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Social-Enhanced
Attentive Group Recommendation
Da Cao, Xiangnan He, Lianhai Miao, Guangyi Xiao*, Hao Chen, Jiao Xu

Abstract—With the proliferation of social networks, group activities have become an essential ingredient of our daily life. A growing
number of users share their group activities online and invite their friends to join in. This imposes the need of an in-depth study on the
group recommendation task, i.e., recommending items to a group of users. Despite its value and significance, group recommendation
remains an unsolved problem due to 1) the weights of group members are crucial to the recommendation performance but are rarely
learnt from data; 2) social followee information is beneficial to understand users’ preferences but is rarely considered; 3) user-item
interactions are helpful to reinforce the performance of group recommendation but are seldom investigated.

Toward this end, we devise neural network-based solutions by utilizing the recent developments of attention network and neural
collaborative filtering (NCF). First of all, we adopt an attention network to form the representation of a group by aggregating the group
members’ embeddings, which allows the attention weights of group members to be dynamically learnt from data. Secondly, the social
followee information is incorporated via another attention network to enhance the representation of individual user, which is helpful to
capture users’ personal preferences. Thirdly, considering that many online group systems also have abundant interactions of individual
users on items, we further integrate the modeling of user-item interactions into our method. Through this way, the recommendation for
groups and users can be mutually reinforced. Extensive experiments on the scope of both macro-level performance comparison and
micro-level analyses justify the effectiveness and rationality of our proposed approaches.

Index Terms—Group Recommendation, Attention Network, Social Followee Information, Neural Collaborative Filtering.

F

1 INTRODUCTION

R ECOMMENDER systems have played a pivotal role in
the development of network technology owing to their

outstanding ability in mitigating the information overload
problem. Both consumers and service providers benefit from
the development of recommender systems, which can im-
prove user experience and help service providers to adjust
their strategy to create new business opportunities. Existing
studies on recommender systems are mainly focused on
recommending items to individual users, arousing several
research topics, such as context-aware recommendation [1],
graph structure [2], [3], [4], [5], and domain-specific applica-
tions [6], [7]. However, traditional recommender systems are
specifically designed for optimizing user-item interactions
and are not optimized for some complex circumstances such
as recommending items to a group of users, denoted as
group recommendation. Group activities are very popular in
various real-world scenarios, such as a group of travellers
join in a a travel plan on Mafengwo1, a group of teenagers
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1. https://www.mafengwo.com

participate in a social party on Meetup2, and a group of
researchers discuss a paper on Mendelay3.

Group decision making is a dynamic and interactive
process among individuals, and each member of a group
could contribute to the final decision results. Therefore,
group recommendation should not only consider individ-
uals’ preferences, but also take the group decision process
into account. Generally, the preferences of a group are
obtained by aggregating the preferences of its members via
a predefined aggregation strategy, such as average [8], least
misery [9], maximum satisfaction [10], and expertise [11].
However, we argue that these predefined strategies are data
independent, lacking the flexibility to dynamically adjust
the weights of group members. This flexibility is particularly
useful when a group makes decision on items of different
types. As such, these aggregation strategies are insufficient
to capture the complicated and dynamic process of group
decision making, resulting in the suboptimal performance
for group recommendation. If a group recommender system
suggests items without considering the dynamic and inter-
active process among group members, it may end up with
unsuitable items and adversely hurt groups’ experience.

Despite its value and significance, group recommenda-
tion remains in its infancy due to the following challenges:
1) Existing approaches handling group recommendation
largely applied a predefined and fixed strategy to aggregate
the preferences of group members, which is insufficient
to capture the complicated and dynamic process of group
decision making. Therefore, how to devise an adaptive

2. https://www.meetup.com
3. https://www.mendeley.com
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strategy to dynamically endow weights for group members
is a non-trivial task. 2) Many group-aware social platforms
also have abundant data of social followee relations, an
important data source to reflect user personal preferences.
Thus how to leverage social followee relations to improve
user (i.e., group member) representation is of great inter-
est. 3) A group’s preferences over an item also manifests
its members’ preferences over the item, and vice versa.
Therefore, how to devise an unified framework to reinforce
the recommendation performance of both group-item and
user-item is a valuable research issue. In summary, to serve
both groups and users with a high-quality recommendation
service, it is highly desirable to develop techniques that can
comprehensively consider the factors of adaptive weight
learning, social followee influence, and jointly recommend-
ing items for groups and users.

To address these challeges, we devise neural network-
based solutions to investigate the group recommendation
issue comprehensively. First of all, we employ the recent
advance in neural network modeling — the attention mech-
anism [12], [13] — to enable group members contribute
differently to the group decision. The attention weights
for group members are dynamically adjusted when the
group interacts with different items. Afterwards, the social
followee information is further incorporated into the user
representation learning via another attention network. The
group-level and user-level attention networks are connected
with a hierarchical structure, which is helpful for reinforc-
ing the representation learning of both groups and users.
Furthermore, both group-item and user-item interactions
are embedded into the neural collaborative filtering (NCF)
framework [14], such that the recommendation performance
of group-item and user-item can be mutually enhanced.
By conducting experiments on two real-world datasets, we
demonstrate that our proposed framework yields significant
gains as compared with state-of-the-art competitors.

A preliminary version of this work has been published
as a conference paper in SIGIR 2018 [15]. This paper is
significantly different from its preliminary version in the
methodology. Specifically, this work approaches the group
recommendation via jointly considering the influence of
group member and social followee, but our previous work
[15] only focuses on the impact of group member. Moreover,
we design a hierarchical attention network to learn the
representations of groups, which is an extension of previous
single-layer attention network. As such, the Related Work
(Section 2), the Methods (Section 3), and the Experiments
(Section 4) have been re-written to support our solution to
the new generic problem.

The main contributions of this work are summarized as
follows:
• We explore the promising yet challenging problem of

group recommendation. To the best of our knowledge,
this is the first group recommender system that leverages
neural attention network to learn the aggregation strategy
from data in a dynamic way.

• The representation learning for individual users is further
enhanced by utilizing their social followee information.
Moreover, user-item interactions are further integrated.
The group-item and user-item recommendation perfor-
mance can be mutually reinforced.

• Extensive experiments are performed on two real-world
datasets to demonstrate the effectiveness of our methods.
Meanwhile, the datasets and codes are released to facili-
tate the research community4.

2 RELATED WORK

2.1 Group Recommendation

Group recommendation has received a lot of attentions in
recent years and has been widely applied in various do-
mains. Technically speaking, these work can be divided into
two categories — memory-based and model-based approaches.

Memory-based approaches can be further subdivided
into preferences aggregation [16] and score aggregation [17].
Preferences aggregation strategy first aggregates the profiles
of group members into a new profile, and then employs
recommendation techniques designed for individuals to
make group recommendation. Score aggregation strategy
first predicts the individuals’ scores over candidate items,
and then aggregates the predicted scores of members in a
group via predefined strategies (e.g., average, least misery,
maximum satisfaction and so on) to represent the group’s
preferences. However, both approaches are predefined and
inflexible, which utilize trivial methods to aggregate mem-
bers’ preferences.

