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Bias and Debias in Recommender System: A
Survey and Future Directions

Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, Xiangnan He

Abstract—While recent years have witnessed a rapid growth of research papers on recommender system (RS), most of the papers
focus on inventing machine learning models to better fit user behavior data. However, user behavior data is observational rather than
experimental. This makes various biases widely exist in the data, including but not limited to selection bias, position bias, exposure
bias, and popularity bias. Blindly fitting the data without considering the inherent biases will result in many serious issues, e.g., the
discrepancy between offline evaluation and online metrics, hurting user satisfaction and trust on the recommendation service, etc. To
transform the large volume of research models into practical improvements, it is highly urgent to explore the impacts of the biases and
perform debiasing when necessary. When reviewing the papers that consider biases in RS, we find that, to our surprise, the studies are
rather fragmented and lack a systematic organization. The terminology “bias” is widely used in the literature, but its definition is usually
vague and even inconsistent across papers. This motivates us to provide a systematic survey of existing work on RS biases. In this
paper, we first summarize seven types of biases in recommendation, along with their definitions and characteristics. We then provide a
taxonomy to position and organize the existing work on recommendation debiasing. Finally, we identify some open challenges and
envision some future directions, with the hope of inspiring more research work on this important yet less investigated topic.

Index Terms—Recommendation, Recommender System, Collaborative Filtering, Survey, Bias, Debias, Fairness
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1 INTRODUCTION

Being able to provide personalized suggestions to each
user, recommender system (RS) has been recognized as the
most effective way to alleviate information overloading.
It not only facilitates users seeking information, but also
benefits content providers with more potentials of making
profits. Nowadays, recommendation techniques have been
intensively used in countless applications, e.g., E-commerce
platforms (Alibaba, Amazon), social networks (Facebook,
Weibo), video-sharing platforms (YouTube, TikTok), lifestyle
apps (Yelp, Meituan), and so on. As such, the importance
of RS cannot be overstated especially in the era that the
information overload issue becomes increasingly serious.

Ubiquity of Biases in RS. Although RS has generated
large impacts in a wide range of applications, it faces
many bias problems which are challenging to handle and
may deteriorate the recommendation effectiveness. Bias is
common in RS for the following factors. (1) User behavior
data, which lays the foundation for recommendation model
training, is observational rather than experimental. The
main reason is that a user generates behaviors on the
basis of the exposed items, making the observational data
confounded by the exposure mechanism of the system
and the self-selection of the user. (2) Items are not evenly
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presented in the data, e.g., some items are more popular
than others and thus receive more user behaviors. As a
result, these popular items would have a larger impact on
the model training, making the recommendations biased
towards them. The same situation applies to the user side.
(3) One nature of RS is the feedback loop — the exposure
mechanism of the RS determines user behaviors, which are
circled back as the training data for the RS. Such feedback
loop not only creates biases but also intensifies biases over
time, resulting in “the rich get richer” Matthew effect.

Increasing Importance of Biases in RS Research.
Recent years have seen a surge of research effort on
recommendation biases. Figure 1 shows the number of
related papers in top venues increases significantly since
the year of 2015. The prestigious international conference on
information retrieval, SIGIR, has organized specific sessions
in 2018 and 2020 to discuss topics on bias elimination1.
SIGIR even presents the Best Paper award to the paper
on this topic in 2018 [1] and 2020 [2], respectively. Biases
not only draw increasing attention from the information
retrieval academia, but also from the industry. For example,
one competing task of KDD Cup 2020 organized by
Alibaba is to handle the long-tail bias in E-commerce
recommendation2.

Necessity of this Survey. Although many papers
are published on this topic recently, to the best of our
knowledge, none of them has provided a global picture
of the RS biases and corresponding debiasing techniques.
Particularly, we find that current studies on this topic
are rather fragmented — despite the wide usage of the

1. http://www.sigir.org/sigir2020/schedule/; http://sigir.org/
sigir2018/program/program-at-a-glance/

2. https://tianchi.aliyun.com/competition/entrance/231785/
introduction
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Fig. 1. The statistics of publications related to biases in RS with the
publication year and venue.

terminology “bias” in the literature, its definition is usually
vague and even inconsistent across papers. For example,
some work use “selection bias” to denote the bias of
observed rating values [3], while others use “observational
bias” to refer to the same meaning instead [4]. More
confusingly, the same terminology “selection bias” has been
conceptualized differently in different publications [3], [5],
[6]. Moreover, a considerable number of researchers do not
explicitly mention “bias” or “debias” in the paper (e.g. [7],
[8], [9]), but they indeed address one type of biases in RS;
these significant related work is difficult to be retrieved
by the researchers interested in the bias topic. Given the
increasing attention of biases in RS, the rapid development
of debiasing techniques, and the flourishing but fragmented
publications, we believe it is the right time to present
a survey of this area, so as to benefit the successive
researchers and practitioners to understand current progress
and further work on this topic.

Difference with Existing Surveys. A number of surveys
in recommendation have been published recently, focusing
on different perspectives of RS. For example, [10] reviews
explainable recommendation, [11] reviews knowledge-
based recommendation, [12] and [13] summarize the
recommendation methods based on deep learning and
reinforcement learning, respectively. However, to our
knowledge, the perspective of bias has not been reviewed
in existing RS surveys. There are some surveys on the bias
issues, but they are not on the recommendation task. For
example, [14] recently reviews the bias issues in natural
language processing, [15] reviews the sample selection bias
on model estimation [15], and [16] summarizes fairness
in learning-based sequential decision algorithms. There are
some surveys on the bias and fairness of general machine
learning and artificial intelligence systems [17], [18], [19].
Comparing to the bias issues in other tasks, bias in RS has
its own characteristics, requiring a new inclusive review and
summary. To this end, we make the following contributions
in this survey:

• Summarizing seven types of biases in RS and
providing their definitions and characteristics.

• Conducting a comprehensive review and providing
a taxonomy of existing methods on recommendation
debiasing.

• Identifying open challenges and discussing future
directions to inspire more research on this topic.

Papers Collection. We collect over 140 papers that
analyze the bias issues in recommendation or propose

new debiasing methods. We first search the related top-
tier conferences and journals to find related work, inculding
WWW, WSDM, SIGIR, KDD, RecSys, CIKM, TOIS, TKDE,
etc., with the keywords “recommend”, “collaborative
filtering”, “ranking” or “search” combined with “bias”,
“fairness” or “exposure” from the year 2010 to 2020. We
then traverse the citation graph of the identified papers,
retaining the papers that focus bias in RS. Figure 1 illustrates
the statistics of collected papers with the publication time
and venue.

Survey Audience and Organization. This survey is
beneficial for the following researchers and practitioners
in RS: 1) who are new to the bias issues and look for a
handbook to fast step into this area, 2) who are confused
by different bias definitions in the literature and need a
systematic study to understand the biases, 3) who want to
keep up with the state-of-the-art debiasing technologies in
RS, and 4) who face bias issues in building recommender
systems and look for suitable solutions. The rest of the
survey is organized as follows: Section 2 introduces the
preliminaries of RS and the critical issue of feedback loop.
Section 3 and 4 are the main content, which summarizes the
seven types of biases and provides a taxonomy of debiasing
technologies in RS. Section 5 discusses open challenges and
future directions, and Section 6 concludes the survey.

2 FEEDBACK LOOP IN RECOMMENDATION

From a bird’s-eye view, we can abstract the lifecycle of
recommendation as a feedback loop among three key
components: User, Data, and Model. As Figure 2 shows, the
feedback loop consists of three stages:

• User→Data, which indicates the phase of collecting
data from users, including user-item interactions
and other side information (e.g., user profile, item
attributes, and contexts). We denote the collected
interactions between the user set U = {u1, · · · , un}
and item set I = {i1, · · · , im}, as a feedback matrix.
In general, there are two types of user feedback: 1)
implicit feedback, which is represented as a matrix
X ∈ Rn×m, where each entry xui in X is binarized
to indicate whether the user u has interacted with
the item i (e.g., purchase, click, view) before or not;
and 2) explicit feedback, which is represented as a
matrix R ∈ Rn×m, where each entry rui in R is real-
valued that directly reflects user preference on the
rated items.

• Data→Model, which represents the learning of
recommendation models based on the collected data.
At its core is to derive user preference from historical
interactions, and predict how likely a user would
adopt a target item. Extensive studies have been
conducted over past decades.

• Model→User, which returns the recommendation
results to users, so as to satisfy the information need
of users. This stage will affect the future behaviors
and decisions of users.

Through this loop, users and the RS are in a process of
mutual dynamic evolution, where personal interests and
behaviors of users get updated via recommendation, and
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Fig. 2. Feedback loop in recommendation, where biases occur in
different stages.

the RS can lead to a self-reinforcing pattern by leveraging
the updated data.

3 BIAS IN RECOMMENDATION

In this section, we first summarize and position different
types of biases in the feedback loop, as illustrated in Figure 2
and Table 1. We then present in-depth analyses of these
biases in terms of bias amplification.

3.1 Bias in Data

As the data, of user interactions, are observational rather
than experimental, biases are easily introduced into the data.
They typically stem from different subgroups of data, and
make the recommendation models capture these biases and
even scale them, thereby leading to systemic racism and
suboptimal decisions. Here we categorize the data biases
into four groups: selection bias and conformity bias in
explicit feedback, exposure bias and position bias in implicit
feedback.

3.1.1 Bias in explicit feedback data
Selection bias originates from users’ numerical ratings on
items (i.e., explicit feedback), which is defined as:

• Selection Bias. Selection Bias happens as users are free to
choose which items to rate, so that the observed ratings are
not a representative sample of all ratings. In other words,
the rating data is often missing not at random (MNAR).

