches the title and cover image, and
satisfies the user. This reflects the possible (in fact, significant) gap
between clicks and satisfaction — many clicks would end up with
dissatisfaction since the click depends largely on whether the user
is interested in the exposure features of the item.

Assuming that we can extract good content features that are
indicative of item quality and even consistent with user satisfaction,
can we address the discrepancy issue? Unfortunately, the answer is
no. The reason roots in the optimization objective — CTR: when we
train a recommender model to maximize the click likelihood of the
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items with the clickbait issue, the model will learn to emphasize the
exposure features and ignore the signal from other features, because
the attractive exposure features are the causal reason of user clicks.
This will aggravate the negative effect of clickbait issue, making
these seemingly attractive but low-quality items be recommended
more and more frequently.

To address the issue, a straightforward solution is to leverage
the post-click feedback from users [32, 51], such as the like/dislike
ratings and numeric reviews. However, the amount of such explicit
feedback is much smaller than that of click data, since many users
are reluctant to leave any feedback after clicks. In most real-world
datasets, users have very few post-click feedback, making it difficult
to utilize them to supplement the large-scale implicit feedback well.
Towards a wider range of applications and broader impact, we
believe that it is critical to solve the clickbait issue in recommender
system based on the click feedback only, which is highly challenging
and has never been studied before.

In this work, we approach the problem from a novel perspective
of causal inference: if we can distinguish the effects of exposure
features (pre-click) and content features (post-click) on the
prediction, then we can reduce the effect of exposure features that
cause the clickbait issue. Towards this end, we first build a causal
graph that reflects the cause-effect factors in recommendation
scoring (Figure 3(b)). Next, we estimate the direct effect of exposure
features on the prediction score in a counterfactual world (Figure
3(c)), which imagines what the prediction score would be if the item
had only the exposure features. During inference, we remove this
direct effect from the prediction in the factual world, which presents
the total effect of all item features. In the example of Figure 1,
although 𝑖𝑡𝑒𝑚1 and 𝑖𝑡𝑒𝑚2 obtain similar scores in the factual world,
the final score of 𝑖𝑡𝑒𝑚2 will be largely suppressed, because its
content features are disappointing and it is the deceptive exposure
features that increase the prediction score in the factual world.
We instantiate the framework on MMGCN [50], a representative
multi-modal recommender model that can handle both exposure
and content features. Extensive experiments on two widely used
benchmarks show the superiority of the proposed framework,
which significantly reduces the clickbait issue by only using the
click feedback and recommends more satisfying items.

To sum up, the contributions of this work are threefold:

• We highlight the importance of mitigating the clickbait issue
by using click data only and leverage a new causal graph to
formulate the recommendation process.

• We introduce counterfactual inference into recommendation
to mitigate the clickbait issue, and propose a counterfactual
recommendation framework which can be applied to any
recommender models with item features as inputs.

• We implement the proposed framework onMMGCN and conduct
extensive experiments on two widely used benchmarks, which
validate the effectiveness of our proposal.

2 TASK FORMULATION
In this section, we formulate the recommender training and the
clickbait issue, followed by the task evaluation.

Recommender training. The target of recommender training
is to learn a scoring function 𝑠𝜃 that predicts the preference of a
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Figure 1: (a) Illustration of inconsistency between clicks and
likes. (b) Number of clicks/likes on the two items where few
clicks on item2 endwith likes. (c) Two recommendation lists
with and without the clickbait issue, respectively.

user over an item. Formally, 𝑌𝑢,𝑖 = 𝑠𝜃 (𝑢, 𝑖) where 𝑢 and 𝑖 denote
user features and item features, respectively. Specifically, item
features 𝑖 = (𝑒, 𝑡) include both exposure features 𝑒 and content
features 𝑡 which are observed by users before and after clicks,
respectively. 𝜃 denotes the model parameters which are typically
learned from historical click data D̄ = {(𝑢, 𝑖, 𝑌𝑢,𝑖 ) |𝑢 ∈ U, 𝑖 ∈ I},
where 𝑌𝑢,𝑖 ∈ {0, 1} denotes whether 𝑢 clicks 𝑖 (𝑌𝑢,𝑖 = 1) or not
(𝑌𝑢,𝑖 = 0).U and I refer to the user set and item set, respectively. In
this work, we use click to represent any type of implicit interactions
for brevity, including purchase, watch, and download. Formally, the
recommender training is:

𝜃 = arg min
𝜃

∑
(𝑢,𝑖,𝑌𝑢,𝑖 ) ∈D̄

𝑙 (𝑠𝜃 (𝑢, 𝑖), 𝑌𝑢,𝑖 ), (1)

where 𝑙 (·) denotes the recommendation loss such as cross-entropy
loss [15]. During inference, the trained recommender model serves
each user by ranking all items according to 𝑌𝑢,𝑖 = 𝑠𝜃 (𝑢, 𝑖) and
recommending the top-ranked ones to the user.

Clickbait Issue. The clickbait issue is recommending items
with attractive exposure features but disappointing content features
frequently. Formally, given item 𝑖 with attractive exposure features
but dissatisfying content, and item 𝑗 with less attractive exposure
features and satisfying content, the clickbait issue happens if:

𝑠𝜃 (𝑢, 𝑖 = (𝑒𝑖 , 𝑡𝑖 )) > 𝑠𝜃 (𝑢, 𝑗 = (𝑒 𝑗 , 𝑡 𝑗 )), (2)

where item 𝑖 ranks higher than item 𝑗 . That is, items with more
attractive exposure features (e.g., 𝑖𝑡𝑒𝑚2 in Figure 1) occupy the
recommendation opportunities of items with satisfying content
features (e.g., 𝑖𝑡𝑒𝑚1 in Figure 1).

Consequently, the recommender models will recommend many
items like 𝑖 , which will hurt user experience and lead to more clicks
that end with dislikes. And worse still, it forms a vicious spiral: in
turn, such clicks aggravate the issue in future recommender training.
In this work, we aim to break the vicious spiral by mitigating the
clickbait issue during inference, i.e., forcing 𝑌𝑢,𝑖 < 𝑌𝑢,𝑗 for more
user satisfaction rather than a higher CTR. Furthermore, we solve
the problem based on click feedback only, i.e., no post-click feedback
is accessible during the recommender training.
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Figure 2: (a) An example of a causal graph where the
individual income (𝐼 ) is directly affected by the education
(𝐸), age (𝐴), and skill (𝑆); and skill is influenced by education.
(b) A causal graph with particular realizations. (c) A causal
intervention 𝑑𝑜 (𝐸 = 𝑒∗), where 𝑒∗ denotes the reference
value of 𝐸, e.g., no qualifications. (d) One counterfactual
where 𝑆 is set as 𝑠∗ while keeping 𝐸 = 𝑒 on the edge 𝐸 → 𝐼 .

