
Agentic Feedback Loop Modeling Improves Recommendation
and User Simulation

Shihao Cai
University of Science and
Technology of China
Hefei, Anhui, China

caishihao@mail.ustc.edu.cn

Jizhi Zhang
University of Science and
Technology of China
Hefei, Anhui, China

cdzhangjizhi@mail.ustc.edu.cn

Keqin Bao
University of Science and
Technology of China
Hefei, Anhui, China

baokq@mail.ustc.edu.cn

Chongming Gao∗
University of Science and
Technology of China
Hefei, Anhui, China

chongming.gao@gmail.com

Qifan Wang
Meta AI

Menlo Park, CA, United
States

wqfcr@fb.com

Fuli Feng
MoE Key Lab of BIPC,

University of Science and
Technology of China
Hefei, Anhui, China

fulifeng93@gmail.com

Xiangnan He∗
MoE Key Lab of BIPC,

University of Science and
Technology of China
Hefei, Anhui, China

xiangnanhe@gmail.com

Abstract
Large language model-based agents are increasingly applied in
the recommendation field due to their extensive knowledge and
strong planning capabilities. While prior research has primarily
focused on enhancing either the recommendation agent or the user
agent individually, the collaborative interaction between the two
has often been overlooked. Towards this research gap, we propose
a novel framework that emphasizes the feedback loop process to
facilitate the collaboration between the recommendation agent and
the user agent. Specifically, the recommendation agent refines its
understanding of user preferences by analyzing the feedback from
the user agent on the item recommendation. Conversely, the user
agent further identifies potential user interests based on the items
and recommendation reasons provided by the recommendation
agent. This iterative process enhances the ability of both agents to
infer user behaviors, enablingmore effective item recommendations
andmore accurate user simulations. Extensive experiments on three
datasets demonstrate the effectiveness of the agentic feedback loop:
the agentic feedback loop yields an average improvement of 11.52%
over the single recommendation agent and 21.12% over the single
user agent. Furthermore, the results show that the agentic feedback
loop does not exacerbate popularity or position bias, which are
typically amplified by the real-world feedback loop, highlighting
its robustness. The source code is available at https://github.com/
Lanyu0303/AFL.

CCS Concepts
• Information systems→ Recommender systems.

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’25, Padua, Italy
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1592-1/2025/07
https://doi.org/10.1145/3726302.3729893

Recommendation
Agent

User Agent

AFL

Produced
Items

User Behaviors

User-Item
History

R
eco

m
m

en
d

atio
n

s

Fe
ed

b
ac

k

User Simulation
Performance Improved

Recommendation
Performance Improved

Items

Figure 1: The comparison between the recommendation
agent, the user agent, and the AFL. The recommendation
agent typically recommends items based on user-item his-
tory, whereas the user agent generally simulates user behav-
ior towards these items. AFL concurrently develops both a
recommendation agent and a user agent, emphasizing the
interaction and collaboration between two agents.

Keywords
Recommendation, User Simulation, Feedback Loop, Agent, Large
Language Models

ACM Reference Format:
Shihao Cai, Jizhi Zhang, Keqin Bao, Chongming Gao, Qifan Wang, Fuli
Feng, and Xiangnan He. 2025. Agentic Feedback Loop Modeling Improves
Recommendation and User Simulation. In Proceedings of the 48th Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’25), July 13–18, 2025, Padua, Italy. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3726302.3729893

1 Introduction
In recent years, substantial efforts have been dedicated to devel-
oping agents based on large language models (LLMs), aiming at
simulating human behavior to enhance the performance across
a wide range of tasks [18]. These LLM-based agents typically in-
tegrate memory modules [43], utilize tools [38], and perform ad-
vanced reasoning [18, 28]. These capabilities enable them to store

https://orcid.org/0009-0009-6894-364X
https://orcid.org/0000-0002-0251-465X
https://orcid.org/0009-0001-5910-0204
https://orcid.org/0000-0002-5187-9196
https://orcid.org/0000-0002-7570-5756
https://orcid.org/0000-0002-5828-9842
https://orcid.org/0000-0001-8472-7992
https://github.com/Lanyu0303/AFL
https://github.com/Lanyu0303/AFL
https://doi.org/10.1145/3726302.3729893
https://doi.org/10.1145/3726302.3729893

SIGIR ’25, July 13–18, 2025, Padua, Italy Shihao Cai et al.

and leverage memories for decision-making, retrieve additional
information through tool usage, and apply logical reasoning to
tackle complex tasks more effectively. Building on these advan-
tages, researchers have recently begun exploring the application of
LLM-based agents in the recommendation domain [31, 40, 41].

Current applications of LLM-based agents in the recommenda-
tion field can be generally summarized into two categories:

• As to the recommendation task, the LLM-based recommendation
agent [31, 32] draws on the world knowledge embedded in LLMs
and improves the performance through advanced capabilities
such as tool use and logical reasoning [26, 31, 32].
• As to the user simulation task, the LLM-based user agent [30, 40]
leverages the human behavior modeling capabilities of LLMs
to simulate user actions in recommendation systems, such as
liking, disliking, and commenting. Consequently, the user agent
can be used to evaluate the performance of the recommendation
system, infer user interests, and generate user data for training
recommendation models [7, 40, 41].

Existing research primarily focuses on optimizing either the rec-
ommendation agent or the user agent separately, overlooking the
critical role of the feedback loop between the user and the recom-
mender. However, in real-world recommendation scenarios, the
recommender aids users in discovering their interests and pref-
erences. Simultaneously, users, through multi-round interactions
with the recommender, provide feedback that enables the system
to better understand their preferences. This reciprocal influence
between the user and the recommender forms the feedback loop
within a recommendation system [12]. The interactive and recipro-
cal nature of this feedback loop aligns well with the strengths of
LLM-based agents, which excel in interaction and memory capabil-
ities. This synergy motivates us to explore integrating the feedback
loop into the optimization of both recommendation and user agents,
aiming to enhance them simultaneously.

To this end, we introduce the Agentic Feedback Loop (AFL)
modeling. AFL simultaneously constructs both a recommendation
agent and a user agent, using textual communication to simulate
the feedback loop. In each iteration, the recommendation agent
suggests an item and provides a rationale. The user agent then
responds with feedback, indicating whether it likes the item. If the
user agent is satisfied, the loop terminates; otherwise, both the
recommendation rationale and user feedback are stored in mem-
ory, and the process repeats. AFL relies exclusively on memory
to record interactions and update both agents, making it simple
and broadly applicable. It is not limited to any specific agents and
can be integrated with almost any recommendation or user agent
equipped with memory. By leveraging interaction history stored in
memory, the recommendation agent can identify the shortcomings
of previous suggestions and better infer user preferences, leading to
improved recommendations. Similarly, the user agent can discover
potential user interests from the interaction history, allowing it to
adjust its user modeling accordingly.

To assess the effectiveness of the proposed framework, we con-
ducted comprehensive experiments on three widely used recom-
mendation datasets: LastFM [5], Steam [20], and MovieLens [14].
The experimental results show that AFL simultaneously enhances
the performance of both the recommendation agent and the user

agent, with larger improvements as the maximum number of it-
erations increases. Furthermore, unlike real-world feedback loops
that often amplify popularity and position biases [23], the exper-
imental results show that AFL does not exacerbate these biases,
demonstrating its robustness.