Prior study conducted by Marlin et al. [20] offers compelling
evidence to show the existence of selection bias in the
rating data. In particular, they conducted a user survey to
gather the user ratings to some randomly-selected items,
as a comparison with that to conventional user-selected
items. Figure 3 summarizes the comparison and offers two
findings: 1) users tend to select and rate the items that they
like; and 2) users are more likely to rate particularly bad
or good items. These results suggest that selection bias is
inherent in the observed data, since they are missing not at
random. The distribution of observed rating data is different
from the distribution of all ratings [4], [21].
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Fig. 3. Distribution of rating values for randomly selected items and user-
selected items. The data is from [20] with permission.

Another bias inherent in the explicit feedback data is
conformity bias, which is defined as:

• Conformity Bias. Conformity bias happens as users
tend to rate similarly to the others in a group, even if
doing so goes against their own judgment, making the
rating values do not always signify user true preference.

For example, influenced by high ratings of public comments
on an item, one user is highly likely to change her low rate,
avoiding being too harsh [22], [23]. Such phenomenon of
conformity is common and cause biases in user ratings. As
shown in Krishnan et al. [24], user ratings follow different
distributions when users rate items before or after being
exposed to the public opinions. Moreover, conformity bias
might be caused by social influence, where users tend to
behave similarly with their friends [25], [26], [27], [28].
Hence, the observed ratings are skewed and might not
reflect users’ real preference on items [23].

3.1.2 Bias in implicit feedback data
Implicit feedback is widely used in recommendation, which
reflects natural behaviors of users, such as purchases, views,
clicks. Distinct from explicit feedback that offers numerical
ratings, implicit feedback only provides partial signal of
positive. Hence, some biases originate from such one-class
data such as exposure bias and position bias.

Exposure bias occurs in real-world RS with massive
items, which is defined as:

• Exposure Bias. Exposure bias happens as users are only
exposed to a part of specific items so that unobserved
interactions do not always represent negative preference.

In particular, an unobserved interaction between a user and
an item can be attributed to two possible reasons: 1) the item
does not match user interest; and 2) the user is unaware
of the item. Hence, ambiguity arises in the interpretation
of unobserved interactions. The inability to distinguish real
negative interactions (e.g. exposed but uninterested) from
the potentially-positive ones (e.g. unexposed) will result in
severe biases. Previous studies have investigated several
dimensions of data exposure: 1) Exposure is affected by
the policy of the previous recommender systems, which
controls what items to show [29]. Hence, some recent
works [29] also name such “exposure bias” as “previous
mode bias”. 2) As users may actively search and find
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TABLE 1
The characteristics of seven types of biases in recommendation and the bias amplification in loop.

Types Stages in Loop Data Cause Effect Major solutions

Selection Bias User→Data Explicit feedback Users’ self-selection Skewed observed
rating distribution

Data imputation; Propensity Score;
Doubly robust model

Conformity Bias User→Data Explicit feedback Conformity Skewed rating values Modeling social or popularity effect

Exposure Bias User→Data Implicit feedback Users’ self-selection;
Intervened by systems

Unreliable non-positive
data

Give confidence weights by heuristic,
sampling or exposure-based model

Position Bias User→Data Implicit feedback Trust top of lists;
Exposed to top of lists

Unreliable positive
data Click models; Propensity Score

Inductive Bias Data→Model Both Added by researchers
Better generalization,
lower variance or
faster recommendation

-

Popularity Bias Model→User Both Algorithm and
unbalanced data Matthew effect Regularization; Adversarial learning;

Causal graph

Unfairness Model→User Both Algorithm and
unbalanced data Unfairness for some groups Rebalancing; Regularization;

Adversarial learning; Causal modeling

Bias amplification
in Loop All Both Feedback loop Enhance and spread bias Break the loop by collecting random

data or using reinforcement learning

the items of interest, the selection of users is a factor of
exposure [5], [6], and makes highly relevant items more
likely to be exposed. Hence, in this scenario, “exposure bias”
is named as “selection bias”. 3) The background of users is
another factor to expose items, such as social friends [30],
communities that they belong to [31], and geo locations. 4)
Popular items are more likely to be seen by users. Hence,
such “popularity bias” is another form of “exposure bias”
[32]. In order to facilitate readers and prevent concept
confusion, we use the unified standard definition, “exposure
bias”, throughout this paper, rather than the separated
definitions of the aforementioned factors.

Position bias is very common in recommendation,
particularly in advertisement system or search engine:

• Position Bias. Position bias happens as users tend
to interact with items in higher position of the
recommendation list regardless of the items’ actual
relevance so that the interacted items might not be highly
relevant.

It describes a tendency of users to notice or interact
with items in certain positions of lists with higher
probability, regardless of the items’ actual relevance [33].
Here “relevance” is widely used in the field of information
retrieval, which denotes how the items are preferred by
the users. For example, recent studies on eye tracking
demonstrate that users are less likely to browse items
that are ranked lower in vertical lists, while they only
examine the first few items at the top of lists [34], [35].
Moreover, Maeve et al. [36] shows that users often trust
the first few results in the lists and then stop assessing
the rest, without evaluating the entire list holistically [37].
As such, the data collected from user feedback towards
the recommended lists may fail to reflect user preference
faithfully [33]. Therefore, position bias poses challenges in
both training and evaluation phases.

3.2 Bias in Model
Bias is not always harmful. In fact, a number of inductive
biases have been added deliberately into the model design
to achieve some desirable characteristics:

• Inductive Bias. Inductive bias denotes the assumptions
made by the model to better learn the target function and
to generalize beyond training data.

The ability to generalize the prediction to unseen examples
is the core of machine learning. Without assumptions on
the data or model, generalization cannot be achieved since
the unseen examples may have an arbitrary output space.
Similarly, building a RS needs to add some assumptions
on the nature of the target function. For example, Johnson
et al. [38] assumes an interaction can be estimated by
embedding inner product, while He et al. [39] adopts the
neural network as its better generalization. Besides target
function, inductive bias have been added in other aspects.
An example is the adaptive negative sampler [40], [41], [42],
[43], which aims to over-sample the “difficult” instances in
order to increase learning speed, even though the resultant
loss function will differ significantly from the original.
Another example is the discrete ranking model [44], [45],
[46] which embeds user and items as binary codes to
improve the efficiency of recommendation, which is at the
expense of sacrificing the representation ability.

3.3 Bias and Unfairness in Results

Besides the aforementioned biases in data or model, two
important biases in recommendation results have been
studied, which are defined as follows:

• Popularity Bias Popular items are recommended even
more frequently than their popularity would warrant [47].

The long-tail phenomenon is common in RS data: in
most cases, a small fraction of popular items account for
the most of user interactions [47]. When trained on such
long-tailed data, the model usually gives higher scores to
popular items than their ideal values while simply predicts
unpopular items as negative. As a result, popular items
are recommended even more frequently than their original
popularity exhibited in the dataset. Popularity bias has been
empirically verified by Himan et al. [47]. Figure 4 shows
relationship between item popularity and recommendation
frequency. We can find most of recommended items are
located at high popularity area (H). In fact, they are
recommended to a much greater degree than even what
their initial popularity warrants [47].

Ignoring the popularity bias results in many issues:
1) It decreases the level of personalization and hurts the
serendipity. Since the preferences of different users are
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Fig. 4. Item popularity VS. recommendation frequency (Biased-MF [48]
and User-CF [49]), where items were classified into three different
groups: H denoting the set of most popular items that take up around
20% entire ratings, T denoting the set of most unpopular items that
take up 20% entire ratings and M denotes the rest. The figure was
reproduced from [47] with authors’ permission.

diverse, always recommending popular items will hurt
user experience, especially for the users favoring niche
items. 2) It decreases the fairness of the recommendation
results. Popular items are not always of high quality. Over-
recommending popular items will reduce the visibility
of other items even if they are good matches, which is
unfair. 3) Popular bias will further increase the exposure
opportunities of popular items, making popular items even
more popular – the collected data for future training
becomes more unbalanced, raising the so-called “Matthew
effect” issue.

Another type of bias arises in the recommendation
results is unfairness. Fairness has attracted increasing
attention in recent years. A consensual definition of fairness
is “absence of any prejudice or favoritism towards an individual
or a group based on their intrinsic or acquired traits” [50], and
the unfairness can be defined as follow:

• Unfairness. The system systematically and unfairly
discriminates against certain individuals or groups of
individuals in favor others [51].

Unfairness issue has been an obstacle to making
recommender systems more entrenched within our society.
In particular, based on attributes like race, gender, age,
education level, or wealth, different user groups are
usually unequally represented in data. When training on
such unbalanced data, the models are highly likely to
learn these over-represented groups, reinforce them in
the ranked results, and potentially result in systematic
discrimination and reduced the visibility for disadvantaged
groups (e.g., under-representing the minorities, racial or
gender stereotypes). For example, in the context of job
recommendation, previous work [52], [53] found that,
compared to men, women saw less ads about high paying
jobs and career coaching services, which is caused by gender
imbalance. Analogously, friend recommendation in social
graphs may reinforce historical biases towards a majority
and prevent minorities from being social influencers with
high reach [54], [55]. Another similar issue has been
found in book recommendation, where the methods prefer
recommending books of male authors [56]. Analyzing the
unfairness issue inherent in recommendation is therefore
becoming essential and desirable.