Evaluation. Distinct from the conventional recommender
evaluation that treats all clicks in the testing period as positive
samples [17, 50], we evaluate recommendation performance only
over clicks that end with positive post-click feedback (i.e., likes) [52].
We do not use the clicks that lack post-click feedback due to
the unawareness of user satisfaction. In addition, we believe that
the recommendation performance on the selected clicks is able
to validate the effectiveness of solving the clickbait issue. This
is because a recommender model affected by the clickbait issue
will fail on a portion of the selected clicks because they prefer
to recommend items with more attractive exposure features but
dissatisfying content features.

3 PRELIMINARY
We briefly introduce the concepts of counterfactual inference [37,
38] used in this paper, and refer readers to learn from the related
works [35, 37, 43–45] for a comprehensive understanding.

Causal Graph. Causal graph describes the causal relations
between variables by a directed acyclic graphG = {N , E}, whereN
is the set of variables (i.e., nodes) and E records the causal relations
(i.e., edges). In the causal graph, capital letters and lowercase letters
denote random variables (e.g., 𝑋 ) and the specific realizations of
random variables (e.g., 𝑥), respectively. Figure 2(a) illustrates an
example of a causal graph that represents the causal relations
to the individual income: 1) the individual income (𝐼 ) is directly
affected by the education (𝐸), age (𝐴), and skill (𝑆); and 2) indirectly
affected by the education through a mediator 𝑆 . According to the
graph structure, a set of structural equations F [38] can be used
to measure how the variables are affected by their parents. For
example, we can estimate the values of 𝑆 and 𝐼 from their parents
by F = {𝑓𝑆 (·), 𝑓𝐼 (·)}. Formally,{

𝑆𝑒 = 𝑠 = 𝑓𝑆 (𝐸 = 𝑒),
𝐼𝑒,𝑠,𝑎 = 𝑓𝐼 (𝐸 = 𝑒, 𝑆 = 𝑠, 𝐴 = 𝑎), (3)

where 𝐼𝑒,𝑠,𝑎 denotes the income of one person who satisfies 𝐸 = 𝑒 ,
𝑆 = 𝑠 , and 𝐴 = 𝑎. 𝑓𝑆 (·) and 𝑓𝐼 (·) correspond to the structural
equations of variable 𝑆 and 𝐼 , respectively, which can be learned
from a set of observations [38].

Counterfactuals. Counterfactual inference [39] is a technique
to estimate what the descendant variables would be if the value
of one treatment variable were different with its real value in the

factual world. As shown in Figure 2(d), counterfactual inference
can estimate what the income of Joe would be if he only had the skill
of a person without qualifications. That is imagining a situation:
𝐼 receives 𝐸 = 𝑒 through 𝐸 → 𝐼 , while 𝑆 receives 𝐸 = 𝑒∗

through 𝐸 → 𝑆 and other variables are fixed. Specifically, 𝑒 can
represent a bachelor degree while 𝑒∗ denotes no qualifications.
The key to counterfactual inference lies in performing external
intervention [38] to control the value of 𝑆 , which is termed as
do-operator. Formally, 𝑑𝑜 (𝑆 = 𝑠∗) forcibly substitute 𝑠 with 𝑠∗ =

𝑓𝑆 (𝐸 = 𝑒∗) in the structural equation 𝑓𝐼 , obtaining 𝐼𝑒,𝑠∗,𝑎 = 𝑓𝐼 (𝐸 =

𝑒, 𝑆 = 𝑠∗, 𝐴 = 𝑎). Note that 𝑑𝑜 (𝑆 = 𝑠∗) does not affect the ascendant
variables of 𝑆 , i.e., 𝐸 retains its real value 𝑒 on the direct path 𝐸 → 𝐼 .

Causal Effect. Causal effect1 of one event with the treatment
variable (e.g., 𝐸 = 𝑒 , obtaining a bachelor degree) on the response
variable (e.g., 𝐼 ) measures the change of the response variable when
the treatment variable changes from its reference value (e.g., 𝑒∗) to
the expected value (e.g., 𝑒), which is also termed as total effect (TE).
Formally, the TE of 𝐸 = 𝑒 on 𝐼 under situation 𝐴 = 𝑎 is defined as:

TE = 𝐼𝑒,𝑠,𝑎 − 𝐼𝑒∗,𝑠∗,𝑎,
= 𝑓𝐼 (𝐸 = 𝑒, 𝑆 = 𝑠, 𝐴 = 𝑎) − 𝑓𝐼 (𝐸 = 𝑒∗, 𝑆 = 𝑠∗, 𝐴 = 𝑎), (4)

where 𝐼𝑒∗,𝑠∗,𝑎 denotes the reference status of 𝐼 when 𝐸 = 𝑒∗, i.e.,
the outcome of the intervention 𝑑𝑜 (𝐸 = 𝑒∗) (see Figure 2(c)).
Specifically, by viewing 𝑒∗ as no qualifications, 𝐼𝑒∗,𝑠∗,𝑎 denotes the
income of Joe if he hadn’t got qualifications (i.e., 𝐸 = 𝑒∗) at the age
of 𝑎. Furthermore, the event affects the response variable through
both the direct path between the two variables (e.g., 𝐸 → 𝐼 ) and
the indirect path via mediators (e.g., 𝐸 → 𝑆 → 𝐼 ). A widely used
decomposition of TE is TE = NDE + TIE, where NDE and TIE denote
the natural direct effect and total indirect effect [37, 45], respectively.

In particular, NDE is the change of the response variable when
only changing the treatment variable on the direct path, i.e., the
mediators retain unchanged and still receive the reference value.
For instance, the NDE of 𝐸 = 𝑒 on 𝐼 under situation 𝑎 is the change
of the income 𝐼 when changing 𝐸 from 𝑒∗ to 𝑒 and forcing 𝑆 = 𝑠∗.
Formally, the calculation of NDE relies on 𝑑𝑜 (𝑆 = 𝑠∗), which is:

NDE = 𝐼𝑒,𝑠∗,𝑎 − 𝐼𝑒∗,𝑠∗,𝑎, (5)

where 𝐼𝑒,𝑠∗,𝑎 is the income in a counterfactual world (see Figure
2(d)). Accordingly, the TIE of 𝐸 = 𝑒 on 𝐼 under situation 𝐴 = 𝑎 can
be obtained by subtracting NDE from TE [45]:

TIE = TE − NDE = 𝐼𝑒,𝑠,𝑎 − 𝐼𝑒,𝑠∗,𝑎 . (6)

Generally, TIE is the change of the response variable when the
mediators are changed from their reference values (e.g., 𝑠∗ = 𝑓𝑆 (𝐸 =

𝑒∗)) to the ones receiving the expected value (e.g., 𝑠 = 𝑓𝑆 (𝐸 = 𝑒)),
and the value of the treatment variable on the direct path remains
fixed (e.g., 𝐸 = 𝑒 on 𝐸 → 𝐼 ).