In conclusion, our main contributions are summarized as follows:
• To our knowledge, our work is the first to highlight the signifi-
cance of modeling the feedback loop between the recommenda-
tion agent and the user agent in LLM-based recommendation.
• We propose a novel framework, AFL, which establishes an agen-
tic feedback loop to facilitate the cooperation and reciprocity
between the recommendation agent and the user agent.
• Extensive experiments validate the effectiveness of the proposed
AFL approach, underscoring the potential and importance of the
feedback loop in agent-based recommendation systems.

2 Related Work
In this section, we delve into related studies from two perspectives:
LLMs for recommendation and agent-based recommendation.

2.1 LLMs for Recommendation
Due to LLMs’ extensive knowledge and strong reasoning capabili-
ties, researchers have begun exploring their application in recom-
mendation systems [2, 22, 34, 36]. Previous work can be roughly
categorized into using LLMs for feature enhancement and using
LLMs for direct recommendation [27].

For feature enhancement, some researchers use LLMs to aug-
ment raw data, thereby supplying additional information for rec-
ommendation models [35]. What’s more, several studies propose to
augment traditional models with LLM tokens or embeddings [17],
which can leverage the world knowledge of LLMs to assist tradi-
tional recommendation models in learning the underlying connec-
tions between items and users.

For direct recommendation, some work directly utilized LLMs’
strong capabilities such as reasoning recommendation based on user
information and interacted items [15], to further explore the poten-
tial of LLMs in recommendation. Further, some studies propose fine-
tuning LLMs on recommendation data, to acquire recommendation-
specific knowledge and enhance recommendation performance [4,
6, 8, 9, 42]. However, conducting such fine-tuning can be costly
and may potentially hurt the unique capabilities of LLMs, such as
reasoning and planning [2, 3]. Thus, we focus on using LLM-based
agents for recommendation in this paper, since they can acquire
recommendation knowledge and maintain strong specific abilities
like reasoning for better recommendation.

2.2 Agent-based Recommendation
Leveraging the extensive capabilities of LLMs, agents possess pow-
erful capabilities such as planning and execution, allowing them to
tackle a wide range of complex tasks [18]. Thus, many studies have
explored the application of LLM-based agents in recommendation
systems, which can be roughly divided into two categories: for
recommendation and for user simulation.

The recommendation agent focuses on tackling recommendation
tasks [31, 32]. For example, RecMind [31] enhances performance
by employing self-inspiring and tool-calling mechanisms, and is

Agentic Feedback Loop Modeling Improves Recommendation and User Simulation SIGIR ’25, July 13–18, 2025, Padua, Italy

capable of addressing various recommendation tasks, including
sequential recommendation and rating prediction. What’s more,
MACRec [32] introduces multi-agent collaboration, where different
agents are assigned specific roles through role-playing, such as user
analyst, searcher and item analyst. RAH [27] positions the agent as
an intermediary assistant between multiple traditional recommen-
dation systems and users, building a user-centred framework.

The user agent focuses on simulating user behavior [40, 41].
Agent4Rec [40] constructs a user agent with a profile module, mem-
ory module, and action module, capable of simulating user behavior
such as viewing, rating, and providing feedback, which can assist in
testing recommendation systems. RecLLM [7] builds a controllable
LLM-based user simulator that can be integrated into the conver-
sational recommender system to generate synthetic conversation
data. Furthermore, RecAgent [30] introduces multiple user agents,
which are capable of simulating multiple users’ chatting and broad-
casting behavior. What’s more, AgentCF [41] constructs user agents
and item agents to simulate user-item interactions. However, the
existing recommendation agent and user agent approaches have
not considered the feedback loop between them, which is a crucial
feature in recommendation systems, to simultaneously enhance the
performance for both the recommendation and user simulation.

3 Method
In this section, we present the proposed agentic feedback loop
framework named AFL. The overview framework of our proposed
AFL is depicted in Figure 2.

3.1 Overview
As shown in Figure 2, AFL consists of: (1) a recommendation agent
(Section §3.2), (2) a user agent (Section §3.3), and (3) the feedback
loop between the two agents (Section §3.4).

The input to AFL is the user-item interaction history, formal-
ized as [𝐼1, 𝐼2, · · · , 𝐼𝑛], where 𝐼𝑖 represents the 𝑖-th item the user
interacts with. The output is AFL’s prediction of the next item, 𝐼𝑛+1,
that the user is likely to interact with. Specifically, the user-item
interaction history initializes the user agent and serves as input
to the recommendation agent. Based on this interaction history,
the recommendation agent generates a recommended item along
with the corresponding rationale. The user agent then evaluates
whether it likes the recommended item. If the item is deemed fa-
vorable, the user agent directly outputs the item, concluding the
process. Otherwise, the process enters an iterative feedback loop:
the user agent provides feedback, prompting the recommendation
agent to refine its suggestions and propose new items.

3.2 Recommendation Agent
The recommendation agent is powered by GPT-4o-mini [24] and
is equipped with a memory module and a recommendation mod-
ule. The memory module can store the communication history
between the recommendation and user agents, denoted as𝑀𝑟 . In
practice, the communication history is formatted into a string fol-
lowing the template provided in Table 1, which is then utilized as
the input prompt for the agent. The recommendation module is a
flexible and interchangeable recommendation model that can rec-
ommend an item, denoted as 𝐼𝑚 , based on the user-item interaction

Feedback

User-Item
History

Recommendation
Agent

Recommendation
Model

Item

ReasonWritingRetrieval

Model Invocation

Memory Module

LikeDislike

Initialization

Input

: Information Input

: Feedback Loop

Action Module

User Agent

Retrieval

Memory Module

Action Module

Reward Model

Model Scoring

Writing

Item

Figure 2: Overview of the proposed AFL method. The user-
item history initializes the user agent and serves as input for
the recommendation agent. The recommendation agent then
suggests an itemwith a reason. If the user agent approves, the
process ends. Otherwise, the user agent provides feedback to
help refine future recommendations.

history [𝐼1, 𝐼2, · · · , 𝐼𝑛]. Its interchangeable nature allows the rec-
ommendation agent to be flexibly integrated into recommendation
systems with different architectures. It is worth noting that the
recommendation model is trained in the training set, which can
provide the recommendation agent with dataset-related recommen-
dation knowledge. In addition, to enhance the performance of the
recommendation agent, we have also adopted role-playing [25] and
chain-of-thought [33] approaches, which can help the agent think
step by step and provide reasons for its recommendations.

In the recommendation phase, the recommendation agent will
simultaneously consider memory, user-item interaction history, and
the item recommended by the recommendation model to provide a
new recommended item and the corresponding reason. This can be
formally represented as 𝑓𝑟 (𝑀𝑟 , [𝐼1, 𝐼2, · · · , 𝐼𝑛], 𝐼𝑚) = (𝐼𝑟 , 𝑅𝑟), where
𝑓𝑟 represents the recommendation agent, 𝐼𝑟 represents the item
recommended by the recommendation agent, and 𝑅𝑟 represents
the reason provided by the recommendation agent. We present a
prompt template for the recommendation agent in Table 1.