3.4 Feedback Loop Amplifies Biases

Real-world recommender systems usually create a
pernicious feedback loop. Previous subsections summarize
the biases occurred in different stages of the loop, while
these biases could be further intensified over time along
the loop. Taking the position bias as an example, top
items typically benefit from a greater volume of traffic,
which in turn increases their ranking prominence and the
volume of traffic they receive, resulting in a rich-get-richer
scenario [36]. Many researchers also study the impact of
feedback loop on the popularity bias [57], [58], [59]. Their
simulated results show that feedback loop will amplify
popularity bias, where popular items become even more
popular and non-popular items become even less popular.
These amplified biases also will decrease the diversity and
intensify the homogenization of users, raising the so-called
“echo chambers” or “filter bubbles” [60], [61].

4 DEBIASING METHODS

A large number of methods have been proposed to mitigate
the effects of bias or unfairness. Table 2 lists the reviewed
methods. we classify them according to which biases they
addressed and which types of methods they adopted.

4.1 Methods for Selection Bias

Training and testing a recommendation model on the
observed rating data will suffer from the selection bias,
as the observed ratings are not a representative sample
of all ratings. Here we fist introduce how to evaluate a
recommendation model under biased rating data, and then
review four kinds of methods that mitigates selection bias
on recommender training.

4.1.1 Debiasing in evaluation
Given a recommendation model, we want to evaluate
its performance on rating prediction or recommendation
accuracy. Standard evaluation metrics like Mean Absolute
Error (MAE), Mean Squared Error (MSE), Discounted
Cumulative Gain@k (DCG@k) or Precision (Pre@k) can be
written as [62]:

H(R̂) =
1

nm

n∑
u=1

m∑
i=1

δu,i(r, r̂) (1)

for an appropriately chosen δu,i(r, r̂):

MAE: δu,i(r, r̂) = |ru,i − r̂u,i| (2)

MSE: δu,i(r, r̂) = (ru,i − r̂u,i)2 (3)
DCG@k : δu,i(r, r̂) = (I/ log (rank (r̂u,i))) ru,i (4)

Pre@k : δu,i(r, r̂) = (I/k)ru,i · 1 {rank (r̂u,i) ≤ k} (5)

where ru,i denotes the true rating values of the item i given
by the user u and r̂u,i denotes the predicted rating values
by the recommendation model. As true ratings r are usually
partially observed, the conventional evaluation usually use
the average over only the observed entries:

Ĥnaive(r̂) =
1

|{(u, i) : Ou,i = 1}|
∑

(u,i):Ou,i=1

δu,i(r, r̂) (6)
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TABLE 2
A lookup table for the reviewed methods for recommendation debiasing.

Addressed issues Categories Publications

Selection Bias

Evaluator Propensity Score [62]
ATOP [63]

Training

Data imputation [4], [20], [21], [63], [64], [65], [66]
Propensity Score [62]
Doubly robust model [67]
Meta learning [3]

Conformity Bias Modeling popularity influence [23]
Modeling social influence [25], [26], [27], [28]

Exposure Bias

Evaluator Propensity Score [68]

Training

Heuristic [69], [70], [71], [72], [73], [74], [75], [76]
Sampling [30], [43], [74], [77], [78], [79]
Exposure-based model [7], [8], [30], [31], [80]
Others [5], [6], [81], [82], [83], [84], [85]

Position Bias Click models [86], [87], [88], [89], [90], [91], [92]
Propensity Score [5], [93], [94], [94], [94], [95], [96], [97], [98], [99], [100], [101], [102], [103], [104], [105]

Popularity Bias

Regularization [106], [107], [108], [109]
Adversarial learning [110]
Causal graph [32]
Others [111], [112]

Unfairness

Rebalancing [113], [114], [114], [115], [116], [117], [118], [119], [120], [121]
Regularization [106], [122], [123], [124], [125], [126], [127], [128], [129], [130], [131]
Adversarial learning [132], [133], [134]
Causal modeling [135], [136], [137], [137], [138], [138], [139]

Loop effect
Uniform data [29], [29], [60], [140], [141], [142], [143]

Reinforcement learning [13], [144], [145], [146], [147], [148], [149], [150], [151], [152], [153], [154], [155],
[156], [156], [157], [158], [159], [160]

Others [161], [162]

which is not an unbiased estimate of the true performance
[62]:

EO
[
Ĥnaive(r̂)

]
6= H(r̂) (7)

where Ĥnaive(r̂) is expected over the observation
probability. The gap is caused by selection bias, making the
observed ratings not a representative sample of all ratings.
Two strategies have been presented in recent work.

Propensity Score. To remedy the selection bias
in evaluation, some recent work [62] considers a
recommendation as an intervention analogous to treating
a patient with a specific drug. In both tasks, we have
only partial knowledge of how much certain patients
(users) benefit from certain treatments (items), while the
outcomes for most patient-treatment (user-item) pairs
are unobserved. A promising strategy for both tasks is
weighting the observations with inverse propensity scores.
The propensity Pu,i, which is defined as the marginal
probability of observing a rating value (Pu,i = P (Ou,i = 1))
for certain user-item pair (u, i), can offset the selection bias.
The proposed estimator is defined as:

ĤIPS(r̂ | P ) =
1

nm

∑
(u,i):Ou,i=1

δu,i(r, r̂)

Pu,i
(8)

which is an unbiased estimator of the ideal metric:

EO
[
ĤIPS(r̂ | P )

]
=

1

nm

∑
u

∑
i

EOu,i

[
δu,i(r, r̂)

Pu,i
Ou,i

]
=

1

nm

∑
u

∑
i

δu,i(r, r̂) = H(r̂)

(9)

ATOP. Steck et al. [63] propose another unbiased metric
ATOP to evaluate recommendation performance with two

mild assumptions: (1) the relevant (high) rating values are
missing at random in the observed data; (2) Concerning
other rating values, we allow for an arbitrary missing data
mechanism, as long as they are missing with a higher
probability than the relevant rating values. They define the
ATOP as:

TOPKobs
u (k) =

N+,obs,k
u

N+,obs
u

(10)

TOPKobs(k) =
∑
u

wuTOPKobs
u (k) (11)

ATOPobs =

∫ 1

0
TOPKobs(k)dk (12)

which computed from biased explicit feedback data and
N+,obs
u denotes the number of observed relevant (preferred)

items of the user u and N+,obs,k
u counts the relevant ones

in the top k. The authors prove ATOPobs
u is an unbiased

estimate of the average recall and proportional to the
precision averaged over users.

Discussion. Propensity scores and ATOP are two subtle
strategies to remedy selection bias, but they still have
two serve weaknesses. The unbiasedness of the IPS-based
estimator is guaranteed only when the true propensities are
available [3]. The IPS estimator will still be biased if the
propensities are specified unproperly. The unbiasedness of
the ATOP is guaranteed only when the two assumptions
hold. In practice, the missing mechanism is often complex
and the assumptions are not always valid. Developing a
robust and effective remains a challenge.

4.1.2 Debiasing in model training
Data imputation. Note that the main reason for the
selection bias in the observed rating data is that users
are free to deliberately choose which items to rate. Thus,
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a straightforward strategy for mitigating selection bias is
to jointly consider both rating prediction task (i.e. ‘which
rating value the user gives’) and missing data prediction
task (i.e. ’which items the user select to rate’). For example,
some recent work [4], [20], [64], [65] treat the problem as
missing data imputation and jointly model the generative
process of rating values and the missing mechanism.
The basic assumption behind these methods is that the
probability of users’ selection on items depends on users’
rating values for that item. Correspondingly, the missing
probability of a user-item pair has been modeled dependent
on the rating values in recent work with a Mixture of
Multinomials [20], Logit model [64], MF model [4], [66] or
social-enhanced model [65].

As joint learning the missing data model and the
rating model will lead to sophisticated and highly complex
methods, some light data imputation strategies have been
proposed. Steck et al. [21], [63] directly impute the missing
data with a specific value r0 and optimize the model with
the following objective function:

arg min
θ

∑
u,i

Wu,i ·
(
ro&iu,i − r̂u,i(θ)

)2
+Reg(θ) (13)

where ro&iu,i denotes observed or imputed ratings, while r̂u,i
denotes the predicted ratings w.r.t parameters θ. Wu,i is
introduced to downweight the contribution of the missing
ratings.

However, as missing data model or imputed rating
values are specified in a heuristic manner, this kind of
methods will suffer from empirical inaccuracy due to
mis-specified missing-data model or inaccurate imputed
rating values. Such inaccuracy will be propagated into
recommendation model training, resulting in sub-optimal
recommendation performance [67].

Propensity score. Another kind of methods leverage
inverse propensity score to mitigate the selection bias when
training a recommendation model [62]. They directly use the
IPS-based unbiased estimator as the objective and optimize
the following empirical risk function:

argmin
θ

∑
Ou,i=1

δ̂u,i (r, r̂(θ))

Pu,i
+Reg(θ) (14)

where δ̂u,i (r, r̂(θ)) can be the original evaluation function
or some surrogate objective functions for easy optimization;
Reg(θ) denotes regularization term for mitigating over-
fitting. Except for the propensities Pu,i that act like weights
for each loss term, the training objective is identical to
the standard recommendation objective. Also, thanks to the
propensities, the selection bias can be mitigated as it directly
optimizes an unbiased empirical risk function.

However, as discussed in the previous subsection,
specifying appropriate propensity scores is critical. The
performance of IPS-based model depends on the accuracy
of the propensities. Moreover, propensity-based methods
usually suffer from high variance [3], leading to non-
optimal results especially when the item popularity or user
activeness is highly skewed.