4 COUNTERFACTUAL RECOMMENDATION
In this section, we introduce the causal graph of recommender
systems, followed by the elaboration of counterfactual inference
to mitigate the clickbait issue and the design of proposed
counterfactual recommendation (CR) framework.

1In this work, causal effect is defined at the unit level [37, 38], i.e., the effect is on one
individual rather than a population.



4.1 Causal Graph of Recommender Systems
In Figure 3(a), we abstract the causal graph of existing recommender
models where 𝑌 , 𝑈 , 𝐼 , 𝐸, and 𝑇 denote the prediction score, user
features, item features, exposure features, and content features,
respectively. Accordingly, the existing recommender model (i.e.,
𝑠𝜃 (·)) is abstracted as two structural equations 𝑓𝑌 (·) and 𝑓𝐼 (·),
which are formulated as:

𝑌𝑢,𝑖 = 𝑓𝑌 (𝑈 = 𝑢, 𝐼 = 𝑖), 𝑤ℎ𝑒𝑟𝑒 𝑖 = 𝐼𝑒,𝑡 = 𝑓𝐼 (𝐸 = 𝑒,𝑇 = 𝑡) . (7)

The two structural equations 𝑓𝑌 (·) and 𝑓𝐼 (·) correspond to the main
modules of the existing models, the scoring function (e.g., inner
product function) and feature aggregation function (e.g., multi-
layer perceptron (MLP) [15]), respectively. In particular, 𝑓𝐼 (·) aims
to extract the representative item features from its exposure and
content features, which are then fed into 𝑓𝑌 (·) for making the
prediction. The parameters of the equations (i.e., 𝜃 ) are learned by
minimizing the recommendation loss over historical data, so as to
maximize the likelihood of the clicked items (i.e., Equation 1).

However, the causal graph of existing recommender models
mismatches the generation process of the training data. In the
user browsing process, users might click the items only because
they are attracted by the exposure features2. From the cause-effect
view, there is a direct effect from the exposure features to the click
behavior. As a result of ignoring such direct effect in the model, the
feature aggregation functionwill inevitably emphasize the exposure
features while ignoring the content features (see empirical results
in Figure 8), in order to achieve a small loss on the clicked items
with the clickbait issue.

To bridge this gap, we build a new causal graph by adding a
direct edge from exposure features 𝐸 to the prediction 𝑌 (Figure
3(b)). According to the new causal graph, the recommender model
should capture the causal effect of exposure features on prediction
𝑌 through both the direct path (𝐸 → 𝑌 ) and the indirect path (𝐸 →
𝐼 → 𝑌 ). Formally, the abstract format of the model should be:

𝑌𝑢,𝑖,𝑒 = 𝑓𝑌 (𝑈 = 𝑢, 𝐼 = 𝑖, 𝐸 = 𝑒), 𝑤ℎ𝑒𝑟𝑒 𝑖 = 𝑓𝐼 (𝐸 = 𝑒,𝑇 = 𝑡) . (8)

In other words, when we design a recommender model that will
be optimized over historical clicks through the CTR objective, its
scoring function should directly take exposure features as one
additional input.

4.2 Mitigating Clickbait Issue
While the new causal graph provides a more precise description
of the cause-effect factors for recommendation scoring, the
recommender model based on the new causal graph still suffers
from the clickbait issue (in Equation 2). This is because the outcome
of the response variable, i.e., 𝑌𝑢,𝑖,𝑒 , still accounts for the direct effect
of exposure features. Consequently, the item (e.g., item2 in Figure 1)
with more attractive exposure features is still scored higher than
the one with more satisfying content but less attractive exposure
features. To mitigate the clickbait issue, we perform CR inference
to reduce the direct effect of exposure features from the prediction
𝑌𝑢,𝑖,𝑒 , which is formulated as 𝑌𝑢,𝑖,𝑒 − NDE.

2Note that the click behavior can also be affected by other item features (i.e., 𝐼 ), e.g.,
the category and uploader of videos.
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Towards this end, we need to estimate the NDE of event 𝐸 = 𝑒 on
the response variable 𝑌 . In particular, we estimate the NDE under
situation 𝑈 = 𝑢 and 𝑇 = 𝑡∗. As detailed in Section 3, the NDE is
formulated as:

NDE = 𝑌𝑢,𝑖∗,𝑒 − 𝑌𝑢,𝑖∗,𝑒∗
= 𝑓𝑌 (𝑈 = 𝑢, 𝐼 = 𝑖∗, 𝐸 = 𝑒) − 𝑓𝑌 (𝑈 = 𝑢, 𝐼 = 𝑖∗, 𝐸 = 𝑒∗),

where 𝑖∗ = 𝑓𝐼 (𝐸 = 𝑒∗,𝑇 = 𝑡∗), and 𝑒∗ and 𝑡∗ are the reference
values of 𝐸 and 𝑇 , respectively. 𝑓𝑌 (𝑈 = 𝑢, 𝐼 = 𝑖∗, 𝐸 = 𝑒) denotes the
outcome of a counterfactual (see Figure 3(c)) where the treatment
variable 𝐸 is changed from 𝑒∗ to 𝑒 on the direct path (i.e., 𝐸 → 𝑌 )
while remains its reference value on the indirect path (i.e., 𝐸 →
𝐼 → 𝑌 ). That is, it estimates what the prediction score would be if the
item had only the exposure features in a counterfactual world, i.e., to
what extent the user is purely attracted by exposure features. In this
task, the reference values 𝑒∗ and 𝑡∗ are treated as the status that the
features are not given. Given the user features 𝑢, the second term
𝑌𝑢,𝑖∗,𝑒∗ (Figure 3(d)) is thus a constant for any items, i.e., 𝑌𝑢,𝑖∗,𝑒∗ will
not affect the ranking of items for a user. Therefore, by subtracting
the NDE of exposure features from 𝑌𝑢,𝑖,𝑒 , the prediction score of
CR inference becomes:

𝑌𝐶𝑅 = 𝑌𝑢,𝑖,𝑒 − 𝑌𝑢,𝑖∗,𝑒 . (9)

Intuitively, 𝑌𝐶𝑅 reduces the NDE of exposure features and relies
on the effect of the combined item features 𝐼 for inference. The
prediction score of the item with attractive exposure features but
boring content (e.g., 𝑖𝑡𝑒𝑚2 in Figure 1) will be largely suppressed
during CR inference, because its only attractiveness is in the
exposure features and the content features are dissatisfying. It
will have a high prediction score in the counterfactual world (i.e.,
𝑌𝑢,𝑖∗,𝑒 ). Accordingly, the item with less attractive exposure features
but satisfying content features (e.g., 𝑖𝑡𝑒𝑚1 in Figure 1) will have a
higher chance to be recommended because the satisfactory item
features 𝐼 will increase the prediction score in CR inference, which
forces 𝑠𝜃 (𝑢, 𝑖) < 𝑠𝜃 (𝑢, 𝑗) in Equation 2.

