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Abstract—Mobile landmark search (MLS) recently receives
increasing attention for its great practical values. However, it
still remains unsolved due to two important challenges. One
is high bandwidth consumption of query transmission, and the
other is the huge visual variations of query images sent from
mobile devices. In this paper, we propose a novel hashing scheme,
named as canonical view based discrete multi-modal hashing
(CV-DMH), to handle these problems via a novel three-stage
learning procedure. First, a submodular function is designed to
measure visual representativeness and redundancy of a view set.
With it, canonical views, which capture key visual appearances of
landmark with limited redundancy, are efficiently discovered with
an iterative mining strategy. Second, multi-modal sparse coding
is applied to transform visual features from multiple modalities
into an intermediate representation. It can robustly and adap-
tively characterize visual contents of varied landmark images
with certain canonical views. Finally, compact binary codes are
learned on intermediate representation within a tailored discrete
binary embedding model which preserves visual relations of
images measured with canonical views and removes the involved
noises. In this part, we develop a new augmented Lagrangian
multiplier (ALM) based optimization method to directly solve
the discrete binary codes. We can not only explicitly deal with
the discrete constraint, but also consider the bit-uncorrelated
constraint and balance constraint together. The proposed so-
lution can desirably avoid accumulated quantization errors in
conventional optimization method which simply adopts two-step
“relaxing+rounding” framework. With CV-DMH, robust visual
query processing, low-cost of query transmission, and fast search
process are simultaneously supported. Experiments on real world
landmark datasets demonstrate the superior performance of CV-
DMH over several state-of-the-art methods.

Index Terms—Mobile landmark search, canonical view based
discrete multi-modal hashing, submodular function, intermediate
representation, binary embedding, discrete optimization

I. INTRODUCTION

W ITH the rapid growth of advanced mobile devices
and social networking services, tremendous amount

of landmark images have been generated and disseminated
in popular social networks. Mobile landmark search (MLS)
is gaining its importance and increasingly becomes one of
the most important techniques to pervasively and intelligently
access knowledge about the landmarks of interest [1], [2].

However, MLS still remains unsolved due to two im-
portant challenges. 1) Low-bit query transmission. Mobile
devices have limited computational power, relatively small
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Fig. 1. The left sub-figure shows the images recoded for landmark Pantheon
from different viewpoints. The right sub-figure presents images recorded for
different sub-pots of landmark Tiananmen Square. All above landmark images
demonstrate huge visual diversity, which presents great challenges on the
mobile landmark search.

memory storage, and short battery lifetime. Consequently, a
client-server architecture is the main stream search paradigms
adopted in existing landmark search systems, where query
is captured and submitted by mobile devices, computation-
intensive landmark search is performed on the remote sever
with strong computing capability and rich image resources.
Since wireless bandwidth from mobile devices to server is
limited, how to generate a compact signature for query to
achieve low bit data transmission becomes vital important. 2)
Huge visual query variations. Visual splendour of a landmark
can be photographed by multiple tourists under various cir-
cumstances, e.g. a wide sampling of positions, viewpoints,
focal lengths, various weather conditions or illuminations.
Therefore, the recorded images will have visual variations.
Besides, landmarks could be comprised of a wide range of
attractive sub-spots. The images taken for sub-spots of the
same landmark may appear with more visual diversity [3]. A
typical example is presented in Fig. 1. All the characteristics
of landmark inevitably diversify the visual appearances of the
recorded query images, thus posing great challenges on MLS
search system to robustly accommodate visual queries.

Hashing [4]–[8] is a promising technique to achieve low-bit
query transmission for supporting efficient mobile landmark
search. Its main objective is to learn compact binary codes
from high-dimensional data, while preserving the similarity
of the original data. Thus, it can significantly reduce trans-
mission cost with storage-efficient binary embedding, and
moreover, speedup the search process with simple but efficient
Hamming distance computations [9], [10]. However, most
existing hashing strategies developed for MLS are based on
uni-modal visual-words based features [11]–[13]. They gen-
erally suffer from 1) limited discriminative capability and 2)
poor robustness against visual variations [13], [14]. Although
general multi-modal hashing techniques [15]–[18] can improve
discriminative capability of binary codes [19], [20], they are
designed based on simple multiple feature integration without
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specific query robustness accommodation. Hence, their perfor-
mance may be limited on searching mobile landmark images.