3.3 User Agent
The user agent has a memory module𝑀𝑢 similar to the recommen-
dation agent’s and also employs role-playing and chain-of-thought
approaches. The memory template of the user agent is presented
in Table 2. Unlike the recommendation agent, the user agent uses a
reward model to assign a numerical score to each recommended
item, indicating its relevance to the user’s interaction history. It is
important to emphasize that the reward model remains fixed, as its
primary goal is to achieve optimal user simulation performance,
without requiring the flexibility needed by the recommendation
agent to adapt to various recommendation systems. In our experi-
ments, we employed SASRec [20] as the reward model

Through training on the training set, the reward model can gen-
erate a score that predicts the user’s preference for a given item
based on the user-item interaction history. Then, the user agent will
consider the reasons for the recommendation, memory, user-item in-
teraction history, and the score from the reward model to determine
whether it likes the recommended item and provide reasons. This

SIGIR ’25, July 13–18, 2025, Padua, Italy Shihao Cai et al.

Table 1:Memory template and prompt template in the Lastfm
dataset for the recommendation agent.

Memory Template
In round {}, the music artist you recommended is {}.
The reason you gave for the recommendation is: {}.
The reason the user provided for not considering this to be the
best recommendation is: {}.
Prompt Template
You are a music artist recommendation system.
Refine the user’s listening history to predict the most likely
music artist he/she will listen to next from the candidate list.
Here is the history of communication between you and the
user: {}.
Another recommendationmodel has suggested a music artist
for your reference: {}.
Some useful tips:
1. You need to first give the reasons, and then provide the
recommended music artist.
2. The recommended music artist must be on the candidate list.
You must follow this output format:
Reason: <your reason example>
Item: <item example>

can be formally represented as 𝑓𝑢 (𝑀𝑢 , [𝐼1, 𝐼2, · · · , 𝐼𝑛], 𝐼𝑟 , 𝑅𝑟 , 𝑆) =
(𝐷𝑢 , 𝑅𝑢), where 𝑓𝑢 represents the user agent, 𝑆 represents the score
given by the reward model, 𝐷𝑢 represents the decision of the user
agent and 𝑅𝑢 represents the reason provided by the user agent. We
present a prompt template for the user agent in Table 2.

3.4 Feedback Loop
The pseudocode for the AFL method is provided in Algorithm 1,
where “𝑅𝑒𝑐_𝑀𝑜𝑑𝑒𝑙” represents the recommendation model of the
recommendation agent and “𝑀𝑎𝑥_𝐸𝑝𝑜𝑐ℎ” represents the maximum
number of iterations for the feedback loop.

As described in Section §3.1, the process begins with the recom-
mendation agent suggesting an item to the user agent. If the user
agent finds the suggested item appealing, the process terminates.
Otherwise, the process enters an iterative feedback loop, during
which the agents undergo further optimization. This iterative re-
finement leverages the user agent’s feedback to improve future
interactions and enhance the overall recommendation quality.

During the iterative loop phase, both the recommendation agent
and the user agent begin by storing key information in memory,
including the recommended item, the reasons for the recommen-
dation, and the user agent’s reasons for rejecting the item. This
initial step ensures that both agents have a comprehensive record
of the interaction for future reference. Next, drawing upon stored
memory, the recommendation agent can reanalyze and summarize
the user’s interests and preferences to optimize its behavior. In
particular, the recommendation agent can attempt to persuade the
user agent to accept the previously recommended item or suggest
another item. On the other hand, the user agent can analyze and
extract latent interests from the items and reasons provided by the
recommendation agent, enhancing its ability to simulate the user’s
preferences and behavior. Subsequently, the better user agent can

Table 2:Memory template and prompt template in the Lastfm
dataset for the user agent.

Memory Template
In round {}, the recommended music artist is {}.
The reason given by the recommendation system is: {}
The reason you provided for not considering this the best rec-
ommendation is {}
Prompt Template
As a music listener, you’ve listened to the following music
artists: {}.
Now, a recommendation system has recommended a music artist
to you from a list of music artist candidates, and has provided
the reason for the recommendation.
Determine if this recommended music artist is the most
preferred option from the list of candidates based on your
personal tastes and previous listening records.
Here is the history of communication between you and the
recommendation system: {}
What’s more, a reward model scores the music artist based on
its relevance to your historical listening records: {}
Some useful tips:
1. You need to first give the reasons, and then decide whether
or not the recommended music artist is the most preferred one
on the candidate list for you.
2. Summarize your own interests based on your historical
listening records to make a judgment.
3. You can refer to the score given by the reward model.
You must follow this output format:
Reason: <your reason example>
Decision: <yes or no>

provide feedback on newly recommended items that better align
with the user’s interests, thereby helping the recommendation agent
to further improve.

As a result, during the feedback loop, both the recommendation
agent and the user agent undergo iterative updates. This iterative
refinement process leads to an improvement in the reasoning abil-
ities of the recommendation agent and the user agent, enabling
them to better recommend items and more accurately simulate user
behavior, respectively.

4 Experiments
In this section, we conduct experiments to answer the following
research questions (RQ):
• RQ1: Can AFL enhance performance in both the recommenda-
tion task and the user behavior simulation task?
• RQ2: What are the effects of the key components of AFL?
• RQ3: Does AFL amplify biases in the feedback loop?

4.1 Experimental Setup
4.1.1 Datasets. We choose three widely used recommendation
datasets - Lastfm [5], Steam [20], and MovieLens [14] for our exper-
iments to verify the performance of the recommendation agent and
the user agent. We sort the sequences of each dataset according to

Agentic Feedback Loop Modeling Improves Recommendation and User Simulation SIGIR ’25, July 13–18, 2025, Padua, Italy

Algorithm 1 AFL

1: INPUT:([𝐼1, 𝐼2, · · · , 𝐼𝑛], 𝑓𝑟 , 𝑀𝑟 , 𝑅𝑒𝑐_𝑀𝑜𝑑𝑒𝑙, 𝑓𝑢 , 𝑀𝑢 ,
𝑅𝑒𝑤𝑎𝑟𝑑_𝑀𝑜𝑑𝑒𝑙, 𝑀𝑎𝑥_𝐸𝑝𝑜𝑐ℎ)