From the cause-effect view, CR inference subtracts the NDE of
𝐸 = 𝑒 from the TE of 𝐸 = 𝑒 and 𝑇 = 𝑡 . As introduced in Section
3, the TE of 𝐸 = 𝑒 and 𝑇 = 𝑡 on 𝑌 under situation 𝑈 = 𝑢 can be
calculated by 𝑌𝑢,𝑖,𝑒 −𝑌𝑢,𝑖∗,𝑒∗ where 𝑌𝑢,𝑖∗,𝑒∗ is the reference situation.
Obviously, the prediction score of CR inference can be formulated
as 𝑌𝐶𝑅 = TE − NDE.



Note that we can estimate the NDE of 𝐸 = 𝑒 on 𝑌 under the
situation of 𝑇 = 𝑡∗ or 𝑇 = 𝑡 [37]. Changes of the situation can
lead to minor difference in the estimation since the recommender
models are typically non-linear [38, 45]. We select the situation of
𝑇 = 𝑡∗ to avoid the leakage of exposure features. This is because, in
the recommendation scenarios, the content features 𝑡 might include
some information in the exposure features 𝑒 . For instance, the cover
image may be a frame in the video, which might cause the leakage
of 𝑒 through the mediator 𝐼 . Empirical evidence in Table 3 justifies
the advantage of this choice.

4.3 CR Framework Design
Recall that the key to counterfactual inference lies in the learned
structural equations. To enable CR inference, we thus need to design
a recommender model according to the proposed causal graph in
Figure 3(b) and an algorithm to learn the model parameters.

4.3.1 Model Design. According to Equation 8, the recommender
model should consists of two functions: the scoring function 𝑓𝑌 (𝑈 =

𝑢, 𝐼 = 𝑖, 𝐸 = 𝑒) and the feature aggregation function 𝑓𝐼 (𝐸 = 𝑒,𝑇 = 𝑡).
As to the feature aggregation function, we can simply employ the
one in existing models to encode the causal relations from 𝐸 and
𝑇 to 𝐼 . We focus on upgrading the conventional scoring function
𝑓𝑌 (𝑈 = 𝑢, 𝐼 = 𝑖) to 𝑓𝑌 (𝑈 = 𝑢, 𝐼 = 𝑖, 𝐸 = 𝑒).

• Scoring Function. A straightforward idea is to embed the
additional input 𝑒 into the conventional scoring function. However,
this solution loses generality due to requiring careful adjustments
for different recommender models. According to the universal
approximation theorem [10], we could also implement 𝑓𝑌 (·) by
a MLP with 𝑢, 𝑖 , and 𝑒 as the inputs. Nevertheless, it is hard to tune
a MLP to achieve the comparable performance with the models
wisely designed for the recommendation task [19, 40, 50].

Aiming to keep generality and leverage the advantages of
existing models, the scoring function is implemented in a late-
fusion manner [4, 35]:

𝑓𝑌 (𝑈 = 𝑢, 𝐼 = 𝑖, 𝐸 = 𝑒) = 𝑓 (𝑌𝑢,𝑖 , 𝑌𝑢,𝑒 ),

where 𝑌𝑢,𝑖 = 𝑓𝑌 (𝑈 = 𝑢, 𝐼 = 𝑖) and 𝑌𝑢,𝑒 = 𝑓𝑌 (𝑈 = 𝑢, 𝐸 = 𝑒) are the
predictions from two conventional models with different inputs;
and 𝑓 (·) is a fusion function. 𝑌𝑢,𝑖 and 𝑌𝑢,𝑒 can be instantiated by
any recommender models with user and item features as the inputs
such as MMGCN [50] and VBPR [17]. In this way, we can simply
adapt an existing recommender model to fit in the proposed causal
graph by additionally implementing a fusion strategy, which can
be easily achieved.

• Fusion strategy. Inspired by the prior studies [4, 35], we adopt
one classic fusion strategy: Multiplication (MUL), formulated as:

𝑌𝑢,𝑖,𝑒 = 𝑓𝑌 (𝑈 = 𝑢, 𝐼 = 𝑖, 𝐸 = 𝑒) = 𝑓 (𝑌𝑢,𝑖 , 𝑌𝑢,𝑒 ) = 𝑌𝑢,𝑖 ∗ 𝜎 (𝑌𝑢,𝑒 ),

where 𝜎 denotes the sigmoid function. It provides non-linearity
for sufficient representation capacity of the fusion strategy, which
is essential (see results in Table 5). Note that the proposed CR is
general to any differentiable arithmetic binary operations and we
compare more strategies in Table 5.

4.3.2 Model Training. Recall that the CR inference requires two
predictions: 𝑌𝑢,𝑖,𝑒 and 𝑌𝑢,𝑖∗,𝑒 . The target of model training is thus

twofold — learning parameters of the structural equations (i.e., 𝑓𝑌 (·)
and 𝑓𝐼 (·)) that can accurately estimate both 𝑌𝑢,𝑖,𝑒 and 𝑌𝑢,𝑖∗,𝑒 . As
such, we optimize a multi-task training objective over historical
clicks to learn the model parameters, which is formulated as:

L =
∑

(𝑢,𝑖,�̄�𝑢,𝑖 )∈D̄
𝑙 (𝑌𝑢,𝑖,𝑒 , 𝑌𝑢,𝑖 ) + 𝛼 ∗ 𝑙 (𝑌𝑢,𝑒 , 𝑌𝑢,𝑖 ), (10)

where 𝑌𝑢,𝑖 is the label for 𝑢 and 𝑖 , and 𝛼 is a hyperparameter to
tune the relative weight of two tasks. Recall that 𝑖∗ indicates the
recommender model doesn’t take 𝑖 as the input, and thus 𝑌𝑢,𝑒 can
be seen as the learned prediction 𝑌𝑢,𝑖∗,𝑒 based on the user features
𝑢 and exposure features 𝑒 in the counterfactual world.