Motivated by the above considerations, in this paper, we
propose a novel hashing scheme, named as canonical view
based discrete multi-modal hashing (CV-DMH), to facilitate
efficient and robust MLS. We define canonical views as the
views which capture the key characteristics of visual landmark
appearances with limited redundancy. Based on them, an
arbitrary image captured by tourists or users can be robustly
represented using either a specific canonical view or the
cross-scenery of multiple canonical views. Accordingly, varied
visual contents of landmark can be effectively characterized
using their visual correlations to certain canonical views.
Through encoding these relations into the binary codes, var-
ious visual queries can be robustly accommodated. Further-
more, the low-cost query transmission and fast search can be
well supported.

Specifically, CV-DMH works with a three-stage learning
procedure. First, a submodular function is designed to measure
visual representativeness and redundancy of a view set. With it,
the optimal canonical views are efficiently discovered by an
iterative mining strategy with theoretical guarantee. Second,
multi-modal sparse coding is applied to transform visual
features from multiple modalities into a unified intermediate
representation. It can robustly characterize visual contents
of varied landmark images with certain canonical views.
Finally, compact binary codes are learned on intermediate
representation within a tailored discrete binary embedding
model. The learning objective is to preserve visual relations
of images measured with canonical views and remove the
involved noises. In this part, we not only explicitly deal with
the discrete constraint of hashing codes, but also consider
the bit-uncorrelated constraint and balance constraint together.
A novel augmented Lagrangian multiplier (ALM) [21] based
optimization method is developed to directly solve the discrete
binary codes. It can desirably avoid the accumulated quanti-
zation errors in conventional hashing method which simply
adopts “relaxing+rounding” optimization framework.

The contributions of this paper are summarized as follows:

1. A submodular function is designed to measure visual
representativeness and redundancy of a view set. With it, an
iterative mining strategy is proposed to efficiently identify
canonical views of landmarks using multiple modalities.
Theoretical analysis demonstrates that it can obtain near-
optimal solutions.

2. A novel intermediate representation generated by multi-
modal sparse coding is proposed to robustly characterize
the visual contents of varied landmark images. It provides
a natural and effective connection between the canonical
views and binary embedding model.

3. A binary embedding model tailored for canonical views is
developed to preserve visual relations of images into binary
codes and thus support efficient MLS with great robustness.
We propose a direct discrete hashing optimization method
based on ALM. It effectively avoids the accumulated
quantization errors in conventional hashing methods which
simply adopt “relaxing+rounding” optimization framework.

Compared with our previous work [22], several enhance-
ments have been made in this paper. They can be summarized
as follows:
1. We conduct a comprehensive review of related work and

introduce more details of the proposed approach.
2. We propose a novel discrete binary embedding model.

The iterative computation for solving hashing codes enjoys
an efficient optimization process. Moreover, direct discrete
optimization can successfully avoid the accumulated quan-
tization errors.

3. More experiments are conducted and the presented results
validate the effects of the proposed approach.

The rest of the study is structured as follows. Section II
introduces related work. System overview of CV-DMH based
MLS system is illustrated in Section III. Details about CV-
DMH are introduced in Section IV. Experimental configu-
ration is presented in Section V. In Section VI, we give
experimental results and analysis. Section VII concludes the
study with a summary and future work.

II. RELATED WORK

Due to the constraints of space, only the work most related
to this study is introduced in this section. In particular, we
present a short literature review on mobile landmark search,
multi-modal hashing, and discrete hashing optimization.