2: 𝐸 ← 1
3: 𝐼𝑚 ← 𝑅𝑒𝑐_𝑀𝑜𝑑𝑒𝑙 ([𝐼1, 𝐼2, · · · , 𝐼𝑛]) ⊲ Utilize the Rec_Model
4: while 𝐸 ≤ 𝑀𝑎𝑥_𝐸𝑝𝑜𝑐ℎ do
5: (𝐼𝑟 , 𝑅𝑟) ← 𝑓𝑟 (𝑀𝑟 , [𝐼1, 𝐼2, · · · , 𝐼𝑛], 𝐼𝑚)
6: 𝑆 ← 𝑅𝑒𝑤𝑎𝑟𝑑_𝑀𝑜𝑑𝑒𝑙 (𝐼𝑟) ⊲ Utilize the Reward_Model
7: (𝐷𝑢 , 𝑅𝑢) ← 𝑓𝑢 (𝑀𝑢 , [𝐼1, 𝐼2, · · · , 𝐼𝑛], 𝐼𝑟 , 𝑅𝑟 , 𝑆)
8: if 𝐷𝑢 is False then
9: 𝑀𝑢 ← 𝑀𝑢 ∪ {𝐼𝑟 , 𝑅𝑟 , 𝑅𝑢 } ⊲ Update the memory
10: 𝑀𝑟 ← 𝑀𝑟 ∪ {𝐼𝑟 , 𝑅𝑟 , 𝑅𝑢 }
11: 𝐸 ← 𝐸 + 1
12: else
13: break
14: end if
15: end while
16: return 𝐼𝑟

time and then divide the data into training, validation, and test sets
in the ratio of 8:1:1, which ensures that subsequent interactions
are excluded from the training data [19]. In practice, the training
set and validation set are used for the training and validation of
the recommendation agent’s recommendation model and the user
agent’s reward model. Notably, due to the large size of the Steam
test set, we randomly sampled 200 data points to align with the
number of test samples in the Lastfm and MovieLens datasets. The
statistics of these datasets are provided in Table 3, and the detailed
information on these datasets is as follows:
• Lastfm contains a rich set of user-artist listening records collected
from the Last.fm platform.
• Steam is a dataset of user reviews from the Steam store. Following
LLaRA [21], we filtered out users with fewer than 20 reviews and
randomly sampled one-third of the remaining users and games
to ensure a manageable dataset size.
• MovieLens is a popular dataset for movie recommendation, con-
taining user ratings and multiple subset sizes. To minimize API
call costs, we used the MovieLens100k subset in our experiments.

4.1.2 Evaluation Setting. Since AFL builds both a recommendation
agent and a user agent, our experiments evaluate the performance
of both recommendation and user simulation.

For the recommendation task, we adopt the experimental
setup of LLaRA [21]. Given a user’s interaction history, we first
combine the next item the user will interact with and 19 randomly
sampled items that the user has not interacted with, forming a
candidate list of 20 items. The model’s ability to identify the correct
item is evaluated using HitRatio@1.

For the user simulation task, we refer to the experimental
setup of Agent4Rec [40]. Each user agent is randomly assigned 20
items. Among these, the ratio between positive items and negative
items is set as 1 : 𝑘 , with 𝑘 ∈ {1, 3, 9}. Here, positive items refer to
those that the user has interacted with but were not used for agent
initialization, while negative items correspond to those the user has
not interactedwith. For each item, the user agent needs to determine
whether it likes the item. Under this setting, the response of the

Table 3: Statistics of datasets.

Dataset #Sequence #Item #Interaction
Lastfm 1,220 4,606 73,510
Steam 11,938 3,581 274,726
MovieLens 943 1,682 100,000

user agent to each item can be regarded as binary discrimination.
Thus, we can use precision, recall, and F1 scores to evaluate the
performance of user simulation.

4.1.3 Base Models. We have chosen a variety of models as the
base models to serve as the recommendation model for the recom-
mendation agent. These models can be broadly categorized into
traditional recommendation models and LLM-based models.

The traditional recommendation models are as follows:

• SASRec [20] is an attention-based sequential model that effec-
tively captures long-term semantic dependencies in both sparse
and dense datasets.
• GRU4Rec [16] is an RNN-based model that is relatively simple
yet highly efficient.
• Caser [29] treats the user’s historical behavior sequence as an
“image” and utilizes CNN to extract features from this sequence.

The LLM-based models are as follows:

• MoRec [39] improves traditional recommendation models by in-
corporating modality features of items.
• Llama3 [13] is one of the most popular open-source LLMs.
• GPT-4o-mini [24] is one of the most powerful commercial models,
capable of handling a wide range of complex tasks.
• LLaRA [21] utilizes the hybrid item representation to combine
LLMs with traditional recommendation models, and it applies a
curriculum learning approach to gradually increase the complex-
ity of training.

4.1.4 Implementation Details. To build agents, we utilized the
“GPT-4o-mini-2024-07-18”1 API provided by OpenAI. As discussed
in Sections §3.2 and §3.3, the recommendation model within the rec-
ommendation agent is flexible and adaptable, whereas the reward
model of the user agent remains fixed. In practice, the recommenda-
tion model differs among the base models outlined in Section §4.1.3,
while the reward model is consistently implemented using SAS-
Rec. For traditional models, we strictly follow [37], with a learning
rate of 0.001, an embedding dimension of 64, and a batch size of
256. What’s more, we also perform a grid search over the values
[1𝑒 − 3, 1𝑒 − 4, 1𝑒 − 5, 1𝑒 − 6, 1𝑒 − 7] to determine the optimal co-
efficient for L2 regularization. For LLMs-based models, we follow
LLaRA [21] and train the models for up to 5 epochs with a batch
size of 128. Moreover, we use a warm-up strategy, starting the learn-
ing rate at 1

100 of the maximum and gradually increasing it with a
cosine scheduler during training.

1https://platform.openai.com/docs/models/gpt-4o-mini.

https://platform.openai.com/docs/models/gpt-4o-mini

SIGIR ’25, July 13–18, 2025, Padua, Italy Shihao Cai et al.

Table 4: The recommendation performance of AFL compared with “Base Model” and “Rec Agent”. Bold indicates the best
performance. The maximum number of feedback loop iterations for AFL is 4.

Type Model Lastfm Steam MovieLens
Base Model Rec Agent AFL Base Model Rec Agent AFL Base Model Rec Agent AFL

Traditional
SASRec 0.2869 0.3197 0.3770 0.3800 0.3900 0.4100 0.4105 0.4105 0.4316
GRU4Rec 0.2787 0.3114 0.3770 0.3750 0.3850 0.4100 0.4526 0.4526 0.4632
Caser 0.2705 0.2705 0.3443 0.4200 0.4150 0.4500 0.3789 0.3895 0.4000

LLM-based

MoRec 0.1639 0.2131 0.3115 0.4100 0.4200 0.4250 0.3158 0.3158 0.3474
Llama3-8B 0.2131 0.2541 0.2869 0.1800 0.2250 0.3000 0.1368 0.1368 0.1684
GPT-4o-mini 0.3607 0.3607 0.3770 0.3350 0.3400 0.3500 0.1368 0.1368 0.1579

LLaRA 0.4426 0.4426 0.4836 0.4650 0.4650 0.4750 0.4842 0.4842 0.4947

4.2 Effectiveness of AFL (RQ1)
In this section, we validate the effectiveness of AFL. Specifically,
this section includes: (1) the improvement in recommendation per-
formance (Section §4.2.1), (2) the improvement in user simulation
performance (Section §4.2.2), and (3) a case study illustrating the
agent collaboration mechanism behind the effectiveness of the feed-
back loop (Section §4.2.3).

4.2.1 Recommendation Performance. In this section, we explore
whether AFL can improve the performance of recommendation
agents equipped with various base models. Thus, the user agent’s
reward model is consistently implemented using the SASRec model,
while the recommendation agent’s recommendation model is var-
ied among different base models described in Section §4.1.3. For
convenience, we define the term “Base Model” as directly recom-
mending items using the original base model. In contrast, the term
“Rec Agent” refers to directly using the recommendation agent
equipped with the corresponding base model to recommend items.
The comprehensive experimental results can be found in Table 4.