•CR Inference. CR inference needs to calculate the predictions
𝑌𝑢,𝑖,𝑒 = 𝑓 (𝑌𝑢,𝑖 , 𝑌𝑢,𝑒 ) and 𝑌𝑢,𝑖∗,𝑒 = 𝑓 (𝑐𝑢 , 𝑌𝑢,𝑒 ) where 𝑐𝑢 refers to the
expectation constants of 𝑌𝑢,𝐼 :

𝑐𝑢 = 𝐸 (𝑌𝑢,𝐼 ) =
1
|I |

∑
𝑖∈I

𝑌𝑢,𝑖 , (11)

which indicates that for each user, all the items share the same
score 𝑐𝑢 . Since the features of 𝐼 are not given in 𝑌𝑢,𝑖∗,𝑒 , the model
used to predict 𝑌𝑢,𝑖 ranks items with the same score 𝑐𝑢 for user 𝑢.
In this way, the results of CR inference will be calculated by:

𝑌𝐶𝑅 = 𝑌𝑢,𝑖,𝑒 − 𝑌𝑢,𝑖∗,𝑒 = 𝑌𝑢,𝑖,𝑒 − 𝑓 (𝑐𝑢 , 𝑌𝑢,𝑒 ) = 𝑌𝑢,𝑖,𝑒 − 𝑐𝑢 ∗ 𝜎 (𝑌𝑢,𝑒 ) .

The item with the attractive exposure features but dissatisfying
content will have a higher score of 𝑌𝑢,𝑒 , which is then subtracted
from the original prediction 𝑌𝑢,𝑖,𝑒 , lowering the rank of such items.

To summarize, compared to conventional recommender models,
the proposed CR framework demonstrates three main differences:
• Causal graph. The recommender model under the CR
framework is based on a new causal graph that accounts for
the direct effect of exposure features on the prediction score.

• Multi-task training. In addition to the model learning in the
real world (i.e.,𝑌𝑢,𝑖,𝑒 ), we also train the model to make predictions
in the counterfactual world (i.e., 𝑌𝑢,𝑖∗,𝑒 ).

• CR inference. Instead of making recommendations according
to the real-world prediction, we deduct the NDE of exposure
features to mitigate the clickbait issue.

5 RELATEDWORK
Recommendation. Because of the rich user/item features
in the real-world scenarios [21, 22, 31], many approaches
[7, 26] incorporate multi-modal user and item features into
recommendation [6, 17, 23, 46]. Recently, Graph Neural Networks
(GNN) [13, 14] have been widely used in recommendation [12, 48,
49], and GNN-based multi-modal model MMGCN [50] achieves
promising performance due to its modality-aware information
propagation over the user-item graph. However, existing works
are trained by implicit feedback and totally ignore the clickbait
issue. Therefore, items with many clicks but few likes will be
recommended frequently.
Incorporating Various Feedback. To mitigate the clickbait issue,
many efforts try to reduce the gap between clicks and likes
by incorporating more features into recommendation, such as
interaction context [25], item features [33], and various user
feedback [53, 56]. Generally, they fall into two categories. The first is



negative experience identification [32, 58]. It performs a two-stage
pipeline [32, 33] which first identifies negative interactions based on
item features (e.g., the news quality) and context information (e.g.,
dwell time), and then only uses interactions with likes as positive
samples. The second category considers directly incorporating extra
post-click feedback (e.g., thumbs-up, favorite, and dwell time) to
optimize recommender models [29, 53–55]. For instance, Wen et
al. [51] leveraged the “skip” patterns to train recommender models
with three kinds of items: “click-complete”, “click-skip”, and “non-
click”. Nevertheless, the application of these methods is limited by
the availability of context information and users’ additional post-
click feedback. Post-click feedback is usually sparse, and thus using
only clicks with likes for training will lose a large proportion of
positive samples.
Causal Recommendation. In the information retrieval domain,
early studies [2, 24] on causal inference mainly focus on de-
biasing implicit feedback, e.g., position bias [9]. As to causal
recommendation [5, 8, 60], many researchers study fairness [34] or
the bias issues with the help of causal inference, such as exposure
bias [3, 28] and popularity bias [1] in the logged data [30]. Among
the family of causal inference for de-biasing recommendation, the
most popular method is Inverse Propensity Scoring Weighting (IPW)
[27, 41, 42] which turns the observed logged data into a pseudo-
randomized trial by re-weighting samples. In general, they estimate
the propensity of exposure or popularity at first, and re-weight
samples with the inverse propensity scores. However, current causal
recommendation never considers the clickbait issue. They don’t
distinguish the effects of exposure and content features, and treat
users’ implicit feedback such as clicks as the actual user preference.
Therefore, prior studies still have the clickbait issue and recommend
the items that many users would click but actually dislike.

6 EXPERIMENTS
6.1 Experimental Settings
Datasets.We evaluate our proposed CR framework on two publicly
available datasets in different application scenarios: Tiktok [50] and
Adressa [16]. For each dataset, we utilize post-click feedback to
evaluate the recommender models. We admit that: 1) the sparsity
of post-click feedback might restrict the scale of the evaluation,
however, we still cover a large group of users for evaluation.
Actually, almost all users are covered in two datasets; and 2)
the items with more attractive exposure features are easier to be
collected as testing samples regardless of content features since they
are more likely to be clicked. Nevertheless, constructing a totally
unbiased testing set is unrealistic without external intervention,
which is extremely expensive and thus left to future work. The
statistics of datasets are in Table 1.

• Tiktok. It is a multi-modal micro-video dataset released in ICME
Challenge 20193 where a micro-video has the features of caption,
audio, and video. Multi-modal item features have already been
extracted by the organizer for the fair comparison. We treat
captions as exposure features and the remaining as content ones.
Besides, actions of thumbs-up, favorite, or finish are used as

3http://ai-lab-challenge.bytedance.com/tce/vc/.

Table 1: Statistics of two datasets.
Dataset #Users #Items #Clicks #Likes
Tiktok 18,855 34,756 1,493,532 589,008
Adressa 31,123 4,895 1,437,540 998,612
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Figure 4: Click and like distributions of items in Tiktok. The
grey line visualizes the cumulative proportion of items as
the like/click ratio increases. The x-axis is like/click ratio
and the y-axis is the number of clicks or likes.

the positive post-click feedback (i.e., like), which is only used to
construct the testing set for evaluation.