A. Mobile Landmark Search
Most existing approaches developed for mobile landmark

search focus on compressing high-dimensional visual-words
based landmark feature into binary codes to achieve low
bit rate data transmission. Ji et al. [11] present a location
discriminative vocabulary coding (LDVC) to compress bag-of-
visual-words (BoVW) with location awareness by combining
both visual content and geographical context. The compact
landmark descriptor is generated with an iterative optimization
between geographical segmentation and descriptor learning.
Duan et al. [12] explore multiple information sources, such
as landmark image, GPS, crowd-sourced hotspot WLAN, and
cell tower locations, to extract location discriminative compact
landmark image descriptor. Chen et al. [14] develop a soft bag-
of-visual phrase (BoVP) to learn category-dependent visual
phrases, by capturing co-occurrence features of neighbouring
visual-words. The context location and direction information
captured by mobile devices are also integrated with the pro-
posed BoVP. To alleviate the online memory cost, Zhou et al.
[13] propose codebook-free scalable cascaded hashing (SCH)
for mobile landmark search. In their approach, matching
recall rate is ensured first and false positive matches are then
removed with a subsequent verification step.

All the aforementioned techniques learn compact binary
codes from only visual-words based features, without con-
sidering valuable information from other visual modalities.
Therefore, they will generate binary codes with limited dis-
criminative information. To the best of our knowledge, only
[23] is proposed to robustly accommodate landmark images
under various conditions. However, it sends compressed query
images with low resolution for landmark search, Consequently,
it still consumes considerable transmission bandwidth.
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Fig. 2. Framework of the CV-DMH based mobile landmark search system. The main aim of the offline learning is to learn hashing codes of database images
and hashing functions for online query. This part mainly consists of three steps: multi-modal canonical view mining, intermediate representation generation,
and discrete binary embedding. The online searching part generates hashing codes for queries and performs efficient online similarity search in Hamming
space.

B. Multi-modal Hashing

Multi-modal hashing has been emerging as a promising
technique to generate compact binary code based on multiple
features. The earliest study on this topic is composite hashing
with multiple information sources (CHMIS) [24]. It integrates
discriminative information from multiple sources into the
hashing codes via weight adjustment on each individual source
to maximize the hashing embedding performance. However,
CHMIS just post-integrates linear output of features and fails
to fully exploit their correlations. Kim et al. [15] present multi-
view anchor graph hashing (MVAGH) to extend anchor graph
hashing (AGH) [25] in multiple views (visual modalities). The
hashing codes are determined as the subset of eigenvectors
calculated from an averaged similarity matrix induced by
multiple anchor graphs. Song et al. [16] develop multiple
feature hashing (MFH). The learning process preserves the
local structure information of each individual feature, and
simultaneously considers the global alignment of local struc-
tures for all the features. By using the learned hashing hyper-
plane, MFH first concatenates all the features into a single
vector and then projects it into binary codes. Liu et al. [17]
propose compact kernel hashing (CKH). It formulates the
similarity preserving hashing with linearly combined multiple
kernels corresponding to different features. More recently,
multi-view latent hashing (MVLH) [18] is proposed to in-
corporate multi-modal features in binary hashing learning by
discovering the latent factors shared by multiple modalities.
Multi-view alignment hashing (MVAH) is presented in [26] to
combine multiple image features for learning effective hashing
functions based on the regularized kernel nonnegative matrix
factorization.

Distinguished from the hashing methods presented above,
CV-DMH learns multi-modal hashing codes on canonical
views by capturing the key characteristics of landmarks. With
this design, the generated binary codes can enjoy desirable
robustness on query accommodation. Moreover, CV-DMH
directly solves discrete hashing codes. It can effectively avoid
the accumulated quantization errors in existing multi-modal
hashing methods adopting simplified “relaxing+rounding” op-
timization framework.