Based on the experimental results presented in Table 4, we have
drawn the following findings and conclusions: (1) First, the rec-
ommendation agent equipped with the recommendation model
outperforms or performs equally well compared to the original
base model in most cases. This finding underscores the ability of
the LLM-based recommendation agent to leverage the extensive
world knowledge and sophisticated reasoning capabilities inherent
in LLMs to improve recommendation accuracy. (2) Moreover, the
AFL, which is based on the feedback loop, demonstrates a signif-
icantly greater improvement than the use of a standalone recom-
mendation agent. This result emphasizes the critical role of the user
agent’s feedback in refining and optimizing the recommendation
process, further improving the recommendation performance of
the recommendation agent. (3) Finally, it is important to highlight
that by changing the recommendation model of the recommen-
dation agent, AFL can improve the recommendation performance
of various base models with unique frameworks, indicating that
AFL has strong generalizability and transferability across different
recommendation systems. This underscores AFL’s ability to adapt
and enhance diverse approaches, making it a versatile and valuable
framework in recommendation scenarios.

4.2.2 User Simulation Performance. In this section, we investigate
whether AFL can enhance the performance of the user agent. The

evaluation setup is detailed in Section §4.1.2. Specifically, we com-
pare the performance of AFL against two baselines: using only the
reward model (abbreviated as “Reward Model”) and using only the
user agent (abbreviated as “User Agent”). To ensure a fair com-
parison and avoid introducing additional information through the
recommendation model of AFL’s recommendation agent, we align
the recommendation model with the reward model by using the
same architecture, SASRec. The detailed experimental results are
provided in Table 5.

Based on results demonstrated in Table 5, we have following
key observations: (1) Firstly, the user agent demonstrates superior
performance compared to the original reward model across the
majority of scenarios, excelling particularly in precision and recall.
This indicates that the LLM-based user agent can effectively lever-
age the reasoning capabilities of LLMs, utilizing the reward model’s
scoring mechanism to thoroughly evaluate how well an item aligns
with the user’s preferences and interests. (2) Secondly, the AFL
exhibits an even more significant performance improvement. This
demonstrates that the user agent can better understand the user’s
interests during the feedback loop.

However, it is worth noting that in some scenarios, such as when
1 : 𝑘 = 1 : 3, AFL’s recall on the MovieLens dataset is lower than
that of “User Agent”. By carefully examining the three metrics, we
observe that “User Agent” exhibits lower precision and F1 score,
suggesting a strong tendency to assume users identically like all
recommended items, thereby achieving higher recall. Conversely,
AFL demonstrates a significantly higher F1 score, indicating a bet-
ter simulation of user behavior. Therefore, we consider the slight
decrease in recall to be acceptable.

4.2.3 Case Study. To illustrate the effectiveness of collaboration
between the recommendation agent and the user agent, we present
an example in Figure 3. In detail, the recommendation agent begins
by analyzing the user’s listening history, identifying a preference
for upbeat and experimental sounds, and subsequently suggests the
artist “Charlie Clouser”. However, the user agent, utilizing insights
from the reward model, determines that “Charlie Clouser” is not
the optimal answer and expresses a stronger preference for “Kirsty
MacColl”, “Rusko” and “Maserati”. In response, the recommendation
agent evaluates the reason provided by the user agent and adjusts
its suggestion, recommending “Rusko” instead. Finally, the user

Agentic Feedback Loop Modeling Improves Recommendation and User Simulation SIGIR ’25, July 13–18, 2025, Padua, Italy

Table 5: The user simulation performance of AFL compared with “Reward Model” and “User Agent”. Bold results indicate the
best results. The maximum number of feedback loop iterations for AFL is 4.

1 : 𝑘 Method Lastfm Steam Movielens
Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

1:1
Reward Model 0.6667 0.0533 0.0988 0.7826 0.6800 0.7277 0.6929 0.3800 0.4908
User Agent 0.8155 0.3467 0.4865 0.8031 0.6933 0.7422 0.7049 0.5133 0.5941

AFL 0.8504 0.5000 0.6297 0.8501 0.6700 0.7494 0.7065 0.5500 0.6185

1:3
Reward Model 0.4167 0.0571 0.1005 0.5791 0.7133 0.6393 0.5179 0.3077 0.3860
User Agent 0.5910 0.3571 0.4452 0.6323 0.7067 0.6674 0.5114 0.4800 0.4952

AFL 0.7343 0.4286 0.5412 0.6815 0.7267 0.7034 0.8107 0.4667 0.5924

1:9
Reward Model 0.1667 0.0667 0.0952 0.3408 0.7667 0.4718 0.3397 0.2667 0.2988
User Agent 0.2356 0.2667 0.2501 0.3682 0.8167 0.5076 0.2313 0.5000 0.3163

AFL 0.3705 0.4286 0.3974 0.4303 0.8167 0.5636 0.4410 0.4333 0.4371

agent approved the artist recommended by the recommendation
agent, and the feedback loop was terminated.

In conclusion, during the feedback loop, the recommendation
agent dynamically refined its suggestions based on the user agent’s
feedback, ultimately delivering more accurate recommendations.
Simultaneously, the user agent uncovered the user’s interests based
on the items recommended by the recommendation agent, allowing
for a more precise simulation of the user’s behavior.

4.3 Impact of Key Components (RQ2)
In this section, we validate the effectiveness of the key components
of AFL. Specifically, this section includes: (1) the effect of feedback
from the user agent (Section §4.3.1), (2) the effect of the recommen-
dation model and the reward model (Section §4.3.2), (3) the effect
of the number of the feedback loop iterations (Section §4.3.3).

4.3.1 Impact of User Agent Feedback. Although Section 4.2.1 shows
the effectiveness of utilizing user agent feedback to enhance the
performance of the recommendation agent, it remains unclear how
this approach compares to simpler alternatives, like directly incor-
porating a ranker subsequent to the recommendation agent.

To address this, we conduct a comparative analysis using both
SASRec and the user agent as the ranker. In our experimental setup,
the recommendation agent first generates a candidate list of five
items based on the user’s interaction history. The ranker then re-
orders these items and selects the best one as the final output. For
clarity, the terms “Rec Agent + SASRec” and “Rec Agent + User
Agent” respectively refer to the integration of SASRec and the
user agent, following the recommendation agent. The experimental
results are shown in Table 6.

Based on the experimental results in Table 6, we have following
key observations: (1) Firstly, simply appending a ranker after the
agent does not necessarily enhance recommendation performance.
This result is likely because the ranker assumes a dominant role
in determining the final output. Consequently, the correct items
generated by the agent may be ranked lower. (2) What’s more,
AFL incorporates an agentic feedback loop, where feedback from
the user agent is relayed back to the recommendation agent. This
mechanism enables the recommendation agent to respond to the
feedback by attempting to persuade the user agent, thereby allowing

Table 6: The HitRatio@1 of AFL compared to the method
using a ranker. Bold results indicate the best results.