• Adressa4. This is a news dataset [16] where the title and
description of news are exposure features and the news content
is treated as content features. We use the pre-trained Multilingual
BERT [11] to extract textual features into 768-dimension vectors.
Following prior studies [25], we treat a click with dwell time >
30 seconds as a like of user.
Figure 4 outlines the distribution of the like/click ratio where

items are ranked and divided into 101 groups according to the
ratio value. As can be seen, over 60% of items have like/click ratio
smaller than 0.5, indicating the wide existence of clicks that end
with dislikes. Moreover, recommending such items may lead to
more clicks which fail to satisfy users and hurt user experience.

For each user, we randomly choose 10% clicks that end with likes
to constitute a test set5, and treat the remaining as the training set.
Besides, 10% of clicks are randomly selected from the training set
as the validation set. We utilize the validation set to tune hyper-
parameters and choose the bestmodel for the testing phase. For each
click, we randomly choose an item the user has never interacted
with as the negative sample for training.

EvaluationMetrics.We follow the all-ranking evaluation protocol
that ranks over all the items for each user except the clicked
ones used in training [18, 47], and report the recommendation
performance through: Precision@K (P@K), Recall@K (R@K) and
NDCG@K (N@K) with 𝐾 = {10, 20} where higher values indicate
better performance [50].

Compared MethodsWe compare the proposed CR with various
recommender methods that might alleviate the clickbait issue. For a
fair comparison, all methods are applied to MMGCN [50], which is
the state-of-the-art multi-modal recommender model and captures
the modality-aware high-order user-item relationships. Specifically,
CR is compared with the following baselines:
• NT. Following [50], MMGCN is trained by the normal training
(NT) strategy, where all item features are used and MMGCN is

4http://reclab.idi.ntnu.no/dataset/.
5If fewer than 10% clicks of a user end with likes, all such clicks are put into the test
set. Besides, we ignore the potential noise in the test set, e.g., fake favorite.

http://ai-lab-challenge.bytedance.com/tce/vc/.
http://reclab.idi.ntnu.no/dataset/.


Table 2: Top-𝐾 recommendation performance of compared methods on Tiktok and Adressa. %Improve. denotes the relative
performance improvement of CR over NT. The best results are highlighted in bold. Stars and underlines denote the best results
of the baselines with and without using additional post-click feedback during training, respectively.

Dataset Tiktok Adressa
Metric P@10 R@10 N@10 P@20 R@20 N@20 P@10 R@10 N@10 P@20 R@20 N@20

NT [50] 0.0256 0.0357 0.0333 0.0231 0.0635 0.0430 0.0501 0.0975 0.0817 0.0415 0.1612 0.1059
CFT [50] 0.0253 0.0356 0.0339 0.0226 0.0628 0.0437 0.0482 0.0942 0.0780 0.0405 0.1573 0.1021
IPW [27] 0.0230 0.0334 0.0314 0.0210 0.0582 0.0406 0.0419 0.0804 0.0663 0.0361 0.1378 0.0883
CT [50] 0.0217 0.0295 0.0294 0.0194 0.0520 0.0372 0.0493 0.0951 0.0799 0.0418∗ 0.1611 0.1051
NR [51] 0.0239 0.0346 0.0329 0.0216 0.0605 0.0424 0.0499 0.0970 0.0814 0.0415 0.1610 0.1058
RR 0.0264∗ 0.0383∗ 0.0367∗ 0.0231∗ 0.0635∗ 0.0430∗ 0.0521∗ 0.1007∗ 0.0831∗ 0.0415 0.1612∗ 0.1059∗
CR 0.0269 0.0393 0.0370 0.0242 0.0683 0.0476 0.0532 0.1045 0.0878 0.0439 0.1712 0.1133
%Improve. 5.08% 10.08% 11.11% 4.76% 7.56% 10.70% 6.19% 7.18% 7.47% 5.78% 6.20% 6.99%

optimized with click data. We keep the same hyperparameter
settings as in [50], including that: the model is optimized by the
BPR loss [40]; the learning rate is set as 0.001, and the size of
latent features is 64.

• CFT. Based on the analysis that exposure features are easy
to induce the clickbait issue, we only use content features for
training (CFT). The model is also trained with all click data.

• IPW. Liang et al. [27, 28] tried to reduce the exposure bias from
clicks by causal inference with IPW [41]. For a fair comparison,
we follow the idea of Liang et al. and implement the exposure
and click models in [27] by MMGCN since it uses multi-modal
item features and thus can achieve better performance.

Besides, considering post-click feedback can indicate the actual
user satisfaction, we compare CR with three baselines that
additionally incorporate post-click feedback:

• CT. This method is conducted in the clean training (CT) setting,
in which only the clicks that end with likes are viewed as positive
samples to train MMGCN.

• NR. Wen et al. [51] adopted post-click feedback and also treated
“click-skip” items as negative samples. We apply their Negative
feedback Re-weighting (NR) into MMGCN. In detail, NR adjusts
the weights of two negative samples during training, including
“click-skip” items and “no-click” items. Following [51], the extra
hyper-parameter 𝜆𝑝,𝑛 , i.e., the ratio of two kinds of negative
samples, is tuned in {0, 0.2, 0.4, 0.6, 0.8, 1.0}.

• RR. For each user, we propose a strategy to re-rank (RR) the top
20 items recommended by NT during inference. For each item,
the final ranking is calculated by the sum of rank in NT and the
rank based on the like/click ratio of items. The like/click ratio is
calculated from the whole dataset.

We omit potential testing recommender models such as VBPR [17]
since the previous work [50] has validated the superior performance
of MMGCN over these multi-modal recommender models.

Parameter Settings. We strictly follow the original implemen-
tation of MMGCN [50], including code, parameter initialization,
and hyperparameter tuning. The additional weight 𝛼 in the multi-
task loss function is tuned in {0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5}. The
effect of 𝛼 on the performance is visualized in Figure 5 where the
model obtains the best performance when 𝛼 is 1 or 2, showing the
effectiveness of our proposedmulti-task training. As shown in Table

Table 3: Results of estimating NDE under 𝑇 = 𝑡 .
Tiktok Adressa

Method R@20 N@20 R@20 N@20
NT 0.0635 0.0430 0.1612 0.1059
CR (𝑇 = 𝑡 ) 0.0671 0.0465 0.1667 0.1093
CR (𝑇 = 𝑡∗) 0.0683 0.0476 0.1712 0.1133
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Figure 5: Effect of 𝛼 in the multi-task loss.