C. Discrete Hashing Learning

Most existing hashing methods simply apply two-step “re-
laxing+rounding” optimization framework to solve hashing

codes. However, as indicated by recent literature [27]–[29],
this simple relaxing will bring significant information quan-
tization loss. To alleviate this problem, several approaches
are proposed to directly deal with the discrete optimization
challenge. Discrete graph hashing (DGH) [27] reformulates
the graph hashing with a discrete optimization framework
and solves the problem with a tractable alternating maxi-
mization algorithm. Supervised discrete hashing (SDH) [28]
learns discrete hashing codes via supervised learning. Cyclic
coordinate descent is applied to calculate discrete hashing bits
in a closed form. Coordinate discrete hashing (CDH) [30]
is designed for cross-modal hashing [31], and the discrete
optimization proceeds in a block coordinate descent manner.
Column sampling based discrete supervised hashing (COS-
DISH) is proposed in [32] to learn discrete hashing codes from
semantic information by column sampling. Discrete proximal
linearized minimization (DPLM) is presented in [33] to solve
discrete hashing codes. It reformulates the hashing learning as
minimizing the sum of a smooth loss term with a nonsmooth
indicator function. The problem is finally solved by an iterative
procedure with each iteration admitting an analytical discrete
solution. Kernel-based supervised discrete hashing (KSDH)
[34] solves discrete hashing codes via asymmetric relaxation
strategy. It relaxes the hashing function into a general binary
code matrix which is calculated within an alternative strategy.
Although these approaches achieve certain success, their pro-
posed discrete optimization solutions are specially designed
for uni-modal hashing and particular hashing types. Hence,
they cannot be easily generalized to other hashing learning
formulations.

Our work is an advocate of discrete hashing optimization
but focuses on learning robust hashing codes for mobile land-
mark search. We integrate the discriminative information from
multi-modal features directly into discrete hashing codes based
on the discovered informative canonical views. Moreover, our
proposed discrete optimization strategy can not only explicitly
deal with the discrete constraint of binary codes, but also
consider the bit-uncorrelated constraint and balance constraint
together1. To the best of our knowledge, there is still no similar
work.

1DPLM can cope with uncorrelation and balance constraints. However, it
simply transfers two constraints to the objective function and tries to optimize
a relaxed equivalent problem.
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III. SYSTEM OVERVIEW

This section briefly introduces system overview of the
proposed CV-DMH based mobile landmark search system. As
shown in the Fig. 2, the system is mainly comprised of two
key components: offline learning and online searching.
• Offline Learning: The aim of this part is to learn hash-

ing functions which can project high-dimensional multi-
modal features of both query and database images into
binary hashing codes. Specifically, offline learning is
further divided into four subsequent sub-processes: fea-
ture extraction, multi-modal canonical view mining, in-
termediate representation generation, and discrete binary
embedding. In the system, multi-modal features are first
extracted from heterogeneous visual modalities to repre-
sent images. Then, multi-modal canonical view mining
is proposed in order to efficiently discover a compact
but informative canonical view set from noisy landmark
image collections to capture key visual appearances of
landmarks. Next, in order to robustly model diverse visual
contents, an intermediate representation is generated by
computing multi-modal sparse reconstruction coefficients
between image and canonical views. Finally, compact
binary codes of database images and hashing functions
for online queries are learned by formulating a unified
discrete binary embedding model.

• Online Searching: Query image is first submitted by
user from mobile devices. Multi-modal visual features
of it are then extracted on image and transformed to an
intermediate image representation with the same pipeline
conducted on database images. Next, binary codes of
query are generated with the hashing functions learned
from offline learning. Finally, the Hamming distances
are computed with simple bit operations and ranked
in ascending order, and their corresponding landmark
images are returned.

IV. THE PROPOSED CV-DMH

This section provides the details of the proposed CV-DMH.
First, we introduce multi-modal canonical view mining. Sec-
ond, we give details of intermediate representation generation.
Third, we formulate the discrete binary embedding model and
give an efficient discrete optimization solution. Finally, we
summarize the key steps of CV-DMH and give a computation
complexity analysis.