Doubly robust model. As data imputation-based
models often have a large bias due to mis-specification while
IPS-based model usually suffer from high variance, Wang et

al. [67] propose to combine the two kinds of models and
enjoy a desired double robustness property: the capability to
remain unbiased if either the imputed errors or propensities
are accurate. They define the following objective function:

EDR = EDR (r̂, ro) =
1

nm

∑
u,i

(
êu,i +

ou,idu,i
p̂u,i

)
(15)

where êu,i = δu,i(r0, r̂u,i) denotes imputed error between
the predicted ratings and imputed ratings; du,i = êu,i −
δu,i(r, r̂) denotes the error deviation between the imputed
error and predicted error. The theoretical and empirical
analyses presented in [67] validate superiority over both
IPS-based and imputation-based models.

Although the model is more robust than single
method, it still requires relatively accurate propensity score
or imputation data, which is usually hard to specify.
Otherwise, its performance also suffers.

Meta learning. To resolve the issue that the
aforementioned methods highly rely on the choice of
propensity and imputation, Saito et al. [3] propose a
new meta-learning method with asymmetric tri-training
framework. They first pre-train two predictors (A1,A2)
with two specific recommendation models to generate a
reliable dataset with pseudo-ratings and then trained a
target recommendation model A0 on the pseudo-ratings.
Theoretical analysis presented in [3] shows that the
proposed method optimizes the upper bound of the ideal
loss function.

However, the performance of asymmetric tri-training
depends on the quality of pre-trained predictor A2. The
upper bound can be loose when A2 performs poorly, leading
to sub-optimal results of A0. In fact, learning a satisfied A2
from biased data is challenging. A2 usually suffers from
selection bias and the bias will be finally injected into the
target recommendation model. Nevertheless, meta learning
and upper bound optimization are promising directions for
mitigating selection bias, which deserve future exploring.

4.2 Methods for Conformity Bias
Conformity bias occurs as users are normally influenced by
others opinion so that the rating values are deviated from
users’ true preference. Two types of methods have been
proposed to address the conformity bias. The first type of
work considers users’ ratings conform to public opinions.
Correspondingly, Liu et al. [23] directly leverage three
important features cui, aui, dui in the base recommendation
model, where cui is the number of ratings for item i before
user u rates it, aui is the average rating and dui is the
rating distribution. The predicted rating is generated from
XGBoost [163]:

r̂ui = xgb ({(1− ω) · tui + ω · aui, cui, aui, dui} ,Θxgb)
(16)

where tui denotes the prediction returned by basic
recommendation model and ω controls the strength of
conformity. This way, we can eliminate the effect caused by
conformity and recover the user’s true preference.

The other type of methods treat user’s rating values as
synthetic results of user preference and social influence [25],
[26], [27], [28]. Thus, similar to [23], they directly leverage



TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

social factors in the base recommendation model to generate
final prediction and introduce specific parameters to control
the effect of social conformity bias.

4.3 Methods for Exposure Bias

Exposure bias occurs as users are only exposed to a part of
items so that unobserved interactive data does not always
mean negative signal. Exposure bias will mislead both the
model training and evaluation. Here we review the work on
correcting exposure bias.

4.3.1 Debiasing in evaluation

A straightforward strategy for debiasing in RS evaluation
is using the inverse propersity score, which also has been
applied to address the selection bias. Yang et al. [68] first
illustrate evaluation bias in terms of conventional metrics
such as AUC, DCG@k, Recall@k on the implicit feedback
data, and leverage the IPS framework to offset the exposure
bias. They abstract the ideal recommendation evaluator as:

R(Ẑ) =
1

|U|
∑
u∈U

1

|Su|
∑
i∈Su

c
(
Ẑu,i

)
(17)

where Ẑu,i is the predicted ranking of item i for user u
returned by the recommendation model and S denotes the
set of preferred items among the global item set I for user u.
Function c(.) needs to be adapted for different metrics, such
as:

AUC : c
(
Ẑu,i

)
= 1− Ẑu,i

|I|
(18)

DCG : c
(
Ẑu,i

)
=

1

log2

(
Ẑu,i + 1

) (19)

DCG@k : c
(
Ẑu,i

)
=

1
{
Ẑu,i ≤ k

}
log2

(
Ẑu,i + 1

) (20)

Recall@k : c
(
Ẑu,i

)
= 1

{
Ẑu,i ≤ k

}
(21)

However, due to the exposure bias, only partial preferred
items are observed, making the model often be evaluated
on the biased implicit feedback as:

R̂AOA(Ẑ) =
1

|U|
∑
u∈U

1

|S∗u|
∑
i∈S∗u

c
(
Ẑu,i

)
=

1

|U|
∑
u∈U

1∑
i∈Su

Ou,i

∑
i∈Su

c
(
Ẑu,i

)
·Ou,i

(22)

where S∗u denotes the preferred items that have been
exposed to the user u. As users usually have biased
exposure, the output of AOA evaluator does not conform
the true performance, i.e. EO

[
R̂AOA(Ẑ)

]
6= R(Ẑ).

To address this problem, similar to the treatment for
selection bias in explicit feedback data, Yang et al. [68]
propose to weight the each observation with the inverse of
its propensity for implicit feedback data. The intuition is
to down-weight the commonly observed interactions, while

up-weighting the rare ones. Thus, the IPS-based unbiased
evaluator is defined as follow:

R̂IPS(Ẑ | P ) =
1

|U|
∑
u∈U

1

|Su|
∑
i∈S∗u

c
(
Ẑu,i

)
Pu,i

=
1

|U|
∑
u∈U

1

|Su|
∑
i∈Su

c
(
Ẑu,i

)
Pu,i

·Ou,i

(23)

which is biased estimator of the ideal metrics, i.e.
EO

[
R̂IPS(Ẑ | P )

]
=R(Ẑ).

4.3.2 Debiasing in model training
To deal with the exposure bias and extract negative signal
from the implicit feedback, a conventional strategy is
treating all the unobserved interactions as negative and
specify their confidence. The objective function of most such
methods can be summarized as follow 3:

min
θ

∑
u,i

Wuiδ (xui, r̂ui(θ)) +Reg(θ) (24)

where xui denotes the interaction value for the user-item
pair (u, i); δ(.) denotes the pre-defined loss function (e.g.
cross-entropy loss) between the predicted preference r̂ui(θ)
and feedback xui.Wui denotes the confidence weight, which
controls the confidence that the the feedback of user-item
pair (u, i) should be predicted as xui. The specification of
the confidence weight is critical to the model performance
and can be roughly categorized into three types:

Heuristic. The first is heuristic-based strategy. For
example, the classic weighted factorization matrix (WMF)
[69] and dynamic MF [70] used a simple heuristic that
the un-observed interactions are assigned with a uniform
lower weight, i.e., Wui = 1 for xui = 1 and Wui = c
(0 < c < 1) for xui = 0; Some researchers [71], [72]
specify the confidence with based on user activity level,
i.e., Wui = cu, cu ∝

∑
i xui, as users associate with

more items provide more reliable information; Analogously,
item popularity has been considered to specify confidence
weights [73], [74], as popular items are more probable to
be exposed; Also, user-item feature similarity [75] has been
considered to define the confidence.

Moreover, Saito et al. [76] leverage user’s preference in
evaluation and heuristically define an ideal loss function as
follows:

Lideal(θ) =
1

nm

∑
u,i

[ru,iδ (1, r̂u,i) + (1− ru,i) δ (0, r̂u,i)]

(25)

where each user-item interaction is weighted with the
preference level rui. They further derive a surrogate
estimator on implicit feedback with propensity scores as
follows:

L̂sur(θ) =
1

nm

∑
u,i

[
xui(

1

Pui
δ (1, r̂u,i) + (1− 1

Pui
δ (0, r̂u,i))

+ (1− xu,i) δ (0, r̂u,i)

]
(26)

3. We remark that here we just present the point-wise loss. In fact,
pair-wise loss can be extended straightforwardly.
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which is an unbiased estimator of the ideal loss function.
Where the propensity score Pui is defined as the marginal
probability of a user exposed to the item.

However, assigning appropriate confidence weights
heuristically is challenging, as the optimal data confidence
may var for different user-item interactions. Choosing
confidence weights or propensity scores usually require
human experience or large computational resource for
grid search. Furthermore, it is unrealistic to manually set
personalized weights for millions of data. Coarse-grained
manual confidence weights will cause empirical bias on
estimating user’s preference.

Sampling. Another solution to address exposure bias
is performing sampling. The sampling strategy determines
which data are used to update parameters and how often,
and thus scale the data contribution. Provided the sampled
probability of an instance is pui, learning a recommendation
model with sampling is equivalent to learning the model
with the following weighted objective function:

E(u,i)∼p[δ (xui, r̂ui(θ))] =
∑
u,i

puiδ (xui, r̂ui(θ)) (27)

where the sampling distribution acts as data confidence
weights. Sampling strategy has been widely applied as
its efficiency. For example, Logistical matrix factorization
[38], BPR [77], or most of neural-based recommendation
models (e.g. CDAE [164], NCF [39], LightGCN [165]) apply
the uniform negative sampler; Yu et al. [74] considers to
over-sample the popular negative items, as they are more
likely to be exposed. However, these heuristic samplers are
insufficient to capture real negative instances. Thus, some
researchers explore to leverage side information to enhance
the sampler. Ding et al. [43], [78] leverage viewed but
non-clicked data to evaluate user’s exposure; Chen et al.
[30] leverage social network information in their sampling
distribution; Wang et al. [79] construct an item-based
knowledge graph and perform sampling on the graph.