Method Lastfm Steam Movielens
SASRec 0.2869 0.3800 0.4105
User Agent 0.3197 0.3900 0.4105
Rec Agent 0.3197 0.3900 0.4105
Rec Agent + SASRec 0.3525 0.3850 0.3895
Rec Agent + User Agent 0.3607 0.3950 0.4000

AFL 0.3770 0.4100 0.4316

errors in the user agent’s judgment to be identified and corrected.
Consequently, AFL achieves superior performance compared to the
other three settings.

4.3.2 Impact of Recommendation Model and Reward Model. To
evaluate the effectiveness of the recommendation model and the
reward model in the two agents of AFL, we assess the recommen-
dation performance under various settings. The term “AFL w/o
Rec Model” indicates that the recommendation agent is unable to
access the recommendation model, while “AFL w/o Reward Model”
indicates that the user agent is unable to access the reward model.
Finally, “AFL w/o Both” refers to a setting where neither agent
can access their respective models. For a fair comparison, we fix
both the recommendation model and the reward model as SASRec
models. The detailed experimental results can be found in Table 7.

Based on the experimental results shown in Table 7, we can draw
several key conclusions: (1) Firstly, the integration of the recommen-
dation model significantly improves recommendation performance,
underscoring its effectiveness in improving the recommendation
agent’s ability to cater to user preferences. (2) What’s more, it is
worth noting that equipping the user agent with a reward model
can also enhance recommendation performance. This suggests that
a better user agent enables the recommendation agent to more
accurately understand user preferences within the feedback loop,
thereby optimizing the overall recommendation process. (3) Lastly,
the simultaneous incorporation of both the recommendation model

SIGIR ’25, July 13–18, 2025, Padua, Italy Shihao Cai et al.

User-Item History
[Passion Pit, Neon Indian,…, Washed
Out, Discovery, Skrillex]

Item Candidates
[DJ BoBo, Rusko,…, Charlie Clouser,
Kirsty MacColl, Maserati]

: Correct Item

The user has a history of listening to electronic
and synth-pop artists like Passion Pit, …, which
indicates a preference for upbeat and
experimental sounds. Charlie Clouser, known for
his electronic music and work in film scores,
aligns well with this taste, …

While Charlie Clouser aligns with my interest in
electronic music, the reward model ranks Kirsty
MacColl higher, … Additionally, other artists like
Rusko and Maserati also have higher relevance
according to the model … Therefore, Charlie
Clouser is not the most preferred option available.

Given your previous listening history … Rusko,
known for his contributions to dubstep and
electronic music, aligns well with this taste and is
likely to resonate with your preferences.
Additionally, the user indicated a higher relevance
for Rusko in comparison to Charlie Clouser, …

: Recommended Item

Rusko is ranked higher than Charlie Clouser in
the reward model, indicating a stronger
alignment … Additionally, Rusko's contributions to
electronic music resonate well with my interests in
upbeat and experimental sounds … Therefore, this
recommendation is more optimal …

Figure 3: The example of interaction between the recommendation agent and the user agent. Given the user-item interaction
history, the recommendation agent needs to identify the correct item from the list of candidate items.

Table 7: Comparison of HitRatio@1 under different settings.
Bold results indicate the best results.

Method Lastfm Steam Movielens
AFL 0.3770 0.4100 0.4316

AFL w/o Rec Model 0.3525 0.3950 0.4000
AFL w/o Reward Model 0.3689 0.4000 0.4211
AFL w/o Both 0.3443 0.3250 0.2105

and the reward model results in even greater performance improve-
ments. This not only further reaffirms the necessity of both the
recommendation model and reward model but also highlights the
synergistic effect of combining an advanced recommendation agent
with an advanced user agent.

4.3.3 Impact of Feedback Loop Iterations. In this section, we in-
vestigate the impact of the number of feedback loop iterations. In
particular, we fix the recommendation model and the reward model
as the SASRec model and evaluate the changes in the recommenda-
tion performance and user simulation performance in the Lastfm
data set. We present the curves of recommendation performance
and user simulation performance as they change with increased
iterations in Figure 4a and Figure 4b, respectively.

Recommendation Performance: The experimental results
presented in Figure 4a reveal a clear trend: as the number of feed-
back loop iterations increases, the recommendation performance
steadily improves.

User Simulation Performance:As shown in Figure 4b, the per-
formance of the user simulation exhibits consistent enhancement
with an increasing number of feedback loop iterations. This trend
underscores the positive correlation between iterative feedback and
the refinement of simulation behavior.

Cost-Performance Tradeoff Analysis: It is important to note
that the improvement ratio for HitRatio@1 diminishes as the num-
ber of feedback loop iterations increases, and the precision at four
iterations is slightly lower than that at three iterations. Given that

0.3

0.32

0.34

0.36

0.38

0.4

1 2 3 4

H
it
R
a
ti
o
@
1

Iterations

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4
Iterations

Recall Precision F1 Score

(b)

Figure 4: (a) Recommendation performance with increased
iterations. (b) User simulation performance with increased
iterations. 1 : 𝑘 is set to 1 : 1.

increasing the number of feedback loop iterations results in higher
API costs, more iterations do not necessarily lead to better outcomes.
Therefore, it is crucial to strike a balance between performance
gains and API costs.

4.4 Biases in the Feedback Loop (RQ3)
In this section, we explore whether the agentic feedback loop am-
plifies two common biases found in real-world feedback loops: (1)
popularity bias (Section §4.4.1) and (2) position bias (Section §4.4.2).

4.4.1 Popularity Bias. As highlighted in previous research [23],
feedback loops in real-world recommendation systems are often
affected by popularity bias, where the system disproportionately
favors popular items at the expense of lesser-known ones [10, 11].
Thus, we investigate whether the agentic feedback loop, as simu-
lated by the interaction between the recommendation agent and
the user agent, amplifies this popularity bias.

Specifically, we start by calculating the popularity of items in
the Lastfm dataset by counting the number of user interactions
associated with each item. Following previous research [1], we

Agentic Feedback Loop Modeling Improves Recommendation and User Simulation SIGIR ’25, July 13–18, 2025, Padua, Italy

0.23

0.28

0.33

0.38

0.43

0.48

SASRec Iteration 1 Iteration 2 Iteration 3 Iteration 4

P
e
rc

e
n

ta
g

e

Top Middle Bottom

Figure 5: The distribution of the three popularity categories
in the Lastfm dataset under different settings.

consider the top 20% most popular items as “popular items.” Fur-
thermore, we divide the remaining items into two categories: the
middle 20%–50% and the bottom 50% based on their popularity.
Finally, we analyze the distribution of recommended items across
these three categories under varying iterations of the feedback loop.
To facilitate a better comparison, we also include the categorization
of items recommended by SASRec as a baseline. We present the
results in Figure 5.

Based on the experimental results presented in Figure 5, we de-
rive the following key observations: (1) During the first iteration
of the feedback loop, the recommendation agent generates items
independently, without incorporating feedback from the user agent.
As a result, its performance is primarily influenced by the underly-
ing recommendation model (SASRec) and the inherent bias of the
LLM toward popular items. (2) From the second to fourth iterations,
the feedback provided by the user agent allows the recommen-
dation agent to better align with user preferences. This leads to
recommendations that include a greater proportion of less popular
items. (3) Overall, AFL demonstrates a positive impact in mitigating
popularity bias.