Distinct from memory-based approaches, model-based
methods exploit the interactions among members by mod-
eling the generative process of a group. The PIT model [18]
effectively identifies the group preference profile for a given
group by considering the personal preferences and personal
impacts of group members. A probabilistic model named
COM [17] is proposed to model the generative process of
group activities and make group recommendations. A deep
learning-based algorithm AGR [19] is presented to learn
the influence weight of each user in a group to perform
the group recommendation. Hu et al. [20] proposed a deep
learning approach DLGR , which aims to learn high-level
comprehensive features to represent group preference so
as to avoid the vulnerabilities in a shallow representation.
Yin et al. [21] proposed a social influence-based group
recommendation algorithm SIGR , which is able to learn
both user embedding and user social influences from data in
a unified way. Moreover, some other sophisticated essentials
have be investigated for the group recommendation, such
as multimedia content [22], probabilistic method [23], [24],
and user behavior [11]. Our work falls into the model-based
category. In addition to learn the high-level interactions
among users, groups, and items under the deep learning
framework, our work employs the attention mechanism as
the underlying principle for the aggregation of users’ em-
bedding representations. Meanwhile, user-item and group-
item recommendations are mutually reinforced under our
framework.

2.2 Social-Enhanced Recommender Systems

As the rich information on social network becomes avail-
able, social-enhanced recommender systems have draw ex-
tensive attention in the research community, which aim

4. https://github.com/caoda0721/SoAGREE

https://github.com/caoda0721/SoAGREE
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to improve the recommendation performance by exploit-
ing the social influence. Moreover, social-enhanced recom-
mender systems are capable of handling various application
scenarios by considering some sophisticated factors, such as
privacy [25], tag information [26], and user preference [27].

In fact, there exists a variety of literature that attempts
to apply the social influence to the group recommendation
scenario. A social-aware group recommendation framework
is presented in [22] that jointly utilizes social relationships
and social behaviors to not only infer a group’s preference,
but also model the tolerance and altruism characteristics
of group members. For event recommendation, a Bayesian
latent factor model is proposed in [28] that considers social
group influence and individual preference simultaneously.
The work of [29] introduces a preference-oriented social
networks to capture the correlation of preference rankings
between individuals who interact in social networks. A trust
induced recommendation mechanism is investigated in [30],
which generates personalized advices for the inconsistent
experts to reach higher consensus in group decision making.
In this article, to model the influence of social followee in-
formation, we regard social followees as attributes for each
user and employ the attention mechanism as the attribute
aggregation strategy, which is significantly different from
previous social-enhanced recommender systems.

2.3 Deep Learning for Recommendation
The proliferation of deep learning has swept the research
community, among which recommender systems are no ex-
ception. The majority of work that integrates recommender
systems with deep learning methods primarily utilized
deep neural networks for modeling auxiliary information.
The features learnt by deep neural networks are then in-
corporated into collaborative filtering algorithms. Different
from previous work, there are some attempts that try to
seamlessly combine recommender systems with deep learn-
ing methods by modeling user-item interactions [14] and
higher-order interactions among features [31]. The success
of NCF [14] has been further extended to attribute-based
social recommendation [32], being utilized as the foundation
of our work as well.

The attention mechanism with the realization of neural
networks has been shown effective in several tasks, such
as image processing [33] and question answering [34]. It
simulates human recognition by focusing on some selective
parts of the whole image or the whole sentence while
ignoring some other informative (less informative) parts.
In fact, the attention mechanism has been investigated in
the field of recommender systems. To get the representation
for a multimedia item (e.g., image or micro-video [35]),
Chen et al. [12] aggregate its components (e.g, regions or
frames) with an attention network. Then the similar atten-
tion mechanism is applied to aggregate interacted items to
get user representation to make recommendation. Atten-
tive collaborative filtering [12] introduced the item- and
component-level attention model for multimedia recom-
mendation. In attentional factorization machines [13], the
weights of feature interactions are learnt via neural attention
network. Meanwhile, the work of [36] proposed a neural
attentive item similarity model for item-based recommen-
dation, which is capable of distinguishing which historical

items in a user profile are more important for a prediction
via the attention network. Moreover, Sun et al. [37] present
an attentive recurrent network-based approach for temporal
social recommendation [38], which models users’ complex
dynamic and general static preferences over time by fusing
social influence among users with two attention networks.
Inspired by these pioneering work, the key idea of our
framework is to regard a group as an image or a sentence
and learn to assign attention weights for members (com-
ponents) in the group (image or sentence): higher weights
indicate that the corresponding members (components) are
significant to the end task (image or sentence).

3 METHODS

Generally speaking, our proposed solution consists of two
components: 1) hierarchical attention network learning
which utilizes dual-level attention network to represent
groups and users in a hierarchical structure; and 2) in-
teraction learning with NCF which recommends items for
both users and groups. For clarity, we employ the attention
mechanism as the group member aggregation strategy to
perform the group recommendation and ignore the social
influence in this stage, and denote it as AGREE (short
for “Attentive Group REcommEndation”). Thereafter, we
merge the social influence into the group recommendation
scenario by utilizing another attention network to aggregate
the followees of each user, and denote it as SoAGREE (short
for “Social-enhanced Attentive Group REcommEndation”).

3.1 Notations and Problem Formulation

We propose to address the group recommendation problem
under the representation learning framework [39]. Under
the representation learning paradigm, each entity of interest
is represented as an embedding vector, which encodes the
inherent properties of the entity (e.g., semantics of a word,
interests of a user etc.) and is to be learned from data.

Suppose we have nu users U = {u1, u2, ..., unu
}, ng

groups G = {g1, g2, ..., gng
}, nf followee users F =

{f1, f2, ..., fnf
}, and ni items V = {v1, v2, ...vni

}. The l-th
group gl ∈ G is consisted of a set of users, i.e., group mem-
bers with user indexes Kl = {kl,1, kl,2, ..., kl,|gl|}, where
ukl,∗ ∈ U , and |gl| is the size of the group. The i-th user
ui ∈ U follows a set of followees with followee indexes
Hi = {hi,1, hi,2, ..., hi,|ui|}, where fhi,∗ ∈ F , and |ui| is
the number of followees. There are four kinds of observed
interaction data among U , G,F , and V , namely, user-item in-
teractions, group-item interactions, group-user interactions,
and user-followee interactions. Then, given a target group
(or target user), our task is defined as recommending a list
of items that the group (or the user) may be interested in.

3.2 Hierarchical Attention Network Learning

The first component of our SoAGREE framework is a hi-
erarchical attention network that models the aggregations
with respect to the user in group-level and the followee
in user-level. We use two attention sub-networks to learn
these aggregations jointly. Figure 1 illustrates the structure
of our proposed hierarchical attention network. Given the
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Fig. 1: Illustration of the hierarchical attention network
learning, which is composed of the attentive group rep-
resentation learning and the attentive user representation
learning.

t-th member in the l-th group, the t-th followee for the i-
th user, and the j-th item, we use α(j, t) to denote the t-th
member’s preference degree on item j, and β(i, t) to denote
the t-th followee’s impact degree on user i.