3, we estimate the NDE of 𝐸 = 𝑒 on 𝑌 under situation𝑇 = 𝑡∗ due to
its rationality and better performance. Moreover, early stopping is
performed for the model selection, i.e., stop training if recall@10
on the validation set does not increase for 10 successive epochs.
We train all the models multiple times and report the average
performance. More details can be found in the code6.

6.2 Performance Comparison
The overall performance comparison is summarized in Table 2.
From the table, we have the following observations:

• Debiasing Training. In most cases, CFT performs worse than
NT, which is attributed to discarding exposure features. The
result overrules the option of simply discarding exposure features
to mitigate the clickbait issue, which is indispensable for user
preference prediction. Moreover, the performance of IPW is inferior
on Tiktok and Adressa, showing that the clickbait issue may not
be resolved by simply discouraging the recommendation of items
with more clicks. In addition, the result indicates the importance
of accurate propensity estimation to mitigate a bias, which is the
crucial barrier of the usage of IPW for handling the bias caused by
features with complex and changeable patterns.

• Post-click Feedback. RR outperforms NT, which re-ranks the
recommendations of NT according to the like/click ratio. It validates
the effectiveness of leveraging post-click feedback to mitigate the
clickbait issue and satisfy user requirements. However, CT and
6https://github.com/WenjieWWJ/Clickbait/.

https://github.com/WenjieWWJ/Clickbait/.


Table 4: Performance comparison betweenCR inference and
the inference via TE.

Dataset Tiktok Adressa
Metric P@20 R@20 N@20 P@20 R@20 N@20
NT 0.0231 0.0635 0.0430 0.0415 0.1612 0.1059
CR-TE 0.0235 0.0665 0.0461 0.0436 0.1698 0.1122
CR inference 0.0242 0.0683 0.0476 0.0439 0.1712 0.1133
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Figure 6: Visualization of the averaged recommendation
frequencies of items. Note that items with low like/click
ratios shouldn’t be recommended.

NR, which incorporate post-click feedback into the model training,
perform worse than NT on Tiktok, e.g., the NDCG@10 of CT
decreases by 11.71% on Tiktok. We ascribe the inferior performance
to the sparsity of post-click feedback, which hurts the model
generalization when the model is trained on a small number of
interactions. It makes sense since the clicks that end with likes in
Tiktok account for only 39.44%, which is much lower than that
in Adressa (69.47%). Moreover, we postulate the reason to be the
inaccurate causal graph (Figure 3(a)) that lacks the direct edge from
exposure features to prediction, which is further detailed in Table 4.

• CR Inference. In all cases, CR achieves significant performance
gains over all baselines. In particular, CR outperforms NT w.r.t.
N@10 by 11.11% and 7.47% on Tiktok and Adressa, respectively.
The result validates the effectiveness of the proposed CR, which is
attributed to the new causal graph and counterfactual inference. In
particular, CR also outperforms RRwhich additionally considers the
post-click feedback. This further signifies the rationality of CR in
eliminating the direct effect of exposure features on the prediction
to mitigate the clickbait issue. As such, CR significantly helps to
recommend more satisfying items, which can improve the user
engagement and produce greater economic benefits.

6.2.1 Effect of the Proposed Causal Graph. To shed light on
the performance gain, we further study one variant, i.e., CR-TE,
which performs inference via the TE of 𝐸 = 𝑒 and 𝑇 = 𝑡 , i.e., its
difference from NT is training over the proposed causal graph.
Table 4 shows their performance with 𝐾 = 20. From the table, we
observe that CR-TE outperforms NT, which justifies the rationality
of incorporating the direct edge from exposure features to the
prediction score. It validates the existence of the shortcut where
exposure features can directly lead to clicks. Moreover, CR inference
further outperforms CR-TE, showing that reducing the direct effect
of exposure features indeed mitigates the clickbait issue and leads
to better recommendation with more satisfaction.

6.3 In-depth Analysis
We then take CR on Adressa as an example to further investigate
the effectiveness of CR.

Figure 7: Performance comparison across the subsets of
Adressa with different discarding proportions. A larger
proportion indicates a higher percentage of the clicks that
end with dislikes in the dataset.

6.3.1 Visualization of Recommendations w.r.t. Like/click
Ratio. Recall that recommender models with the clickbait issue
tend to recommend items even though their like/click ratios are
low. We thus compare the recommendations of CR and NT to
explore whether CR can reduce recommending the items with high
risk to hurt user experience. Specifically, we collect top-ranked
items recommended to each user and count the frequency of each
item being recommended. Figure 6 outlines the recommendation
frequencies of CR and NT where items are intuitively split into five
groups according to their like/click ratio for better visualization.
From the figure, we can see that as compared to NT, 1) CR
recommends fewer items with like/click ratios ≤ 0.6; and 2) more
items with high like/click ratios, especially in [0.8, 1]. The result
indicates the higher potential of CR to satisfy users, which is
attributed to the proper modeling of the effect of exposure features.

6.3.2 Effect of Dataset Cleanness. We then study how the
effectiveness of CR is influenced by the “cleanness” of the click
data. Specifically, we compare CR and NT over filtered datasets
with different percentages of clicks that end with dislikes. We rank
the items in descending order by the like/click ratio, and discard the
top-ranked items at a certain proportion where a larger discarding
proportion leads to a dataset with a higher percentage of clicks that
end with dislikes. Figure 7 shows the performance with discarding
proportion changing from 0 (the original dataset) to 0.8. From Figure
7, we have the following findings: 1) CR outperforms NT in all cases,
which further validates the effectiveness of CR. 2) The performance
gains are close when the discarding proportion is smaller than
0.4, and increase dramatically under larger proportions. The result
indicates thatmitigating the clickbait issue ismore important for the
recommendation scenarios with more clicks that end with dislikes.

6.3.3 Effect of Fusion Strategy. Recall that any differentiable
arithmetic binary operations can be equipped as the fusion strategy
in CR [35]. To shed light on the development of proper fusion
strategies, we investigate its essential properties, such as linearity
and boundary. As such, in addition to the MUL strategy, we further
evaluate a vanilla SUM strategy with linear fusion, SUM with
sigmoid function, and SUM/MUL with 𝑡𝑎𝑛ℎ(·) as the activation
function. Formally,

SUM-linear: 𝑌𝑢,𝑖,𝑒 = 𝑓 (𝑌𝑢,𝑖 , 𝑌𝑢,𝑒 ) = 𝑌𝑢,𝑖 +𝑌𝑢,𝑒 ,
SUM-sigmoid: 𝑌𝑢,𝑖,𝑒 = 𝑓 (𝑌𝑢,𝑖 , 𝑌𝑢,𝑒 ) = 𝑌𝑢,𝑖 + 𝜎 (𝑌𝑢,𝑒 ),
SUM-tanh: 𝑌𝑢,𝑖,𝑒 = 𝑓 (𝑌𝑢,𝑖 , 𝑌𝑢,𝑒 ) = 𝑌𝑢,𝑖 + tanh(𝑌𝑢,𝑒 ),
MUL-tanh: 𝑌𝑢,𝑖,𝑒 = 𝑓 (𝑌𝑢,𝑖 , 𝑌𝑢,𝑒 ) = 𝑌𝑢,𝑖 ∗ tanh(𝑌𝑢,𝑒 ) .