4.4.2 Position Bias. Notably, LLM-based recommendations can be
affected by the positional arrangement of items within a sequence.
To investigate this, we design three experimental settings using the
Lastfm dataset: (1) the correct item is positioned first in the list of
candidate items (denoted as “First”), (2) the correct item is placed
at a random position in the list (denoted as “Random”), and (3) the
correct item is positioned last in the list (denoted as “Last”). If the
recommendation agent relies more on positional information rather
than user preferences, the “First” and “Last” settings are expected
to significantly outperform the “Random” setting, as the agent only
needs to blindly output either the first or the last item. We present
the recommendation performance for these three settings under
varying maximum numbers of feedback loop iterations in Figure 6.

Based on the experimental results shown in Figure 6, we sum-
marize the following findings: (1) First, in most cases, “Random”
outperforms both “First” and “Last”, suggesting that AFL does not
heavily depend on positional information. (2) What’s more, as the
number of feedback loop iterations increases, the optimal perfor-
mance achievable by the three position settings becomes identical,
indicating that AFL is capable of resisting positional interference.

0.3

0.32

0.34

0.36

0.38

1 2 3 4

H
it
R
a
ti
o
@
1

Iterations

First Random Last

Figure 6: Recommendation performance in the Lastfm
dataset under three position settings.

(3) In conclusion, AFL demonstrates resistance to location bias by
learning user preferences rather than location information through
the collaboration of the recommendation agent and the user agent.

5 Conclusion and Future Work
In this study, we propose a novel framework called AFL, which
builds an agentic feedback loop to enhance both the recommenda-
tion agent and the user agent. Our framework is simple and generic:
it is not limited to the specific agents designed in this paper, but is
intended to serve as a guideline for fostering collaborative and mu-
tually beneficial interactions between the recommendation agent
and the user agent. This work highlights the collaboration between
recommendation and user agents, opening up new research avenues
of mutually beneficial multi-agent cooperation for recommendation
and user simulation.

In the future, we will explore more efficient feedback mecha-
nisms. While our current approach updates agents by modifying
their memory, it would be valuable to leverage feedback for train-
ing agents directly, which could help agents better understand and
adapt to user interests. Moreover, we are particularly interested in
implementing an agentic feedback loop between a single recom-
mendation agent and multiple user agents — a setting that better
reflects real-world recommendation scenarios but has received rela-
tively limited attention in the field. To address this gap, we need to
develop effective methods for modeling multiple personalized user
agents and enabling the recommendation agent to balance both
the common and personalized preferences among users. Another
emerging direction is to further explore ways to reduce biases in
agentic feedback loops, such as popularity bias and position bias.

Acknowledgments
This work is supported by the National Key Research and Devel-
opment Program of China (2022YFB3104701), the National Natural
Science Foundation of China (62402470, 62272437, U24B20180), An-
hui Provincial Natural Science Foundation (2408085QF189), and the
advanced computing resources provided by the Supercomputing
Center of the USTC.

SIGIR ’25, July 13–18, 2025, Padua, Italy Shihao Cai et al.

References
[1] Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher.

2019. The Unfairness of Popularity Bias in Recommendation. In 13th ACM
Conference on Recommender Systems, RecSys 2019.

[2] Keqin Bao, Jizhi Zhang, Xinyu Lin, Yang Zhang, Wenjie Wang, and Fuli Feng.
2024. Large Language Models for Recommendation: Past, Present, and Future.
In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2993–2996.

[3] Keqin Bao, Jizhi Zhang, Wenjie Wang, Yang Zhang, Zhengyi Yang, Yanchen
Luo, Chong Chen, Fuli Feng, and Qi Tian. 2025. A bi-step grounding paradigm
for large language models in recommendation systems. ACM Transactions on
Recommender Systems 3, 4 (2025), 1–27.

[4] Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan
He. 2023. Tallrec: An effective and efficient tuning framework to align large
language model with recommendation. In Proceedings of the 17th ACM Conference
on Recommender Systems. 1007–1014.

[5] Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2011. Second workshop on
information heterogeneity and fusion in recommender systems (HetRec2011). In
Proceedings of the fifth ACM conference on Recommender systems. 387–388.

[6] Yuxin Chen, Junfei Tan, An Zhang, Zhengyi Yang, Leheng Sheng, Enzhi Zhang,
XiangWang, and Tat-Seng Chua. 2024. On softmax direct preference optimization
for recommendation. Advances in Neural Information Processing Systems (2024).

[7] Luke Friedman, Sameer Ahuja, David Allen, Zhenning Tan, Hakim Sidahmed,
Changbo Long, Jun Xie, Gabriel Schubiner, Ajay Patel, Harsh Lara, et al. 2023.
Leveraging large language models in conversational recommender systems. arXiv
preprint arXiv:2305.07961 (2023).

[8] Chongming Gao, Ruijun Chen, Shuai Yuan, Kexin Huang, Yuanqing Yu, and
Xiangnan He. 2025. SPRec: Self-Play to Debias LLM-based Recommendation. In
Proceedings of the ACM on Web Conference 2025. 5075–5084.

[9] Chongming Gao, Mengyao Gao, Chenxiao Fan, Shuai Yuan, Wentao Shi, and
Xiangnan He. 2025. Process-Supervised LLM Recommenders via Flow-guided
Tuning. In Proceedings of the 48th international ACM SIGIR conference on research
and development in information retrieval (SIGIR ’25).

[10] Chongming Gao, Kexin Huang, Jiawei Chen, Yuan Zhang, Biao Li, Peng Jiang,
Shiqi Wang, Zhong Zhang, and Xiangnan He. 2023. Alleviating Matthew Effect of
Offline Reinforcement Learning in Interactive Recommendation. In Proceedings
of the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’23). 11 pages.

[11] Chongming Gao, ShiqiWang, Shijun Li, Jiawei Chen, Xiangnan He,Wenqiang Lei,
Biao Li, Yuan Zhang, and Peng Jiang. 2023. CIRS: Bursting Filter Bubbles by Coun-
terfactual Interactive Recommender System. ACM Transactions on Information
Systems (TOIS) 42, 1, Article 14 (aug 2023), 27 pages.

[12] Azin Ghazimatin, Soumajit Pramanik, Rishiraj Saha Roy, and Gerhard Weikum.
2021. ELIXIR: Learning from user feedback on explanations to improve recom-
mender models. In Proceedings of the Web Conference 2021. 3850–3860.

[13] AaronGrattafiori, AbhimanyuDubey, Abhinav Jauhri, Abhinav Pandey, Abhishek
Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex
Vaughan, et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783
(2024).

[14] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[15] Zhankui He, Zhouhang Xie, Rahul Jha, Harald Steck, Dawen Liang, Yesu Feng,
Bodhisattwa Prasad Majumder, Nathan Kallus, and Julian McAuley. 2023. Large
language models as zero-shot conversational recommenders. In Proceedings of the
32nd ACM international conference on information and knowledge management.
720–730.

[16] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks. In 4th
International Conference on Learning Representations.