3.2.1 Attentive Group Representation Learning
The group-level attention is employed to select group mem-
bers that are representative to the group, and then the rep-
resentations of informative group members are aggregated
to characterize the group. Let ui and vj be the embedding
vector for user ui and item vj , respectively, which are basic
representation blocks in our AGREE model. Our target is
to obtain an embedding vector for each group to estimate
its preference on an item. To learn dynamic aggregation
strategy from data, it is necessary to define the group
embedding as dependent of the embeddings of its member
users and the target items, which can be abstracted as,

gl(j) = fg(vj , {ut}t∈Kl
), (1)

where gl(j) denotes the embedding of group gl tailored for
predicting its preference on target item vj , Kl contains the
user indexes of group gl, and fg is the aggregation function
to be specified. In AGREE, we design the group embedding
as consisting of two components — user embedding aggre-
gation and group preference embedding:

gl(j) =
∑
t∈Kl

α(j, t)ut︸ ︷︷ ︸
user embedding aggregation

+ rl︸︷︷︸
group preference embedding

. (2)

Next we elaborate the two components.
We perform a weighted sum on the embeddings of group

gl’s member users, where the coefficient α(j, t) is a learnable
parameter denoting the influence of member user ut in
deciding the group’s choice on item vj . Intuitively, if a user
has more expertise on an item (or items of the similar type),
she should have a larger influence on the group’s choice
on the item [11]. To understand this, let us consider an

example that a group discusses which city to travel to; if
a user has traveled to China many times, she should be
more influential when the group considers whether should
travel to a city in China. Since in the representation learn-
ing framework, embedding ut encodes the member user’s
historical preference and embedding vj encodes the target
item’s property, we parameterize α(j, t) as a neural attention
network with ut and vj as the input:

a(j, t) = hT ReLU(Pvvj +Puut + b),

α(j, t) = softmax(a(j, t)) =
exp a(j, t)∑

t′∈Kl
exp a(j, t′)

,
(3)

where Pv and Pu are weight matrices of the attention net-
work that convert item embedding and user embedding to
hidden layer, respectively, and b is the bias vector of the
hidden layer. We use ReLU as the activation function of
the hidden layer, and then project it to a score a(j, t) with
a weight vector h. Lastly, we normalize the scores with a
softmax function, which is a common practice in neural
attention network [12], [13], [40]; it makes the attention
network a probabilistic interpretation, which can also deal
with groups of different sizes in our case. With such a
soft attention mechanism, we allow each member user to
contribute in a group’s decision, where the contribution of a
user is dependent on her historical preference and the target
item’s property, which are learned from past data of group-
item interactions and user-item interactions (to be discussed
in Section 3.3).

Besides aggregating the embeddings of group members,
we further associate a group gl with a dedicated embedding
rl. The intention is to take the general preference of a group
into account. Our consideration is that in some cases when
users form a group, they may pursue a target that is different
from the preference of each user. For example, in a family of
three, the child prefers cartoon movie and the parents favor
romantic movie; but when they go to a cinema together,
the final chosen movie could be an educational movie. As
such, it is beneficial to associate a group with an embedding
to denote its general preference, in addition to the one
aggregated from its members. To combine the components
of group preference embedding with user embedding aggre-
gation, we perform a simple addition operation, same as the
previous work [12], [41] that combine different signals in the
embedding space. Our empirical results in Section 4.5 show
that this component can significantly improve the group
recommendation performance.

3.2.2 Attentive User Representation Learning

Social followee information is incorporated into the atten-
tive user representation learning component, in which the
followees of a user are regarded as her attributes and are
aggregated with attention weights. Let fi be the embedding
vector for followee fi, which is the basic ingredient for
inferring the social impact. The target of the attentive user
representation learning component is to obtain an embed-
ding vector for each individual user. We define the user
embedding as the function with the input of its followees’
embeddings, which is formally defined as,

ui = fu({ft}t∈Hi), (4)
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Fig. 2: Illustration of the NCF-based interaction learning,
which follows a joint optimization scheme.

where ui denotes the embedding of user ui, Hi contains
the followee indexes of user ui, and fu is the aggregation
function to be specified. In SoAGREE, we define the user
embedding as the combination of followee embedding ag-
gregation and user preference embedding:

ui =
∑
t∈Hi

β(i, t)ft︸ ︷︷ ︸
followee embedding aggregation

+ si︸︷︷︸
user preference embedding

. (5)

Similar to the group-level attention, the user-level attention
score for the t-th followee of user ui is also a two-layer
network and is formularized as:

b(i, t) = hT ReLU(Qf ft +Qssi + b),

β(i, t) = softmax(b(i, t)) =
exp b(j, t)∑

t′∈Hi
exp b(j, t′)

,
(6)

where Qf and Qs are weight matrices of the attention net-
work that convert followee embedding and user preference
embedding to hidden layer, respectively, and b is the bias
vector of the hidden layer. ReLU is utilized as the activation
function of the hidden layer, and is then projected to a
score β(i, t) with a weight vector h. Finally, the user-level
attention is normalized with a softmax function. With the
underlying principle of attention mechanism, the attention
weights of a user’s followees are dynamically learnt, and the
user’s followees contribute unequally in forming the repre-
sentation for the user. In addition, the user embedding is
associated with a user preference embedding si, which takes
the general preference of a user into account. Through this
way, the followee embedding aggregation and user pref-
erence embedding are mutually reinforced. Experimental
results in Section 4.5 show that this design can significantly
enhance the group recommendation performance.

3.3 Interaction Learning with NCF

NCF is a multi-layer neural network framework for item
recommendation [14]. Its idea is to feed user embedding and
item embedding into a dedicated neural network (which
needs to be customized) to learn the interaction function
from data. As neural networks have strong ability to fit
the data, the NCF framework is more generalizable than

the traditional MF model, which simply applies a data-
independent inner product function as the interaction func-
tion. As such, we opt for the NCF framework to perform
an end-to-end learning on both embeddings (that represent
users, items, and groups) and interaction functions (that
predict user-item and group-item interactions).

Figure 2 illustrates our customized NCF solution. Since
we aim to achieve both recommendation tasks for groups
and users simultaneously, we design the solution to learn
the user-item and group-item interaction functions together.
Specifically, given a user-item pair (ui, vj) or a group-item
pair (gl, vj), the representation layer first returns the em-
bedding vector for each given entity (details see Section 3.2).
Then the embeddings are fed into a pooling layer and hid-
den layers (shared by the two tasks) to obtain the prediction
score. Next we elaborate the two components.

3.3.1 Pooling layer
Assuming the input is a group-item pair (gl, vj), the pooling
layer first performs element-wise product on their embed-
dings, i.e., gl(j) and vj , and then concatenates it with the
original embeddings:

e0 = ϕpooling(gl(j),vj) =

gl(j)� vj

gl(j)

vj

 (7)

The rationale is twofold. 1) The element-wise product sub-
sumes MF, which uses multiplication on each embedding
dimension to model the interation between two embedding
vectors; moreover, element-wise product has been demon-
strated to be highly effective in feature interaction modeling
in low-level of neural architecture [31]. 2) Nevertheless, the
element-wise product may lose some information in the
original embeddings which may be useful for later inter-
action learning. To avoid such information loss, we further
concatenate it with the original embeddings.

Note that such a pooling operation is partially in-
spired from the state-of-the-art neural recommender model
NeuMF [14], which shows that combines MF with MLP in
the hidden layer leads to better performance. As MLP con-
catenates the original user embedding and item embedding,
it inspires us to keep the original embeddings to facilitate
the learning of later hidden layers. We apply the same
pooling operation for the input of a (ui, vj) pair.