Exposure-based model. Another strategy is to develop
an exposure-based model, which is capable of capturing
how likely a user is exposed to an item [8], [80]. EXMF [7]
introduces an exposure variable and assumes the following
generative process of implicit feedback:

aui ∼ Bernoulli(ηui) (28)
(xui|aui = 1) ∼ Bernoulli(r̂(θ)) (29)
(xui|aui = 0) ∼ δ0 (30)

where aui denotes whether a user u has been exposed to the
item i; δ0 denotes delta function p(xui = 0|aui = 0) = 1 and
can be relaxed as Bernoulli distribution parameterized with
a with small value; ηui is the prior probability of exposure.
When aui = 0, we have xui ≈ 0, since when the user does
not know the item he can not interact with it. When aui = 1,
i.e., the user has known the item, he will decide whether
or not to choose the item based on his preference. xui can
be generated with normal recommendation model. In this
way, by optimizing the marginal probability, the model can
adaptively learn the exposure probability, which will be
transformed as confidence weights to remedy exposure bias.

Fig. 5. Casual graph of exposure-based method.

Chen et al. [30], [31] give detailed analyses of EXMF and
rewrite the objective function of EXMF as follows:∑

ui

γuiδ(xui, r̂ui(θ)) +
∑
ui

g(γui) (31)

where γui is defined as variational parameters of the user’s
exposure. g(γui) is a γui-dependent function:

g(γui) = (1− γui)`(xui, ε) + `(γui, ηui)− `(γui, γui) (32)

where `(a, b) = alog(b) + (1 − a)log(1 − b). We can find
γui, which indicates how likely a user is exposed to an
item, acts as confidence weights to control the contribution
of the data on learning a recommendation model. This
finding is consistent with our intuition. Only if the user
has been exposed to the item, can he decide whether or
not to consume the items based on his preference. Thus, the
data with larger exposure are more reliable in deriving user
preference.

To better understand how exposure-based models
remedy exposure bias, we conduct an analysis from the
causal perspective. Let us draw an causal graph of exposure-
based model as illustrated in Figure 5. The spirit of
recommendation is to answer an intervention question:
would the user purchase the items if he knows the
item? That is, we need to evaluate the probability of
p(xui|do(aui = 1), θ, η). According to the back-door criteria
[166], we have p(xui|do(aui = 1), θ, η) = p(xui|aui =
1, θ, η) = p(r̂(θ)). The performance of recommendation
model indeed reflects the effect of recommendation.

However, directly estimating data confidence from
Equation (31) is insufficient as the model will easily suffer
from over-fitting and inefficiency problems due to the
large scale of the inferred parameters γ. A solution to
re-parameterize the confidence weights with a simpler
function. For example, Chen et al. [30] develop a social
network-based function by modeling item information
propagation along the social network; Chen et al. [31]
consider that users are often exposed to information-sharing
communities and thus replace confidence weights with a
community-based function in their model.

Others. There are also some other strategies to address
exposure bias in specific scenarios. Wang et al. [5] consider
the queries of a search system are usually under-sampled
to different extents, and thus are biased when click data
is collected to learn the ranking function. They further
propose a specific model for this situation, where queries
are classified into different classes, and the bias in each class
is estimated with randomized data. Ovaisi et al. [6] attribute
exposure bias to the fact that a user can examine only
a truncated list of top-K recommended items. To address
this kind of exposure bias, two-step Hechman method has
been adopted. They first use a Probit model to estimate
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the probability of a document being observed and then
leverage the exposure probability to correct the click model.
Some recent work also consider users’ sequential behaviors
“exposure-click-conversion” and correspondingly devise
an inverse propensity model [81], decomposition model
[82], [83] or graph neural network [84] on the sequential
behaviors to address exposure bias with multi-task learning.
Besides, Wang et al. [85] consider the exposure bias from
the perspective of item exposure features and leverages
counterfactual reasoning to eliminate the direct causal effect
from exposure features to the predicted preference.

4.4 Methods for Position Bias
Position bias is another type of bias that is widely studied
in learning-to-rank systems, such as ad system and search
engine. Position bias denotes that the higher ranked items
will be more likely to be selected regardless of the relevance.
Recent years have seen a number of work on position bias,
and we categorize them in two lines.

4.4.1 Click models
The first line is based on click models. The methods make
hypotheses about user browsing behaviors and estimate
true relevance feedback by optimizing the likelihood of
the observed clicks. some work [86], [87], [88], [89] on
click models assume the examination hypothesis that if a
displayed item is clicked, it must be both examined and
relevant. This is based on the eye-tracking studies which
testify that users are less likely to click items in lower ranks.
To remedy position bias and to recover user true preference,
they explicitly model the probability of an user clicks an
item i at position p as follows:

P (C = 1 | u, i, p)
= P (C = 1 | u, i, E = 1)︸ ︷︷ ︸

rui

·P (E = 1 | p)︸ ︷︷ ︸
hp

(33)

Notice that a hidden random variable E has been applied,
which denotes whether the user has examined the item. In
general, these methods make the following assumptions: if
the user clicks it, the item must have been examined; if
the user has examined the item, the click probability only
depends on the relevance; and the examination depends
solely on the position p. The model is highly similar to
the exposure-based model for exposure bias except that the
exposure probability is modeled with position.

Another choice of click model is the cascade model [86].
It differs from the above model in that it aggregates the
clicks and skips in a single query session into a single model.
It assumes a user examines an item from the first one to the
last one, and the click depends on the relevance of all the
items shown above. Let Ep, Cp be the probabilistic events
indicating whether the p-th item is examined and clicked
respectively. The cascade model generates users click data
as follows:

P (E1) = 1 (34)
P (Ep+1 = 1 | Ep = 0) = 0 (35)
P (Ep+1 = 1 | Ep = 1, Cp) = 1− Cp (36)
P (Cp = 1 | Ep = 1) = rup,i (37)

in which the Equation 36 implies that if a user finds her
desired item, she immediately closes the session; otherwise
she always continues the examination. The cascade model
assumes that there is no more than one click in each query
session, and if examined, an item is clicked with probability
rup,i and skipped with 1 − rup,i. This basic cascade model
has been further improved by considering the personalized
transition probability [88], [90], [91]. Jin et al. [92] improve
these models and consider users browsing behaviors in a
more thorough manner with deep recurrent survival model.

However, these click models usually require a large
quantity of clicks for each query-item or user-item pair,
making them difficult to be applied in systems where click
data is highly sparse, e.g., personal search [5]. Further, mis-
specifying the generative process of users clicks will cause
empirical bias and hurt recommendation performance.

4.4.2 Propensity score
Another common solution to correct position bias is
employing inverse propensity score, where each instance
is weighted with a position-aware values [93]. The loss
function is usually defined as follow:

LIPW (S, q) =
∑
x∈πq

∆IPW (x, y | πq)

=
∑

x∈πq,oxq=1,y=1

∆ (x, y | πq)
P
(
oxq = 1 | πq

) (38)

where Q denotes the universal set of all queries (or users)
and q is an instance from Q. S denotes the ranking system
and πq is the ranked list retrieved by S for q, x be a
document in πq and y is the binary label that denotes
whether x is relevant to q. Also, ∆ (x, y | πq) denotes a
function that computes the individual loss on each relevant
item. Joachims et al. [94] demonstrate the ranking model
trained with the IPS-based loss function will converge to
the same model trained with true relevance labels.

Estimating the propensity score for position bias have
been well explored as its simplicity — just dependent on
the item position. A simple yet effective solution to estimate
a position-based propensity model is result randomization,
where the ranking results are shuffled randomly and collect
user clicks on different positions to compute propensities
scores [5], [95], [96], [97], [98]. Because the expected item
relevance is the same on all positions, it is provable that
the difference of click rate on different positions produces
an unbiased estimation of the truth propensities. Despite its
simplicity and effectiveness, result randomization has a risk
of significantly hurting the user experience as the highly
ranking items may not be favored by the user. Pair-wise
swapping [94] has been proposed to mitigate the problem,
but can not eliminate negative effect completely. Therefore,
the strategies that learn the propensity scores from the data
without any intervention on the recommendation results
have been explored. Fang et al. [99] and Agarwal et al.
[100] adopt intervention harvesting, to learn the propensity.
However, such methods require the feedback data from
multiple ranking models. Further, some recent work [94],
[101], [102], [104] consider learning a propensity model and
a recommendation model as dual problem and develop
specific EM algorithms to learn both models. Also, the click
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model that captures the row skipping and slower decay
phenomenon has been adopted to specify the propensity
scores in [105], while cascade model has been adopted by
[103].

4.5 Methods for Popularity Bias

Popularity bias is a common problem in recommendation
systems. We categorize the methods into four types.

4.5.1 Regularization

Suitable regularization can push the model towards
balanced recommendation lists. Abdollahpouri et al. [106]
introduced LapDQ regularizer [107] tr(QTLDQ), where
Q denotes the item embedding matrix, tr(·) denotes the
trace of a matrix, and LD denotes the Laplacian matrix
of D, where Di,j = 1 if item i and j belong to the
same set (popular items or long-tail items) and 0 otherwise.
Kamishima et al. [108] applied the mean-match regularizer
[167] in their information-neutral recommender systems (INRS)
to correct popularity bias. They first introduced mutual
information to measure the influence of features on
the recommendation results, and through a series of
mathematical approximations and derivations, they obtain a
specific regularization term:−(MD(0)({r̂})−MD(1)({r̂}))2,
where MD({r̂}) = 1

|D|
∑

(xi,yi,vi)∈D r̂(xi, yi, vi). Note that
the above regularizers are result-oriented, guiding the
model to give fairer results.