(12)



Table 5: Performance of CR with different fusion strategies.
Metric P@10 R@10 N@10 P@20 R@20 N@20
SUM-Linear 0.0380 0.0718 0.0598 0.0317 0.1196 0.0780
SUM-tanh 0.0537 0.1060 0.0889 0.0447 0.1744 0.1150
MUL-tanh 0.0520 0.1027 0.0861 0.0435 0.1698 0.1118
SUM-sigmoid 0.0533 0.1044 0.0877 0.0439 0.1714 0.1132
MUL-sigmoid 0.0532 0.1045 0.0878 0.0439 0.1711 0.1132

Similar to the MUL fusion strategy, we also estimate CR
inference for SUM-linear, SUM-sigmoid, SUM-tanh, and MUL-tanh,
respectively. The results are as follows:

SUM-linear: 𝑌𝐶𝑅 = 𝑌𝑢,𝑖 − 𝑐𝑢,𝑖 ∝ 𝑌𝑢,𝑖 ,

SUM-sigmoid: 𝑌𝐶𝑅 = 𝑌𝑢,𝑖 − 𝑐𝑢,𝑖 ∝ 𝑌𝑢,𝑖 ,

SUM-tanh: 𝑌𝐶𝑅 = 𝑌𝑢,𝑖 − 𝑐𝑢,𝑖 ∝ 𝑌𝑢,𝑖 ,

MUL-tanh: 𝑌𝐶𝑅 = (𝑌𝑢,𝑖 − 𝑐𝑢,𝑖 ) ∗ tanh(𝑌𝑢,𝑒 ) .

During CR inference, the SUM strategies with different activation
functions are equivalent. However, they capture the direct effect of
exposure features differently in the training process. Therefore, the
recommendation results are theoretically different.

The performance of different fusion strategies is reported
in Table 5. From that, we can find that: 1) non-linear fusion
strategies are significantly better than linear ones due to the
better representation capacity; and 2) SUM-tanh achieves the
best performance over the other fusion strategies, including the
proposed MUL-sigmoid strategy. This shows that a fusion function
with the proper boundary can further improve the performance
of CR and multiple fusion strategies are worth studying when CR
inference is applied to other datasets in future.

6.3.4 CR Evaluation on Synthetic Data. To further evaluate
the effectiveness of CR on mitigating the direct effect of exposure
features, we conduct experiments on synthetic data. Specifically,
during inference, we construct a fake item for each positive user-
item pair in the testing data by “poisoning” the exposure feature
of the item. The content features of the fake item are the same
as the real item while its exposure features are randomly selected
from the items with the like/click ratio < 0.5. Such items with low
like/click ratios are more likely to be the ones with the clickbait
issue. Their exposure features are easy to be attractive but deceptive,
for example, “Find UFO!”. Besides, there is a large discrepancy
between the exposure and content features of the fake items, which
simulates the items with the clickbait issue where content features
do not align with exposure features. Therefore, the fake item should
have a lower rank than the paired real item if the recommender
model can mitigate the clickbait issue well.

A lower rank of the fake item indicates a better elimination of
the direct effect from the exposure features. Accordingly, we rank
all testing real items and the fakes ones for each user, and we define
rank_gap = 𝑟𝑎𝑛𝑘𝑓 𝑎𝑘𝑒 − 𝑟𝑎𝑛𝑘𝑟𝑒𝑎𝑙 to measure the performance of
recommender models, where 𝑟𝑎𝑛𝑘𝑓 𝑎𝑘𝑒 and 𝑟𝑎𝑛𝑘𝑟𝑒𝑎𝑙 are the ranks
of the paired fake and real items, respectively. A larger rank_gap
value indicates a bigger gap and thus better performance. Lastly, we
calculate the rank_gap of each triplet <user, real item, fake item>
in the testing data.

As shown in Figure 8(a), the rank_gap values are first grouped,
and then counted by group. From this figure, we can observe that the
rank_gap values generated by CR are larger than those of NT, and
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Figure 8: Results of CR evaluation on synthetic data.

the distribution of CR is flatter than that of NT, indicating that CR
produces lower ranking scores for the fake items. This is because CR
effectively reduces the direct effect of deceptive exposure features.
Besides, we randomly sample 5k samples of triplets from the testing
data and individually compare the rank_gap values generated by
CR and NT in Figure 8(b). From the figure, we can find that 1)
most points are above the diagonal, showing the rank_gap of CR is
usually larger than that of NT; and 2) the rank_gap values generated
by CR cover a wider range, varying from 0 to 5k. The findings imply
that CR can distinguish the real and fake items well, which further
proves the effectiveness of CR on mitigating the clickbait issue.

7 CONCLUSION AND FUTUREWORK
The clickbait issue widely exists in the industrial recommender
systems. To eliminate its effect, we proposed a new recommendation
framework CR that accounts for the causal relations among the
exposure features, content features, and predictions. Through
performing counterfactual inference, we estimated the direct
effect of exposure features on the prediction and removed it
from recommendation scoring. While we instantiated CR on a
specific recommendermodelMMGCN, it is model-agnostic and only
requires minor adjustments (several lines of codes) to be adopted
to other models, enabling the wide usage of CR across different
recommendation scenarios and models. By mitigating the clickbait
issue, they can improve the user satisfaction and engagement.

This work opens up a new research direction—incorporating
counterfactual inference into recommender systems. Following
this direction, there are many interesting ideas that deserve our
exploration. 1) Considering the huge benefit of reasoning over
causal graph, it is essential to construct a more comprehensive
causal graph for recommendation with more fine-grained causal
relations in future. 2) This work justifies the effectiveness of
counterfactual inference on mitigating the clickbait issue, and
motivates further exploration on other intrinsic biases and issues in
the click data, such as selection bias [36] and position bias [24].
3) More broadly, this work signifies the importance of causal
inference on recommendation. It opens the door of empowering
recommender systems with more causal inference techniques, such
as intervention and counterfactual inference.
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