3.3.2 Shared Hidden layers
Above the pooling layer is a stack of fully connected layers,
which enable the model to capture the nonlinear and higher-
order correlations among users, groups, and items.

e1 = ReLU(W1e0 + b1)

e2 = ReLU(W2e1 + b2)

......

eh = ReLU(Wheh−1 + bh)

, (8)

where Wh, bh, and eh denote the weight matrix, bias vector,
and output neurons of the h-th hidden layer, respectively.
We use the ReLU function as the non-linear activation func-
tion, which has empirically shown to work well. Moreover,
we use the tower structure for hidden layers and leave



1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2936475, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

the further tuning on the structure as future work. Finally,
the output of the last hidden layer eh is transformed to a
prediction score via:{

x̂ij = wTeh, if e0 = ϕpooling(ui,vj)

ŷlj = wTeh, if e0 = ϕpooling(gl(j),vj)
, (9)

where w denotes the weights of the prediction layer; x̂ij and
ŷlj represent the prediction for a user-item pair (ui, vj) and
a group-item pair (gl, vj), respectively.

It is worth mentioning that we have purposefully de-
signed the prediction of the two tasks share the same
hidden layers. This is because that the group embedding is
aggregated from user embeddings, which makes them in the
same semantic space by nature. Moreover, this can augment
the training of group-item interaction function with user-
item interaction data and vice versa, which facilitates the
two tasks reinforcing each other.

3.4 Model Optimization
3.4.1 Objective Function
Since we address recommendation task from the ranking
perspective, we opt for pairwise learning method for op-
timizing model parameters. The assumption of pairwise
learning is that an observed interaction should be predicted
with a higher score than its unobserved counterparts. Specif-
ically, we employ the regression-based pairwise loss, which
is a common choice in item recommendation [32]:

Luser =
∑

(i,j,s)∈O

(xijs − x̂ijs)2 =
∑

(i,j,s)∈O

(x̂ij − x̂is − 1)2,

(10)
where O denotes the training set, in which each instance is a
triplet (i, j, s) meaning that user ui has interacted with item
vj , but has not interacted with item vs before (i.e., vs is a
negative instance sampled from the unobserved interactions
of ui); x̂ijs = x̂ij − x̂is, means the margin of the prediction
of observed interaction (ui, vj) and unobserved interaction
(ui, vs). Since we focus on implicit feedback, where each
observed interaction has a value of 1 and unobserved inter-
action has a value of 0, we have xijs = xij − xis = 1.

We are aware that another prevalent pairwise learning
method in recommendation is the Bayesian Personalized
Ranking (BPR) [42], [43]. It is worth pointing out that
an advantage of the above regression-based pairwise loss
over BPR is that it eliminates the need of tuning the L2

regularization for the weights in the hidden layers (i.e.,
{Wh} and w). In BPR, the loss for an instance (i, j, s) is
formulated as − log σ(x̂ij − x̂is), where σ is the sigmoid
function. To decrease the BPR loss on a multi-layer model,
a trivial solution is to scale up the weights in each update.
As such, it is crucial to enforce the L2 regularization on the
weights to avoid this trivial solution. In contrast, our chosen
loss optimizes the margin term x̂ij − x̂is towards 1, making
such a trivial solution fail to decrease the loss. Thus the
weights can be learned without any constraint on it.

Similarly, we can obtain the pairwise loss function for
optimizing the group recommendation task:

Lgroup =
∑

(l,j,s)∈O′
(yljs − ŷljs)2 =

∑
(l,j,s)∈O′

(ŷlj − ŷls − 1)2,

(11)

where O′ denotes the training set for the group recommen-
dation task, in which each instance (l, j, s) means that group
gl has interacted with item vj , but has not interacted with
vs before.

3.4.2 Learning Details

We present some learning details that are important to
replicate our method.

Mini-batch training. We perform mini-batch training,
where each mini-batch contains both user-item and group-
item interactions. Specifically, we first shuffle all observed
interactions, and then sample a mini-batch of observed
interactions. For each observed interaction, we sample a
fixed number of negative instances to form the training
instances.

Pre-training. It is known that neural networks are rather
sensitive to initialization [14]. To better train AGREE and
SoAGREE, we pre-train them with a simplified version
that removes the attention networks, i.e., assigning uniform
weights on user embeddings and followee embeddings to
obtain the group embedding and user embedding, respec-
tively. With the pre-trained model as an initialization, we
further train the AGREE and SoAGREE model. Note that
we employ Adam [44] in the pre-training phase, which has a
fast convergence owing to its adaptive learning rate strategy.
After pre-training, we use the vanilla SGD, a common choice
in fine-tuning a pre-trained model.

Dropout. As the neurons of fully connected layers can
easily co-adapt [31], [45], we employ dropout to improve
our solution’s generalization performance. Specifically, in
the pooling layer, we randomly drop ρ percent of the e0 vec-
tor. Moreover, we also apply dropout on the hidden layer of
the neural attention network and the hidden layers of NCF
interaction learning component. Note that dropout is only
used during training (i.e., computing gradients with back-
propagation), and must be disabled during the prediction
phase.

4 EXPERIMENTS

In this section, we conduct extensive experiments on one
self-collected dataset and one public dataset to answer the
following five research questions:

• RQ1 How is the effectiveness of our designed attention
networks? Can they provide better group recommen-
dation performance?

• RQ2 How does our proposed AGREE and SoAGREE
approaches perform as compared with state-of-the-art
group recommender systems?

• RQ3 How do different predefined settings (e.g., the
number of negative samples and dropout ratio) affect
our framework?

• RQ4 How do the two components of group repre-
sentation (i,e., user embedding aggregation and group
preference embedding) and two components of user
representation (i.e., followee embedding aggregation
and user preference embedding) contribute to the per-
formance of our solutions?
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4.1 Experimental Settings

4.1.1 Datasets

We experimented with two real-world datasets, one is
crawled from a tourism website Mafengwo5 and the other
one is a publicly accessible dataset released from the com-
petition of context-aware movie recommendation6.

1. Mafengwo. Mafengwo is a tourism website where
users can record their traveled venues, create or join a
group travel. We retained the groups which have at least 2
members and have traveled at least 3 venues, and collected
their traveled venues. The traveled venues of each group
member were also collected. Based on the above criteria,
we obtained 5, 275 users, 995 groups, 1, 513 items, 39, 761
user-item interactions, and 3, 595 group-item interactions.
The user-item interaction matrix has a sparsity of 99.50%,
while the group-item interaction matrix has a sparsity of
99.76%. On average, each group has 7.19 users, each user
has traveled 7.54 venues, and each group has traveled 3.61
venues.

Moreover, we crawled the followee information from the
Mafengwo platform. For the aforementioned 5, 275 users,
we collected their followees. Ultimately, we obtained 5, 275
users, 13, 096 followees, and 53, 235 user-followee interac-
tions. On average, each user has 10.09 followees, and each
followee has been followed by 4.06 users.

2. CAMRa2011. CAMRa2011 is a real-world dataset
containing the movie rating records of individual users
and households. Since the majority of users have no group
information in the dataset, we filtered them out and retained
users who have joined a group. The user-item interactions
and group-item interactions are explicit feedback with the
rating scale of 0 to 100. We transformed the rating records to
positive instances with the target value of 1 and left the
other missing data as negative instances with the target
value of 0. The final dataset contained 602 users, 290 groups,
7, 710 items, 116, 344 user-item interactions, and 145, 068
group-item interactions. The user-item interaction matrix
has a sparsity of 97.49%, while the group-item interaction
matrix has a sparsity of 93.51%. On average, each group has
2.08 users, each user has watched 193.26 movies, and each
group has watched 500.23 movies.