Different from result-oriented regularizers, Chen et al.
[109] devise a process-oriented regularization term. It
attributes the inability of effectively recommending long-
tail items as the insufficient training of them. These
items usually have few interaction records and thus their
embedding vectors can not be well trained, making their
prediction scores close to the initial values and remain
neutral. Motivated by this point, Chen et al. proposed
Entire Space Adaptation Model (ESAM) from the perspective
of domain adaptation (DA). ESAM aims to transfer the
knowledge from these well-trained popular items to the
long-tail items. ESAM introduced three regularization terms
for transferring as: (1) Domain adaptation with item
embedding (or attributes) correlation alignment: LDA =
1
L2

∑
(j,k)(h

j
s
T
hks−h

j
t

T
htk)2 = 1

L2 ||Cov(Ds)−Cov(Dt)||2F ,
where || · ||2F denotes squared matrix Frobenius norm.
Cov(Ds) ∈ RL∗L and Cov(Ds) ∈ RL∗L represent the
covariance matrices of high-level item attributes, which can
be computed as Cov(Ds) = DsTDs, and Cov(Dt) =

DtTDt. s means source domain (popular items), and t
means target domain (unpopular items). (2) Center-wise
clustering for source clustering LcDC : encouraging the
features of the items with the same feedback (such as buy,
view, and click) to be close together, and the features of
the items with different feedbacks to move away from each
other. (3) Self-training for target clustering LpDC : minimizing
the entropy regularization −plogp favors a low-density
separation between classes. This term is a way of self-
training which increases the discriminative power between
non-displayed items.

Fig. 6. Causal graph and causal embeddings [32]. Reproduced from [32]
with authors’ permission.

4.5.2 Adversarial learning
Adversarial learning is another line to address popularity
biaset al. [110]. The basic idea is to play a min-max game
between the recommender G and the introduced adversary
D, so that D gives a signal to improve the recommendation
opportunity of the niche items. In [110], The adversary
D takes the synthetically generated popular-niche item
pairs (̃ip, ĩn|u), and an equal number of true popular-niche
pairs (ip, in) as input. True pairs (ip, in) are sampled from
their global co-occurrence and synthetic pairs (̃ip, ĩn) are
drawn by the recommender. The recommender G can be
instantiated with recent recommendation model such as
NCF. Through adversarial learning between G and D, D
learns the implicit association between popular and niche
items, while G learns to capture more niche items that
correlate with the user’s history, resulting in recommending
more long-tail items for users.

4.5.3 Causal graph
Causal graph is a powerful tool for counterfactual
reasoning. Zheng et al. utilized causal inference to solve
popularity bias [32]. They assumed user’s click behavior
on items depends on both interest and popularity, and
construct a specific causal graph, as Figure 6 shows. To
disentangle user interest and popularity bias, two kinds
of embedding have been considered: interest embedding
to capture users’ real interest in items, and popularity
embedding to capture pseudo-interest caused by popularity.
these embeddings can be trained with cause-specific data
under the framework of multi-task learning. Finally, interest
embedding will be used for final recommendation, where
popularity bias has been disentangled.

4.5.4 Others methods
There are some other methods on popularity bias.
one solution to reduce popularity bias is thourgh
introducing other side information. For example, Bressan
et al. leverage social information to reduce popularity
bias [111]. Abdollahpouri gives a different strategy
[112], which relies on re-ranking. To perform top-
k recommendation, it first generates a relatively large
recommendation list with a classical model, and then re-
ranks the list by considering the item popularity. Similar
to exposure bias, propensity score can also be applied
to reduce popularity bias: by decreasing the influence of
popularity items to model training, the popularity bias can
be mitigated [68].
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4.6 Methods for Unfairness

Before introducing existing fairness-aware methods, we first
give some formulations of fairness.

4.6.1 Fairness Formulations

There are extensive studies on fairness in machine learning.
Without loss of generality, we use the notation of prediction
model throughout this section to discuss fairness. Let A, X ,
U be the set of sensitive attributes (aka. protected attributes),
other observed attributes, and unobserved attributes of
an individual, respectively. Y denotes the ground-truth
outcome to be predicted, while Ŷ is the prediction produced
by a prediction model that depends on A, X , U . For
simplicity we often assume A is encoded as a binary
attribute, but this can be generalized to other cases.

There exist many different variations of fairness
definition, which can be roughly categorized into
four types: 1) fairness through unawareness [168]; 2)
individual fairness [122], [169], [170], [171]; 3) group
fairness (e.g., demographic parity [172], [173], equality
of opportunity [174], [175], predictive equality [176],
equalized odds [174], calibration within groups [177]); and
4) counterfactual fairness [138]. Here we present some
widely-used formulations:

• Fairness Through Unawareness: A model is fair if
any sensitive attributes A are not explicitly used in the
modeling process.

• Individual Fairness: A model is fair if it gives similar
predictions to similar individuals. Formally, if individuals
i and j are similar under a certain metric, their predictions
should be similar: Ŷ (X(i), A(i)) ≈ Ŷ (X(j), A(j)).

• Demographic Parity: Each protected group (i.e., with
the same sensitive attributes) should receive positive
prediction at an equal rate. Formally, the prediction Ŷ
satisfies demographic parity if P (Ŷ |A = 0) = P (Ŷ |A =
1).

• Equality of Opportunity: Given the prediction model,
the likelihood of being in the positive class is the same for
each protected group. Formally, the prediction Ŷ satisfies
the equality of opportunity if P (Ŷ = 1|A = 0, Y =
1) = P (Ŷ = 1|A = 1, Y = 1).

• Counterfactual fairness: Given a causal model (U,A∪
X,F ), the prediction Ŷ is counterfactually fair if under
any context X = x and A = a, P (ŶA←a(U) = y|X =
x,A = a) = P (ŶA←a′(U) = y|X = x,A = a), for all
y and for any value a′ attainable by A.

Besides these general definitions w.r.t. user attributes,
the concept of fairness has been generalized to multiple
dimensions in recommender systems [178], spanning from
fairness-aware ranking [114], [115], [116], supplier fairness
in two-sided marketplace platforms [179], provider-side
fairness to make items from different providers have a fair
chance of being recommended [108], [180], fairness in group
recommendation to minimize the unfairness between group
members [129].

In the following sections, we review four different ways
to mitigate the unfairness issue on recommendation.

4.6.2 Rebalancing

Inspired by the strategy used to tackle the class-imbalance
problem, one common paradigm is to balance the data or
recommendation results w.r.t. certain fairness target like
demographic parity. Some intensively-adopted strategies
in machine learning research are re-labeling the training
data to make the proportion of positive labels equal in the
protected and unprotected groups [113], or re-sampling the
training data to achieve statistical parity [114].

This idea of rebalancing data is prevalent in fairness-
aware ranking, where the fairness constraint can be
represented in various forms. Towards individual equity-
to-attention fairness in rankings, previous work [115], [116]
propose multiple ranking functions to sort items and then
achieve fairness amortized across these rankings. Towards
group fairness, FA∗IR [117] is a post-processing method
to achieve fair top-K ranking w.r.t. group fairness criteria,
in which a subset of K candidates are re-selected from a
large item collection to achieve a required proportion for
a single under-represented group. Analogously, DetCons
and DetConstSort [114] formalize the fairness as a desired
distribution over sensitive attributes, and re-rank candidates
(i.e., LinkedIn users) to satisfy the constraints. To formulate
group fairness in terms of exposure allocation, Singh et
al. [118] propose a framework for formulating fairness
constraints on rankings, and sample rankings from an
associated probabilistic algorithm to fulfill the constraints.
HyPER [119] uses probabilistic soft logic (PSL) rules
to balance the ratings for both users in protected and
unprotected groups, where fairness constraints are encoded
as a set of rules. More recently, when organizing user-
item interactions in the form of graph, some work [120],
[121] study potential unfairness issue inherent within graph
embedding. Among them, Fairwalk [120] treats the group
information w.r.t. sensitive attributes as a prior distribution,
and then performs node2vec based on the prior to sample
random walks and generate debiased embeddings, which
are evaluated in friendship recommendation.

4.6.3 Regularization

The basic idea of the regularization line is to formulate the
fairness criteria as a regularizer to guide the optimization
of model. A general framework, Learned Fair Representation
(LFR), is proposed in [122], which generates the data
representations to encode insensitive attributes of data,
while simultaneously removing any information about
sensitive attributes w.r.t. the protected subgroup. Formally,
it is composed of three loss components:

minL = αC(X,R) + βD(R,A) + γE(Y,R) (39)

where C(·) is the reconstruction loss between input data X
and representations R = Enc(X) with an encoder function
Enc(·); E(·) is the prediction error in generating prediction
Y from R, such as cross entropy; D(·) is a regularization
term that measures the dependence betweenR and sensitive
attribute A, which is defined as fairness constraints such as
demographic parity:

D(R,A) = |ERP (R|A = 1)− ERP (R|A = 0)| (40)
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where P (R|A = 1) relies on the distance of representation
R and the centroid representation R̃1 of the group where
A = 1:

P (R|A = 1) =
exp−||R− R̃1||2∑

a∈{0,1} exp−||R− R̃a||2
(41)

Using such a regularization makes the encoded
representation sanitized and blind to whether or not
the individual X is from the protected group.