[17] Yupeng Hou, Shanlei Mu, Wayne Xin Zhao, Yaliang Li, Bolin Ding, and Ji-Rong
Wen. 2022. Towards universal sequence representation learning for recommender
systems. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining. 585–593.

[18] Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian,
Yasheng Wang, Ruiming Tang, and Enhong Chen. 2024. Understanding the
planning of LLM agents: A survey. arXiv preprint arXiv:2402.02716 (2024).

[19] Yitong Ji, Aixin Sun, Jie Zhang, and Chenliang Li. 2023. A critical study on
data leakage in recommender system offline evaluation. ACM Transactions on
Information Systems 41, 3 (2023), 1–27.

[20] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[21] Jiayi Liao, Sihang Li, Zhengyi Yang, Jiancan Wu, Yancheng Yuan, Xiang Wang,
and Xiangnan He. 2024. Llara: Large language-recommendation assistant. In
Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 1785–1795.

[22] Xinyu Lin, Wenjie Wang, Yongqi Li, Fuli Feng, See-Kiong Ng, and Tat-Seng Chua.
2024. Bridging items and language: A transition paradigm for large language
model-based recommendation. In Proceedings of the 30th ACM SIGKDDConference
on Knowledge Discovery and Data Mining. 1816–1826.

[23] Masoud Mansoury, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad
Mobasher, and Robin Burke. 2020. Feedback loop and bias amplification in
recommender systems. In Proceedings of the 29th ACM international conference
on information & knowledge management. 2145–2148.

[24] OpenAI. 2024. GPT-4o mini: advancing cost-efficient intelligence. In techni-
cal report. https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-
intelligence/

[25] Murray Shanahan, Kyle McDonell, and Laria Reynolds. 2023. Role play with
large language models. Nature 623, 7987 (2023), 493–498.

[26] Wentao Shi, Xiangnan He, Yang Zhang, Chongming Gao, Xinyue Li, Jizhi Zhang,
Qifan Wang, and Fuli Feng. 2024. Large language models are learnable planners
for long-term recommendation. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 1893–1903.

[27] Yubo Shu, Hansu Gu, Peng Zhang, Haonan Zhang, Tun Lu, Dongsheng Li, and
Ning Gu. 2023. RAH! RecSys-Assistant-Human: A Human-Central Recommen-
dation Framework with Large Language Models. arXiv preprint arXiv:2308.09904
(2023).

[28] Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun
Chao, and Yu Su. 2023. Llm-planner: Few-shot grounded planning for embodied
agents with large language models. In Proceedings of the IEEE/CVF international
conference on computer vision. 2998–3009.

[29] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommenda-
tion via convolutional sequence embedding. In Proceedings of the eleventh ACM
international conference on web search and data mining. 565–573.

[30] Lei Wang, Jingsen Zhang, Hao Yang, Zhi-Yuan Chen, Jiakai Tang, Zeyu Zhang, Xu
Chen, Yankai Lin, Hao Sun, Ruihua Song, et al. 2025. User behavior simulation
with large language model-based agents. ACM Transactions on Information
Systems 43, 2 (2025), 1–37.

[31] Yancheng Wang, Ziyan Jiang, Zheng Chen, Fan Yang, Yingxue Zhou, Eunah
Cho, Xing Fan, Yanbin Lu, Xiaojiang Huang, and Yingzhen Yang. 2024. RecMind:
Large Language Model Powered Agent For Recommendation. In Findings of the
Association for Computational Linguistics: NAACL 2024. 4351–4364.

[32] Zhefan Wang, Yuanqing Yu, Wendi Zheng, Weizhi Ma, and Min Zhang. 2024.
Multi-Agent Collaboration Framework for Recommender Systems. arXiv preprint
arXiv:2402.15235 (2024).

[33] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems 35
(2022), 24824–24837.

[34] Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen,
Chuan Qin, Chen Zhu, Hengshu Zhu, Qi Liu, et al. 2024. A survey on large
language models for recommendation. World Wide Web 27, 5 (2024), 60.

[35] Yunjia Xi, Weiwen Liu, Jianghao Lin, Xiaoling Cai, Hong Zhu, Jieming Zhu, Bo
Chen, Ruiming Tang, Weinan Zhang, and Yong Yu. 2024. Towards open-world
recommendation with knowledge augmentation from large language models. In
Proceedings of the 18th ACM Conference on Recommender Systems. 12–22.

[36] Yiyan Xu, Jinghao Zhang, Alireza Salemi, Xinting Hu, Wenjie Wang, Fuli Feng,
Hamed Zamani, Xiangnan He, and Tat-Seng Chua. 2025. Personalized Generation
In Large Model Era: A Survey. arXiv preprint arXiv:2503.02614 (2025).

[37] Zhengyi Yang, Xiangnan He, Jizhi Zhang, Jiancan Wu, Xin Xin, Jiawei Chen, and
Xiang Wang. 2023. A generic learning framework for sequential recommenda-
tion with distribution shifts. In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 331–340.

[38] Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Yongliang Shen, Ren Kan, Dong-
sheng Li, and Deqing Yang. 2024. Easytool: Enhancing llm-based agents with
concise tool instruction. arXiv preprint arXiv:2401.06201 (2024).

[39] Zheng Yuan, Fajie Yuan, Yu Song, Youhua Li, Junchen Fu, Fei Yang, Yunzhu
Pan, and Yongxin Ni. 2023. Where to go next for recommender systems? id-
vs. modality-based recommender models revisited. In Proceedings of the 46th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 2639–2649.

[40] An Zhang, Yuxin Chen, Leheng Sheng, Xiang Wang, and Tat-Seng Chua. 2024.
On generative agents in recommendation. In Proceedings of the 47th international
ACM SIGIR conference on research and development in Information Retrieval (SIGIR
’24). 1807–1817.

[41] Junjie Zhang, Yupeng Hou, Ruobing Xie, Wenqi Sun, Julian McAuley, Wayne Xin
Zhao, Leyu Lin, and Ji-Rong Wen. 2024. Agentcf: Collaborative learning with
autonomous language agents for recommender systems. In Proceedings of the
ACM Web Conference 2024. 3679–3689.

[42] Yang Zhang, Fuli Feng, Jizhi Zhang, Keqin Bao, Qifan Wang, and Xiangnan He.
2025. Collm: Integrating collaborative embeddings into large language models for
recommendation. IEEE Transactions on Knowledge and Data Engineering (2025).

[43] Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu,
Zhenhua Dong, and Ji-Rong Wen. 2024. A survey on the memory mechanism of
large language model based agents. arXiv preprint arXiv:2404.13501 (2024).

https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

	Abstract
	1 Introduction
	2 Related Work
	2.1 LLMs for Recommendation
	2.2 Agent-based Recommendation

	3 Method
	3.1 Overview
	3.2 Recommendation Agent
	3.3 User Agent
	3.4 Feedback Loop

	4 Experiments
	4.1 Experimental Setup
	4.2 Effectiveness of AFL (RQ1)
	4.3 Impact of Key Components (RQ2)
	4.4 Biases in the Feedback Loop (RQ3)

	5 Conclusion and Future Work
	Acknowledgments
	References