As both datasets only contain positive instances (i.e.,
observed interactions), we randomly sampled from miss-
ing data as negative instances to pair with each positive
instance. Previous efforts have shown that increasing the
negative sampling ratio from 1 to larger values is benefi-
cial to the Top-N recommendation [14]. For AGREE and
SoAGREE on both datasets, the optimal sampling ratio is
around 4 to 6, so we fixed the negative sampling ratio
as 4. Specifically, for each log of Mafengwo, we randomly
sampled 4 venues that the user (group) has never visited; for
each log of CAMRa2011, we randomly sampled 4 movies
that the user (group) has never watched. Each negative
instance is assigned to a target value of 0. It is well worth
to mention that the social followee information only exists
on the Mafengwo dataset. Therefore, the performance of
SoAGREE is only evaluated on Mafengwo.

5. http://www.mafengwo.cn
6. http://2011.camrachallenge.com/2011

4.1.2 Evaluation Protocols
We adopted the leave-one-out evaluation protocol, which has
been widely utilized to evaluate the performance of the
Top-N recommendation [12], [42]. Specifically, for each user
(group), we randomly removed one of her (its) interactions
for testing. This results in disjoint training set Strain and
testing set Stest. Since it is too time-consuming to rank all
items for each user and group, we followed the common
scheme [14] that randomly selected 100 items that were not
interacted by the user or the group and ranked the testing
item among the 100 items. To evaluate the performance of
the Top-N recommendation, we employed the widely used
metric — Hit Ratio (HR) and Normalized Discounted Cu-
mulative Gain (NDCG). Large values indicate better perfor-
mance. In leave-one-out evaluation, HR measures whether
the testing item is ranked in the Top-N list (1 for yes and 0
for no), while NDCG accounts for the position of the hit by
assigning higher score to hit at top positions.

4.1.3 Baselines
To justify the effectiveness of our methods, we compared
them with the following methods.
• NCF. This method treats a group as a virtual user and

ignores the member information of the group [46]. Then
users and virtual users are embedded into our NCF solu-
tion with the same hyper-parameter setting of AGREE.

• Popularity [47]. This method recommends items to users
and groups based on the popularity of items. The popular-
ity of an item is measured by its number of interactions in
the training set. It is a non-personalized method to bench-
mark the performance of other personalized methods.

• COM [17]. This is a group-oriented recommender system,
which is based on the probability theory to model the
generative process of group activities. We used the im-
plementation released by the authors and modified the
evaluation codes to adapt our testing scenario. We fine-
tuned the hyper-parameters to obtain the optimal result.

• UL All [16]. This is a group recommendation algorithm,
which involves proposing an upward leveling aggrega-
tion method to consider deviations for group recommen-
dations. This method is re-implemented and the testing
scheme is modified to be consistent with our setting.

• AGR [19]. This is an attention-based group recommenda-
tion solution. It learns the attention weight of a user by
considering the impact of other group members, which
ignores the influence of items. A pairwise ranking loss is
employed to optimize the solution. We re-implemented
this approach and modified its evaluation strategy.

• GREE and SoGREE. These are variants of our AGREE
and SoAGREE methods. GREE removes the attention
network in AGREE, while SoGREE removes the user-
level attention network in SoAGREE. Uniform weights
are employed. This is to demonstrate the effect of learning
varying weights for group members and social followees.

• AGREE-S. This is a variant of our AGREE framework
by utilizing separate hidden layers to infer user-item
interactions and group-item interactions. This method is
employed to illustrate the effect of shared hidden layers
in interaction learning.

• AGREE-G. This is a variant of our AGREE solution by
using group member information to enhance the represen-

http://www.mafengwo.cn
http://2011.camrachallenge.com/2011
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Fig. 3: Performance of AGREE and GREE in each training iteration on both Mafengwo and CAMRa2011 datasets for
group-item recommendation (Section 4.2).
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Fig. 4: Performance of SoAGREE and SoGREE in each training iteration on the Mafengwo dataset for both user-item
recommendation and group-item recommendation (Section 4.2).

tation learning of users. Instead of utilizing the followees
of a user, this method employs the users who have ap-
peared in a same group with the user to construct the
representation for her. This is to manifest the effect of
group information in constructing user embeddings.

It should be noted that we were aware of PIT [18],
DLGR [20], and SIGR [21], state-of-the-art solutions for
group recommendation. However, the authors did not re-
lease their implementation and the algorithms are difficult
to re-implement. Therefore, these methods are not compared
at this stage.

To justify the usefulness of learning the aggregation
strategy from data, we further compare with another line of
methods that apply a predefined score aggregation strategy.
For these methods, we first run the NCF method with the
same hyper-parameter setting of AGREE to predict the in-
dividual preference scores, and then apply the aggregation
strategy to get the group preference score.
• NCF+avg [8]. NCF+avg is short for “NCF combined with

average”. It is the simplest aggregation strategy that av-
erages the preference scores of individuals as the group
preference score. The hypothesis behind this method is
that each member contributes equally to the final group
decision.

• NCF+lm [9]. NCF+lm applies the least misery strategy. It
tries to please all members in a group, which uses the
minimum score of individuals as the group preference
score. The underlying assumption is that the least satisfied
member determines the final group decision, which is
similar to the well-known cask principle.

• NCF+ms [10]. NCF+ms employs the maximum satisfac-
tion strategy. In contrast to NCF+lm, it tries to maximize
the satisfaction of group members. It averages the indi-
vidual scores above a specified threshold as the group
preference score. In this work, we assumed a member

prefers to follow other members’ options, and treated the
maximum score as the preference of the group.

• NCF+exp [11]. NCF+exp adopts the expertise scheme. It
applies a weighted average on individual scores, where
the weight reflects the expertise of the user. In our experi-
ments, the expertise of a user is defined as the number of
items she has interacted with in the training set.

4.1.4 Implementation and Hyper-Parameter Setting
We implemented our method based on PyTorch7. For hyper-
parameter tuning, we randomly sampled one interaction
for each user and group as the validation set. As have
mentioned before, the negative sampling ratio was set to 4.
For the initialization of the embedding layer, we applied the
Glorot initialization strategy [48], which was found to have
a good performance. For hidden layers, we randomly initial-
ized their parameters with a Gaussian distribution of a mean
of 0 and a standard deviation of 0.1. We used the Adam opti-
mizer for all gradient-based methods, where the mini-batch
size and learning rate were searched in [128, 256, 512, 1024]
and [0.001, 0.005, 0.01, 0.05, 0.1], respectively. In neural at-
tention network and NCF, we empirically set the size of
the first hidden layer same as the embedding size with
the dimension of 32, and employed three layers of a tower
structure and ReLU activation function. We repeated each
setting for 5 times and reported the average results. We
further conducted the paired two-sample t-test on NDCG
based on the 5 times experiment results.

4.2 Effect of Attention (RQ1)
The primary motivation of this work is to learn variable
attention weights for group members and user followees,
rather than the commonly used uniform weighting strategy.

7. http://www.pytorch.org

http://www.pytorch.org
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TABLE 1: Case studies of a sampled group on the effect of
group-level attention (Section 4.2). The member weights
and prediction scores of the group for positive venues
(Venue #30, #32, #106) and negative venues (Venue #65,
#121, #123) are shown (Section 4.2).