Studies on this research line have been extensively
conducted by subsuming different fairness formulations
under the foregoing framework. Earlier, Kamishima et
al. first claimed the importance of neutrality (aka. viewpoint
of sensitive attribute) in recommendation [123], and
then proposed two methods — (1) one regularization-
based matrix completion method [124], where the
fairness regularizer is formulated as the negative mutual
information −I(A;Y ) between sensitive attribute A
and prediction Y , and (2) one graphical model-based
method [125], where the fairness regularizer accounts for
the expected degree of independence between A and Y in
the graphical model. Later, Kamishima et al. generalized
these work to implicit feedback-based recommender
systems [126]. Analogously, Yao et al. [127], [128] proposed
four fairness metrics in collaborative filtering, and used
similar regularization-based optimization method to
mitigate different forms of bias.

Moreover, there are some regularization-based studies
working on more specific scenarios. For example,
Abdollahpouri et al. [106] focused on controlling popularity
bias in learning-to-rank recommendation, and proposed a
regularizer that measures the lack of fairness for the short-
head and medium-tail item sets in a given recommendation
list to improve fairness during model training. Xiao et
al. [129] worked on fairness-aware group recommendation,
and designed a multi-objective optimization model to
minimize the utility gap between group members. Burke et
al. [130] proposed a regularization-based matrix completion
method to reweigh different neighbors, in order to balance
the fairness between protected and unprotected neighbors
in collaborative recommendation. Zhu et al. [181] presented
a fairness-aware tensor-based recommendation approach,
which uses sensitive latent factor matrix to isolate sensitive
features and then uses a regularizer to extract sensitive
information which taints other factors. More recently, going
beyond the pointwise fairness metrics in ranking, Beutel
et al. [131] considered pairwise fairness of user preference
between clicked and unclicked items, and offered a new
regularizer to encourage improving this metric.

Besides in optimization objective, regularization also has
been added in the ranking policy to address the unfairness
issue. [2] considers the problem in dynamic ranking system,
where the ranking function dynamically evolves based on
the feedback that users provide, and present a new sorting
criterion FairCo as follows:

στ = argsort
i∈I

(
R̂(i | u) + λ errτ (i)

)
(42)

where the error term err measures the fairness violation has
been introduced. The intuition behind FairCo is that the

error term pushes the items from the underexposed groups
upwards in the ranking lists.

4.6.4 Adversarial Learning
Similar with the idea of LFR (cf. (39)), the line of
adversarial learning aims to get fairness as a side-effect
of fair representation. The basic idea is to play a min-
max game between the prediction model and an adversary
model, where the adversary tries to predict the sensitive
attributes from the data representations, so minimizing the
performance of the adversary is to remove the information
pertinent to the sensitive attributes in the representation.
Towards this goal, a general framework, Adversarial Learned
Fair Representation (ALFR), is proposed in [132] which is
formulated as follows:

max
φ

min
θ
L = αCθ(X,R) + βDθ,φ(R,A) + γEθ(Y,R)

(43)

where Cθ(·) is the reconstruction loss to quantify the
information retained in the representations R about the data
X by the ability of an encoder or decoder network; Eθ(·) is
to predict Y from R via a predictor network; θ encompasses
the parameters of the encoder/decoder and predictor
networks; and Dθ,φ(·) is to quantify the independence
between the representation R and the sensitive attributes
A via an adversary network: R → A. Assuming A is
binary,Dθ,φ(·) is formulated as log-loss for binary adversary
network f :

D = EX,AA · log(f(R)) + (1−A) · log(1− f(R)) (44)

which satisfies the fairness constraint of demographic
parity. Maximizing Dθ,φ(·) is to optimize the adversary’s
parameters φ, while minimizing Dθ,φ(·) is to optimize the
representation parameters θ.

Only recently have researchers considered this line in
the field of recommendation. For example, Bose et al. [133]
extended the ALFR framework by enforcing compositional
fairness constraints on graph embeddings for multiple
sensitive attributes, which are evaluated in the scenarios
of movie and friendship recommendation. Wherein, instead
of fair w.r.t. single sensitive attribute, it makes the graph
embeddings be invariant w.r.t. different combinations of
sensitive attributes by employing a compositional encoder
in the adversary network. Building upon the ALFR
framework, Beigi et al. [134] proposed a framework termed
recommendation with attribute protection (RAP) to recommend
items based on user preference, while simultaneously
defensing against private-attribute inference attacks. In
particular, the prediction and adversarial networks are
instantiated as the sensitive attribute inference attacker and
the Bayesian personalized recommender, respectively.

4.6.5 Causal Modeling
Inspired by the success of causal modeling [166], studying
fairness from the causal perspective [135], [136], [137], [138],
[139] has attracted increasing attentions. In general, fairness
is formulated as the causal effect of the sensitive attribute,
which is evaluated by applying counterfactual interventions

5. https://arxiv.org/pdf/1911.09872.pdf

https://arxiv.org/pdf/1911.09872.pdf
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Fig. 7. Recommendation with attribute protection (RAP) [134]. The figure
was reproduced from the Arxiv5 with authors’ permission.

over a causal graph. For example, Wu et al. [137] focused
on fairness-aware ranking, and argued that the fairness
constraints based on statistical parity hardly measure the
discriminatory effect. Hence, they built a causal graph that
consists of the discrete profile attributes and the continuous
score, and proposed a path-specific effect technique to
detect and remove both direct and indirect rank bias.
Kusner et al. [138] introduced the notion of counterfactual
fairness, which is derived from Pearl’s causal model [166]. It
considers the causal effect by evaluating the counterfactual
intervention — more formally, for a particular individual,
whether its prediction in the real world is identical to that
in the counterfactual world where the individual’s sensitive
attributes had been different.

4.7 Methods for Mitigating Loop Effect

Practise recommender systems usually create a pernicious
feedback loop, which will create bias and further intensify
bias over time. To deal with this problem, besides the
aforementioned strategies on a specific bias, a surge of
methods have been proposed recently to reduce the iterated
bias that occurs during the successive interaction between
users and recommender system.

Uniform data. Leveraging uniform data is the most
straightforward way to address the problem. To collect
uniform data, this kind of methods intervene in the system
by using a random logging policy instead of a normal
recommendation policy. That is, for each user, they do
not use the recommendation model for item delivery, but
instead randomly select some items and rank them with
a uniform distribution [29], [60]. The uniform data often
provide gold-standard unbiased information because it
breaks the feedback loop and is not affected by various
biases. However, the uniform policy would inevitably hurt
users’ experience and the revenue of the platform, thus it
is usually restricted to a small percentage of online traffic.
Therefore, how to correct the bias with a small uniform
data is a key research question. Yuan et al. [140] learn
a imputation model from the uniform data and apply
the model to impute the labels of all displayed or non-
displayed items. Rosenfeld et al. [141] and Bonner et al.

[142] employ two recommendation models for the biased
data and uniform data, and further use a regularization term
to transfer the knowledge between the models; Liu et al.
[29] leverage knowledge distillation to extract information
from uniform data to learn a unbiased recommendation
model. Yu et al. [143] leverage influence function to reweight
training instances so that it has less loss in an unbiased
validation set.

Reinforcement learning. Collecting uniform data with
a random policy is not a satisfactory strategy as it hurts
recommendation performance. Smarter recommendation
strategy or policy needs to be explored. There exists an
exploration-exploitation dilemma in recommender system,
where the exploitation is to recommend items that are
predicted to best match users’ preference, while the
exploration is to recommend items randomly to collect more
unbiased user feedback to better capture user preference. To
deal with this problem, a large number of work explores
interactive recommendation by building a reinforcement
learning (RL) agent. Figure 8 illustrates the system-user
interactions with a RL agent. Different from traditional
recommendation methods, RL considers the information
seeking tasks as sequential interactions between an RL agent
(system) and users (environment). During the interaction,
the agent can continuously update its strategies π according
to users’ history information or feedback (i.e. state st) and
generates a list of items (i.e. action at) that best match
users’ preferences or explore users’ preference for long
term reward. Then, the users will give the feedback (i.e.
rewards rt, such as ratings or clicks) on the recommendation
lists to update the agent. Therefore, RL could balance the
competition between the exploitation and exploration and
maximize each user’s long term satisfaction with the system
[13]. Some recent work [144], [145], [146], [147] balance
exploitation and exploration in bandit setting with ε-greedy,
Boltzmann Exploration or Upper Confidence Bounds (UCB).
Some work estimates action-value reward function Q(s, a)
with Q network using the Bellman equation and finds the
best strategy with the largest function value [148], [149],
[150], [151]. Also, the actor network has been adopted
recently to learn the best policy by maximizing the long
term reward [152], [153], [154], [155].

A challenge of RL-based recommender is how to
evaluate a policy. It is best to deploy it online, e.g., in
the form of an A/B test, which however is expensive
and time-consuming in terms of engineering and logistic
overhead and also may harm the user experience when
the policy is not mature [156]. Off-policy evaluation is an
alternative strategy that uses historical interaction data to
estimate the performance of a new policy. However, off-
policy evaluation will suffer from bias as the data are
collected by an existing biased logging policy instead of
uniform policy. To correct the data bias, Chen et al. [157]
proposes to weight the policy gradient with the inverse of
the probability of historical policy. Inspired by [157], some
work [156], [158], [159] further explore off-policy evaluation
for non-stationary recommendation environments or slate
recommendation. However, as claimed by Jeunen et al.
[160], existing off-policy learning methods usually fail due
to stochastic and sparse rewards. Therefore, they [160]
further propose to leverage supervised signal with IPS
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Fig. 8. The system-user interactions with a RL aggent. The figure is
plotted referring to [150] with permission.

strategy to better evaluate a policy. Nevertheless, off-policy
evaluation is still a challenging task especially when the
historical policy is not provided, which deserves for further
exploration.