Model User #805 User #806 User #807 ŷ

Venue #30 GREE 0.333 0.333 0.333 0.260
AGREE 0.286 0.302 0.412 0.572

Venue #32 GREE 0.333 0.333 0.333 0.096
AGREE 0.222 0.583 0.195 0.370

Venue #106 GREE 0.333 0.333 0.333 0.192
AGREE 0.364 0.287 0.347 0.318

Venue #65 GREE 0.333 0.333 0.333 0.132
AGREE 0.408 0.311 0.281 0.091

Venue #121 GREE 0.333 0.333 0.333 0.132
AGREE 0.335 0.374 0.291 0.053

Venue #123 GREE 0.333 0.333 0.333 0.109
AGREE 0.288 0.411 0.301 0.063

Therefore, in order to investigate the effectiveness of the
attention network, we compare the performance of AGREE
with the GREE baseline and SoAGREE with the SoGREE
baseline.

Figure 3 shows the performance of AGREE and GREE in
each training iteration under the optimal parameter settings.
We have the following observations: 1) Compared with
GREE, AGREE achieves a relative improvement on both
datasets with respect to both metrics. The improvements are
statistically significant and mainly stem from the strong rep-
resentation power of the attention network. 2) Both AGREE
and GREE converge rather fast, reaching their stable per-
formance around the 20th iteration. Compared with GREE,
AGREE additionally uses an attention network to re-weight
the embedding vectors of group members. This improves
generalization without affecting the convergence speed,
which provides evidence on the effectiveness and rationality
of AGREE. Similar experimental results of SoAGREE and
SoGREE are revealed in Figure 4. SoAGREE betas SoGREE
by a great margin for both user-item recommendation and
group-item recommendation.

Micro-Level Analysis. Apart from the superior recom-
mendation performance, another key advantage of AGREE
is its ability in interpreting the attention weights of group
members. To demonstrate this, we performed some micro-
level case studies. To be specifically, we implemented
AGREE (SoAGREE) in a two-stage scheme. After obtaining
the GREE (SoGREE) model, we fixed the parameters and
trained the attention network only to make the effect of
attention more distinct. Prediction scores of the group (user)
toward positive and negative items are investigated.

We randomly selected a testing group which consists of
three users (#805, #806, and #807), and the group has
traveled three venues (#30 Argentina, #32 Chile, and #106
Bolivia) with the target value of 1. Each group member also
has her owning traveling history8. Besides traveled venues,
we also randomly picked three negative venues (#65 Iran,
#121 Qiandao Lake, and #123 Baoji) with the target value
of 0. Table 1 shows the attention weights and prediction
score for the group of GREE and AGREE. We have the
following observations: 1) For different target venues, the

8. User #805 has traveled #58 Brazil, #31 Trukey, and #136 Japan;
user #806 has traveled #547 Jiangxi, #62 Yunnan, and #553 Hunan;
user #807 has traveled #139 Los Angeles, and #86 New York.

TABLE 2: Case studies of a sampled user on the effect of
user-level attention (Section 4.2). The followee weights
and prediction scores of the user for positive venues
(Venue #23, #231, #579) and negative venues (Venue
#39, #87, #357) are shown (Section 4.2).

Model User #144 User #425 User #696 x̂

Venue #23 SoGREE 0.333 0.333 0.333 0.213
SoAGREE 0.488 0.293 0.219 0.481

Venue #231 SoGREE 0.333 0.333 0.333 0.331
SoAGREE 0.304 0.254 0.442 0.610

Venue #579 SoGREE 0.333 0.333 0.333 0.331
SoAGREE 0.301 0.229 0.470 0.638

Venue #39 SoGREE 0.333 0.333 0.333 0.137
SoAGREE 0.280 0.389 0.331 0.037

Venue #87 SoGREE 0.333 0.333 0.333 0.142
SoAGREE 0.307 0.282 0.411 0.086

Venue #357 SoGREE 0.333 0.333 0.333 0.109
SoAGREE 0.537 0.223 0.240 0.053

attention weights of group members vary significantly in
AGREE. For example, when predicting the group’s pref-
erence on negative venues #121 and #123, the attention
weights of user #806 are relatively high. This is probably
because that the user has traveled a lot of Chinese venues
(#547 Jiangxi, #62 Yunnan, and #553 Hunan), and thus
she has more power in deciding whether the group should
travel to other Chinese venues (note that #121 Qiandao
Lake and #123 Baoji are Chinese venues). 2) For positive
venues, the prediction scores of AGREE are much larger
than that of GREE and are closer to the target value of 1.
While for negative venues, the prediction scores of AGREE
are closer to the target value of 0 than that of GREE. As
GREE assigns the same weight for all members in the group,
the model’s representation ability is limited. By augmenting
GREE with a learnable attention network, AGREE is capable
of assigning higher weights for influential users and thus
leads to better recommendation performance.

To gain a deep insight into the user-level attention
weights learning, we performed case studies on a randomly
selected testing user and investigated the attention weights
for her followees (#144, #425, and #696) with respect
to both positive venues (#23 Macao, #231 Shanghai, and
#579 Liaoning) and negative venues (#39 Orlando, #87
Inner Mongolia, and #357 Norway). Each followee has her
owning traveling history9. Experimental results are revealed
in Table 2. We have the following observations: 1) The atten-
tion weights for followees with respect to different venues
are varied. For instance, the attention weights for followee
#696 are relatively high with respect to venues #231, #579,
and #87. This is probably because the followee’s traveled
venues and the observed venues are relatively similar (they
are all Chinese venues). 2) The prediction scores of SoA-
GREE are closer the target values (1 for positive venues and
0 for negative venues) than that of SoGREE. It illustrates the
effectiveness of incorporating user-level attention network
into our framework.

4.3 Overall Performance Comparison (RQ2)
Now we compare the performance of ARGEE and SoA-
GREE with the baselines of interest. Note that since COM,

9. Followee #144 has traveled #110 Switzerland, #130 Finland,
and #566 Zurich; followee #425 has traveled #93 Miami, #215
Seattle, and #549 Chicago; followee #696 has traveled #22 Tibet, #71
Sichuan, and #864 Sinkiang.
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TABLE 3: Top-N performance of both recommendation tasks for users and groups on Mafengwo (Section 4.3).

Overall Performance Comparison (Mafengwo)
K=5 K=10

User Group User Group
HR NDCG p-value HR NDCG p-value HR NDCG p-value HR NDCG p-value

NCF 0.6363 0.5432 4.46e-06 0.4701 0.3657 1.60e-06 0.7417 0.5733 3.68e-05 0.6269 0.4141 9.20e-07
Popularity 0.4047 0.2876 2.02e-12 0.3115 0.2169 1.55e-11 0.4971 0.3172 2.09e-12 0.4251 0.2537 1.13e-11
COM — — — 0.4432 0.3325 3.08e-09 — — — 0.5528 0.3812 2.81e-09
UL All — — — 0.4687 0.3643 8.85e-07 — — — 0.6252 0.4127 5.48e-07
AGR 0.6357 0.5481 6.85e-04 0.4729 0.3694 1.40e-05 0.7403 0.5738 6.26e-05 0.6321 0.4203 4.08e-05
AGREE-S 0.6369 0.5461 4.08e-05 0.4781 0.3679 5.03e-06 0.7473 0.5700 3.36e-06 0.6311 0.4186 9.68e-06
AGREE-G 0.6231 0.5377 4.19e-07 0.4661 0.3520 3.74e-08 0.7401 0.5711 6.45e-06 0.6299 0.4171 3.76e-06
NCF+avg — — — 0.4774 0.3669 2.86e-06 — — — 0.6222 0.4140 8.84e-07
NCF+lm — — — 0.4744 0.3631 5.67e-07 — — — 0.6302 0.4152 1.45e-06
NCF+ms — — — 0.4700 0.3616 3.46e-07 — — — 0.6281 0.4114 3.57e-07
NCF+exp — — — 0.4724 0.3647 1.03e-06 — — — 0.6251 0.4015 3.61e-08
AGREE 0.6383 0.5502 7.04e-07 0.4814 0.3747 8.42e-06 0.7491 0.5775 1.60e-06 0.6400 0.4244 1.04e-05
SoAGREE 0.6510 0.5612 — 0.4898 0.3807 — 0.7610 0.5865 — 0.6481 0.4301 —

TABLE 4: Top-N performance of both recommendation tasks for users and groups on CAMRa2011 (Section 4.3).

Overall Performance Comparison (CAMRa2011)
K=5 K=10

User Group User Group
HR NDCG p-value HR NDCG p-value HR NDCG p-value HR NDCG p-value

NCF 0.6119 0.4018 1.03e-06 0.5803 0.3896 9.02e-06 0.7894 0.4535 1.89e-07 0.7693 0.4448 3.92e-07
Popularity 0.4624 0.3104 9.15e-11 0.4324 0.2825 5.92e-11 0.6026 0.3560 5.99e-11 0.5793 0.3302 3.67e-11
COM — — — 0.5798 0.3785 1.20e-07 — — — 0.7695 0.4385 7.68e-08
UL All — — — 0.5559 0.3765 7.68e-08 — — — 0.7624 0.4400 1.07e-07
AGR 0.6196 0.4098 8.43e-04 0.5879 0.3933 5.62e-04 0.7897 0.4627 8.42e-06 0.7789 0.4530 2.77e-05
AGREE-S 0.6179 0.4092 2.76e-04 0.5879 0.3904 1.65e-05 0.7899 0.4632 1.21e-05 0.7739 0.4503 3.98e-06
AGREE-G 0.6125 0.4027 1.52e-06 0.5806 0.3899 1.12e-05 0.7895 0.4568 5.11e-07 0.7604 0.4455 4.92e-07
NCF+avg — — — 0.5683 0.3819 2.97e-07 — — — 0.7641 0.4452 4.47e-07
NCF+lm — — — 0.5593 0.3788 1.29e-07 — — — 0.7648 0.4455 4.94e-07
NCF+ms — — — 0.5434 0.3710 2.75e-08 — — — 0.7607 0.4348 3.74e-08
NCF+exp — — — 0.5648 0.3787 1.26e-07 — — — 0.7621 0.4426 2.05e-07
AGREE 0.6223 0.4118 — 0.5883 0.3955 — 0.7967 0.4687 — 0.7807 0.4575 —

UL All, and score aggregation methods are specially de-
signed for group recommendation, they can not provide
recommendation for individual users.

Table 3 and Table 4 show the results on Mafengwo
and CAMRa2011, respectively. We have the following ob-
servations: 1) Except for SoAGREE, our AGREE method
achieves the best performance on the two datasets for both
recommendation tasks, significantly outperforming state-of-
the-art methods (all the p-values between our model and
each baseline are much smaller than 0.05, which indicates
that the improvements are statistically significant). This
validates the effectiveness of our AGREE solution, more
specifically, the positive effect of the attention network in
aggregating the preference of group members and simul-
taneously addressing the two tasks. 2) The performance of
neural network-based solutions (i.e., NCF, AGR, NCF+avg,
NCF+lm, NCF+ms, NCF+exp, AGREE, and SoAGREE) are
superior to that of non-personalized approach (Popular-
ity), probabilistic graphical model (COM), and aggrega-
tion method (UL All). This demonstrates the superiority
of neural networks, especially their great ability in model-
ing the high-order interactions among users, groups, and
items. 3) There is no obvious winner among the score
aggregation-based solutions. For example, NCF+avg out-
performs NCF+lm when K = 5 on Mafengwo, but un-
derperforms when K = 10. This again confirms that a
predefined, static score aggregation strategy is insufficient
to predict the group decision well. In contrast, AGREE dy-
namically associates weights for group members by learn-

ing from data, which shows remarkable flexibility and
superiority. 4) On the Mafengwo dataset, SoAGREE out-
performs AGREE by a great margin. This demonstrates
the effectiveness of considering social followee information,
which employs the attention mechanism as the underlying
principle for aggregating individual followees. 5) AGREE
beats AGREE-S by a great margin for both user-item recom-
mendation and group-item recommendation. The user-item
interactions and group-item interactions are rather sparse.
Jointly optimizing user-item interactions and group-item
interactions with shared hidden layers could effectively al-
leviate the data sparsity issue. That is why the performance
of AGREE is superior to that of AGREE-S. 6) The experi-
mental results of AGREE are superior to that of AGREE-
G. Although the group member information is utilized to
construct user embeddings, the performance of AGREE-G
even degrades to a large extent. This is probably because
the groups are temporarily organized and the relationship
among group members are not very tight. Therefore, the
group information is not suitable to the construction of user
embeddings in our scenario.

4.4 Convergence Analysis and Parameter Tuning (RQ3)

In order to demonstrate the robustness and effectiveness of
our proposed framework, we investigated the convergence
of AGREE and meticulously studied the sensibility of sev-
eral factors, such as the number of negative samples and the
dropout ratio.
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Fig. 5: Training loss and recommendation performance of AGREE w.r.t. the number of iterations on CAMRa2011.
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Fig. 6: Performance of AGREE w.r.t. the number of negative samples for each positive instance.
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Fig. 7: Performance of AGREE w.r.t. the dropout ratio ρ.

Convergence: We recorded the value of training loss,
HR@10, and NDCG@10 along with each iteration using the
optimal parameter setting. Figure 5a, 5b, and 5c show the
training loss, HR@10, and NDCG@10 with the increasing
number of iterations on the CAMRa2011 dataset. The con-
vergence results for the Mafengwo dataset is almost the
same as that of CAMRa2011 dataset. To save the space, we
only illustrated the convergence results of the CAMRa2011
dataset here. We have the following observations: 1) With
more iterations, the training loss of AGREE gradually de-
creases and the recommendation performance is improved.
AGREE converges fast in the first 10 iterations, and reaches
its optimal results around the 20th iteration. This indicates
the rationality of our learning scheme. 2) Jointly observing
Figure 5b and 5c, the performance of NDCG@10 fluctuates
markedly over the iterations, while the performance of
HR@10 is relatively stable. It is reasonable since NDCG@10
not only measures whether the test item is presented on
the top-10 list, but also accounts for the position of the hit
(which is ignored in HR@10).

Impact of Negative Samples: The strategy of negative
sampling has been proven rational and effect in [7], [14].
It randomly samples various numbers of missing data as
negative samples to pair with each positive instance. With
more negative samples selected, the performance of nega-
tive sampling becomes stable and approximates the result
of all missing data considered. To illustrate the impact of

negative sampling for AGREE, we show the performance
of AGREE w.r.t. different negative sample ratios on both
Mafengwo and CAMRa2011 datasets in Figure 6. We have
the following observations: 1) It is obviously seen that one
negative sample for each positive instance is not optimal
for the final performance, and sampling more negative
samples is beneficial. Compared with traditional pairwise
sampling method which selects only one negative sample to
pair with each positive sample, such as BPR [42], AGREE
shows the advantage of selecting flexible sampling ratio for
negative instances. 2) With more negative samples selected,
the performance of AGREE becomes stable and reaches its
optimal results. For both datasets, the optimal sampling
ratio is around 4 to 6, and that is why the number of
negative samples is set to 4 as illustrated in Section 4.1.1.