Others. There are some other strategies to mitigate the
loop effect. Sun et al. [161] leverage blind spot term to let
items be close to each other in the latent space. Sinha et al.
[162] provide an algorithm for deconvolving feedback loops
to recover users’ truth rating values.

5 FUTURE WORK

This section discusses open issues and point out some future
directions.

5.1 Evaluation of Propensity Scores

As mentioned before, Inverse Propensity Score is a
conventional strategy to debias. However, the effectiveness
and unbiasedness of an IPS strategy are guaranteed only
when the propensity scores are properly specified. How
to obtain proper propensity scores remains an important
research question. Existing methods usually assume the
ideal propensities are given. Although the evaluation of
propensity scores in some simple scenarios, e.g. for position
bias, have been explored, evaluating propensity scores
in more complex scenarios, such as for selection bias or
exposure bias, is still an open problem and deserves further
exploration.

5.2 General Debiasing Framework

From former studies, we can find that existing methods are
usually designed for just addressing one or two specific
biases. However, in the real world, various biases usually
occur simultaneously. For example, users usually rate the
items that they like and their rating values are influenced
by the public opinions, where conformity bias and selection
bias are mixed in the collected data. Besides, the distribution
of rated user-item pairs is usually inclined to popular
items or specific users groups, making the recommendation
results easily suffer from popularity bias and unfairness. It
is imperative that recommender systems require a general
debiasing framework to handle the mixture of biases. It is
a promising but largely under-explored area where more
studies are expected. Although challenging, the simple case

— the mixture of just two or three biases — is worth to be
explored first.

IPS or its variants, which have been successfully applied
for various biases, are a promising solution for this problem.
It will be interesting and valuable to explore a novel IPS-
based framework, which summarizes the applications of
IPS on different kinds of biases and provides a general
propensity score learning algorithm.

5.3 Better Evaluation
How to evaluate a recommender system in an unbiased
manner? It is an essential question for both researchers and
practitioners in this area. Existing methods either require
accurate propensity scores or rely on a considerable amount
of unbiased data. However, the accuracy of the former can
not be guaranteed, while the latter hurts user experience and
is usually constrained on a very small percentage of online
traffic. Uniform data provides gold-standard unbiased
information but its small scale makes it insufficient to
thoroughly evaluate a recommendation model due to high
variance. Exploring new evaluators using large-scale biased
data and small-size unbiased data will be an interesting
direction. More theoretical studies are expected, analyzing
the expectation, bounds and confidences of the proposed
evaluator.

Due to popularity bias and unfairness, the evaluation
exhibits more difficulties. Different work usually adopts
different evaluation criteria of popularity bias or unfairness.
This creates an inconsistent reporting of scores, with each
author reporting their own assortment of results. The
performance or comparisons of existing methods can not
be well understood. As such, we believe that a suite
of benchmark datasets and standard evaluations metrics
should be proposed.

5.4 Knowlege-enhanced Debiasing
It is natural that exploiting the abundant auxiliary
information would improve the efficacy of debiasing. Recent
years have seen some examples that leverage attributes
of users or items to correct biases in recommendation.
An interesting direction is how to better exploit this
auxiliary information as the attributes are not isolated but
connected with each other forming a knowledge graph. The
knowledge graph captures much more rich information,
which could be useful to understand the data bias. For
example, given a user u1 watches movies i1 and i2, both
of which are directed by the same person p1 and of the
same genre p2. From the knowledge graph, we can deduce
that the u1 are highly likely to have known the movies
that connect with entities i1, i2, p1 or p2. This exposure
information is important for exposure bias correction.
Another advantage of knowledge graph is its generality.
All data, data sources, and databases of every type can be
represented and operationalized by the knowledge graph.
Knowledge graph would be a powerful tool for developing
a feature-enhanced general debiasing framework.

5.5 Explanation and Reasoning with Causal Graph
Cause graph is an effective mathematical tool for elucidating
potentially causal relationships from data, deriving causal
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relationships from combinations of knowledge and data,
predicting the effects of actions, and evaluating explanations
for observed events and scenarios. As such, it is highly
promising for the debiasing tasks in recommendation.
On the one hand, the key of debaising is to reason
the occurrence, cause, and effect over recommendation
models or data. Most biases can be understood with mild
cause assumptions and additional confounding factors in
the causal graph. The effect of bias also can be inferred
through the casual paths in the graph. On the other hand,
recommendation is usually considered as an intervention
analogous to treating a patient with a specific drug, where
counterfactual reasoning needs to be conducted. What
happens if the recommended items are exposed to the users?
Causal graph provides potentials to answer this question.
The formulated unbiased recommendation criteria can be
derived with causal graph.

Nowadays, making explainable recommendations is
increasingly important as it helps to improve the
transparency, persuasiveness, effectiveness, trustworthiness,
and satisfaction of a RS. Explainable recommendation and
debiasing are highly related in the sense that they both
address the problem of why: they both need to answer why
certain items are recommended by the algorithm. When
causal graph is promising to address the bias problem in
a RS, it can also provide opportunities to give explanation
from the strong causal paths in the graph.

To this end, the next step would to be to design better
and suitable causal graph, which is capable of reasoning,
debiasing, and explanation. We believe causal model will
bring the recommendation research into a new frontier.

5.6 Dynamic Bias
In real world, biases are usually dynamic rather than static.
For example, the fashion of clothes changes frequently;
users experience many new items and may get new friends
every days; the recommendation system will update its
recommendation strategy periodically; etc. All in all, factors
or biases often evolve with the time going by. It will be
interesting and valuable to explore how bias evolves and
analyze how the dynamic bias affects a RS.

5.7 Fairness-Accuracy Trade-off
The trade-off between accuracy and fairness is of
importance in recommendation scenarios, where equally
treating different groups w.r.t. sensitive attributes has
been shown to sacrifice the recommendation performance.
Hence, it inspires us to (1) identify specific unfairness issues;
and (2) define the fairness criteria carefully to cover a wide
range of use cases; and 3) design some controllable methods,
where the trade-off between fairness and accuracy can
be controlled. Moreover, existing methods largely assume
that the sensitive attributes of users (or items, groups) are
provided as part of the input. Such assumptions might
not hold in certain real-world scenarios — for example,
in collaborative filtering, user profiles including sensitive
attributes like age and gender cause different patterns
of their behaviors; however, such profiles are unobserved
but implicitly affect the recommendation performance. A
research direction is to understand the dimensions of

causality and design fairness-aware collaborative filtering
algorithms in case sensitive attributes are not readily
available.

6 CONCLUSIONS

In this article, with reviewing more than 140 papers, we
systematically summarize the seven kinds of biases in
recommendation, along with providing their definitions and
characteristics. We further devise a taxonomy to organize
and position existing debiasing approaches. We list some
open problems and research topics worth to be further
explored. We hope this survey can benefit the researchers
and practitioners who are keen to understand the biases
in recommendation and inspire more research work in this
area.
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[1] R. Cañamares and P. Castells, “Should i follow the crowd?:
A probabilistic analysis of the effectiveness of popularity in
recommender systems,” in SIGIR. ACM, 2018, pp. 415–424.

[2] M. Morik, A. Singh, J. Hong, and T. Joachims, “Controlling
fairness and bias in dynamic learning-to-rank,” in SIGIR. ACM,
2020, pp. 429–438.

[3] Y. Saito, “Asymmetric tri-training for debiasing missing-not-at-
random explicit feedback,” in SIGIR, 2020, pp. 309–318.

[4] J. M. Hernández-Lobato, N. Houlsby, and Z. Ghahramani,
“Probabilistic matrix factorization with non-random missing
data.” in ICML, 2014, pp. 1512–1520.

[5] X. Wang, M. Bendersky, D. Metzler, and M. Najork, “Learning to
rank with selection bias in personal search,” in SIGIR, 2016, pp.
115–124.

[6] Z. Ovaisi, R. Ahsan, Y. Zhang, K. Vasilaky, and E. Zheleva,
“Correcting for selection bias in learning-to-rank systems,” in
Proceedings of The Web Conference 2020, 2020, pp. 1863–1873.

[7] D. Liang, L. Charlin, J. McInerney, and D. M. Blei, “Modeling
user exposure in recommendation,” in WWW. ACM, 2016, pp.
951–961.

[8] J. Chen, Y. Feng, M. Ester, S. Zhou, C. Chen, and C. Wang,
“Modeling users’ exposure with social knowledge influence and
consumption influence for recommendation,” in CIKM, 2018, pp.
953–962.

[9] X. Wang, Y. Xu, X. He, Y. Cao, M. Wang, and T. Chua, “Reinforced
negative sampling over knowledge graph for recommendation,”
in www. ACM / IW3C2, 2020, pp. 99–109.

[10] Y. Zhang and X. Chen, “Explainable recommendation: A survey
and new perspectives,” Found. Trends Inf. Retr., vol. 14, no. 1, pp.
1–101, 2020.

[11] J. K. Tarus, Z. Niu, and G. Mustafa, “Knowledge-based
recommendation: a review of ontology-based recommender
systems for e-learning,” Artificial intelligence review, vol. 50, no. 1,
pp. 21–48, 2018.

[12] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based
recommender system: A survey and new perspectives,” ACM
Computing Surveys (CSUR), vol. 52, no. 1, pp. 1–38, 2019.

[13] X. Zhao, L. Xia, J. Tang, and D. Yin, “Deep reinforcement learning
for search, recommendation, and online advertising: a survey,”
ACM SIGWEB Newsletter, no. Spring, pp. 1–15, 2019.

[14] S. L. Blodgett, S. Barocas, H. Daumé III, and H. Wallach,
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