Impact of Dropout: Although deep neural networks
have the great ability in representation learning, a deep
architecture easily leads to the overfitting issue due to the
limited training data. To prevent AGREE and SoAGREE
from overfitting, we employed the dropout strategy to im-
prove the regularization of our deep model. In particular,
we randomly dropped ρ of neurons on pooling layers and
hidden layers, whereinto ρ is the dropout ratio. Figure 7
reveals the performance of AGREE w.r.t. the dropout ratio ρ
on both datasets (SoAGREE reveals similar results and are
omitted here). We have the following observations: 1) When
the dropout ratio equals to 0, AGREE performs poor which
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TABLE 5: Top-N performance of AGREE and its two simplified variants on the Mafengwo dataset (Section 4.5).

Component Performance Comparison (Mafengwo)
K=5 K=10

User Group User Group
HR NDCG p-value HR NDCG p-value HR NDCG p-value HR NDCG p-value

AGREE-UE 0.6220 0.5364 2.80e-07 0.4141 0.3322 2.99e-09 0.7309 0.5716 9.02e-06 0.5709 0.3832 3.39e-09
AGREE-GE 0.6363 0.5432 4.46e-06 0.4291 0.3405 7.18e-09 0.7417 0.5733 3.68e-05 0.6181 0.4020 3.95e-08

AGREE 0.6383 0.5502 — 0.4814 0.3747 — 0.7491 0.5775 — 0.6400 0.4244 —

TABLE 6: Top-N performance of AGREE and its two simplified variants on the CAMRa2011 dataset (Section 4.5).

Component Performance Comparison (CAMRa2011)
K=5 K=10

User Group User Group
HR NDCG p-value HR NDCG p-value HR NDCG p-value HR NDCG p-value

AGREE-UE 0.6043 0.3945 1.12e-07 0.5793 0.3832 4.47e-07 0.7601 0.4465 4.09e-08 0.7441 0.4376 6.36e-08
AGREE-GE 0.6119 0.4018 1.03e-06 0.5803 0.3896 9.02e-06 0.7894 0.4535 1.89e-07 0.7593 0.4448 3.92e-07

AGREE 0.6223 0.4118 — 0.5883 0.3955 — 0.7967 0.4687 — 0.7807 0.4575 —

TABLE 7: Top-N performance of SoAGREE and its two simplified variants on the Mafengwo dataset (Section 4.5).

Component Performance Comparison (Mafengwo)
K=5 K=10

User Group User Group
HR NDCG p-value HR NDCG p-value HR NDCG p-value HR NDCG p-value

SoAGREE-FE 0.6305 0.5419 7.21e-08 0.4728 0.3680 3.93e-07 0.7406 0.5713 1.89e-07 0.6311 0.4187 6.09e-07
SoAGREE-UE 0.6383 0.5502 7.04e-07 0.4814 0.3747 8.42e-06 0.7491 0.5775 1.60e-06 0.6400 0.4244 1.04e-05

SoAGREE 0.6510 0.5612 — 0.4898 0.3807 — 0.7610 0.5865 — 0.6481 0.4301 —

is caused by the overfitting. 2) The optimal settings for
dropout ratio locate on 0.2 to 0.4 on both datasets. When the
dropout ratio exceeds the optimal settings, the performance
of AGREE decreases dramatically, which suffers from the
insufficient information.

4.5 Importance of Components (RQ4)

The overall performance comparison shows that AGREE
and SoAGREE obtain the best results, demonstrating the ef-
fectiveness of the integrated end-to-end solution. To further
understand the importance of components in attentive user
representation learning and attentive group representation
learning, we performed some ablation studies. For conve-
nience, we use the name AGREE-UE to denote the method
“AGREE with user embedding aggregation only”, AGREE-
GE to denote “AGREE with group preference embedding
only” (which is equivalent to the NCF method), SoAGREE-
FE to denote the method “SoAGREE with followee em-
bedding aggregation only”, and SoAGREE-UE to denote
“SoAGREE with user preference embedding only” (which
is equivalent to the AGREE method). It is worth noting
that the performance of SoAGREE is only evaluated on
the Mafengwo dataset. Therefore, the component perfor-
mance comparison results of SoAGREE-FE, SoAGREE-UE,
and SoAGREE are just evaluated on Mafengwo as well.

Table 5, Table 6, and Table 7 show the results of AGREE,
SoAGREE and their corresponding simplified variants. We
have the following observations: 1) AGREE consistently
and significantly outperforms AGREE-UE and AGREE-GE
on both datasets with respect to both metrics, which can
be evidenced by the small p-values. This indicates that
both components of user embedding aggregation and group
preference embedding are beneficial to model group de-
cisions, and combining them leads to better performance.
Similar component performance comparison results are also

revealed on SoAGREE, SoAGREE-FE, and SoAGREE-UE on
the Mafengwo dataset. 2) AGREE-GE shows better perfor-
mance than AGREE-UE on both datasets. This reveals that
the group preference embedding has a larger impact in
learning group representation in our method. 3) The perfor-
mance of SoAGREE-UE is superior to that of SoAGREE-FE,
which indicates that the importance of the user preference
embedding learning is superior to that of the followee em-
bedding aggregation learning on the SoAGREE framework.

5 CONCLUSION AND FUTURE WORK

In this work, we address the group recommendation prob-
lem from the perspective of neural representation learn-
ing. Under the framework, there are two key factors to
estimate a group’s preference on an item well: 1) how to
obtain a semantic representation for a group, and 2) how
to model the interaction between a group and an item.
We propose a novel solution named AGREE, which ad-
dresses the first factor of group representation learning with
an attention network and the second factor of interaction
learning with NCF. Specifically, by leveraging the attention
network, AGREE can automatically learn the importance of
a group member from data; by leveraging NCF, it is capable
of learning the complicated interactions among groups,
users, and items. Moreover, social followee information is
further incorporated into the framework, and is termed
as SoAGREE. In SoAGREE, the followees are regarded as
attributes of a user and are aggregated via another attention
network to dynamically adjust the attention weights for
followees. Thereafter, we integrate the modeling of user-
item interaction data into AGREE, allowing the two tasks
of recommending items for groups and users to be mu-
tually reinforced. To validate the effectiveness of AGREE
and SoAGREE, we perform extensive experiments on two
real-world datasets. The results show that AGREE and
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SoAGREE achieve state-of-the-art performance for group
recommendation; further micro-level analyses demonstrate
how the attention networks improve the performance, how
predefined hyper-parameters affect our methods, and how
components of AGREE and SoAGREE affect the results.

In future, we plan to extend our work in the following
two directions. First, we are interested in realizing group
recommender systems in an online fashion. The interests
of users evolve over time, and so do the preferences of
groups. As it is computationally prohibitive to retrain a
recommender model in real-time, it would be extremely
helpful to do online learning. Along this line, we are
particularly interested in leveraging reinforcement learn-
ing methods to provide online recommendation. Second,
we will study how to alleviate the troublesome cold-start
and data sparsity problems in recommendation by utilizing
multimedia objects (e.g., reviews, images, and videos). The
maturing of multimedia techniques in recent years provides
us a great opportunity to inject multimedia content into
recommendation, which we believe is a promising direction
in improving the performance of recommendation.
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