A. Multi-modal Canonical View Mining

Landmark images have an interesting characteristic that
is different from general images. Landmark is located on
specific venue or attraction. On the one hand, in real practice,
only the spectacular and attractive views of a landmark will
be photographed by various tourists spontaneously. On the
other hand, many of them would like to share their recorded
images in social websites (e.g. Flickr). These accumulated
canonical views of landmarks in social websites coincidentally
reflect the common preferences of tourists. On the perspective
of technique, they capture the key visual characteristics of

landmarks, and an arbitrary query image recorded by tourists
can be characterized with several canonical views of landmark.
Therefore, it is promising to leverage canonical views of
landmark as hashing learning bases to robustly accommodate
visual variations of query images captured by mobile de-
vices. Principally, optimal canonical views should possess two
important properties: 1) Representative. The canonical views
should capture the key visual landmark components from large
quantities of recorded landmark images. 2) Compact. Redun-
dant views will bring noises and increase extra computation
burden.

Motivated by the above analysis, we propose an efficient
submodular function based mining algorithm, measuring the
representativeness and compactness of view set, to iteratively
discover canonical views. Specifically, we first quantitatively
define the above two properties of canonical view set2. Then,
a submodular function is designed accordingly and an effi-
cient iterative mining approach with theoretical guarantee is
developed for canonical view discovery.

Definition 1. Let I denote image space, I = {In}Nn=1, N is
the number of database images. Let L denote landmark space,
L = {Lm}Mm=1, M is the number of landmarks in database.
Lm is defined as a set of images which are recorded at the
nearby positions of the mth landmark. Let V denote a view
set of L. It is defined as a set of images {vi}|V|i=1 belonging to
I, V ⊆ I, |V| � |I|.

Definition 2. Let Rep(V) denote the visual representative-
ness of view set V over L. It is defined as Rep(V) =∑
vi∈V Rep(vi) =

∑
vi∈V

∑
vj∈I,i6=j gij , g is the function

which measures the feature similarity of two image views, gij
is short for g(vi, vj). Let Red(V) denote the visual redundancy
of view set V . It is defined as Red(V) =

∑
vi∈V Red(vi) =∑

vi,vj∈V,i6=j gij .

Definition 3. Let C denote the canonical view set of L.
The views involved in C can comprehensively represent di-
verse visual contents of landmark, and meanwhile, have
less visual redundancy. In this paper, it is defined as C =
arg maxV⊆I,|V|=T h(V), h(V) = Rep(V) − Red(V), T is
cardinality of canonical view set.

Lemma 1. h(V) is submodular function. That is, ∀V1 ⊆ V2 ⊆
V,∀vj /∈ V , h(V1 ∪ vj)− h(V1) ≥ h(V2 ∪ vj)− h(V2).

Proof Rep(V1 ∪ vj)− Rep(V1) = Rep(V2 ∪ vj)−

Rep(V2)− (Red(V1 ∪ vj)− Red(V1)) = −2
∑

vi∈V1\vj

gij

≥ −2
∑

vi∈V2\vj

gij = −(Red(V2 ∪ vj)− Red(V2))

⇒ h(V1 ∪ vj)− h(V1) ≥ h(V2 ∪ vj)− h(V2)

Lemma 2. h(V) is monotonically nondecreasing function.
That is, ∀V1 ⊆ V2 ⊆ V , h(V1) ≤ h(V2).

2Canonical view set is comprised of canonical views.
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Proof h(V) =
∑
vi∈V

∑
vj∈I\V,i 6=j

gij

⇒ h(V1) =
∑
vi∈V1

∑
vj∈V2\V1,i 6=j

gij +
∑
vi∈V1

∑
vj∈I\V2,i 6=j

gij

⇒ h(V2) =
∑

vi∈V2\V1

∑
vj∈I\V2,i 6=j

gij +
∑
vi∈V1

∑
vj∈I\V2,i 6=j

gij

Since in our case, |V1|, |V2| � I

⇒
∑
vi∈V1

∑
vj∈V2\V1,i 6=j

gij ≤
∑

vi∈V2\V1

∑
vj∈I\V2,i 6=j

gij

⇒ h(V1) ≤ h(V2)

As indicated in Definition 3, to discover optimal canonical
view set, the function h(V) should be maximized in
theory. However, since h(V) is submodular function, the
maximization of it is a NP-complete optimization problem.
Fortunately, h(V) is monotonically nondecreasing with a
cardinality constraint as indicated by two above Lemmas.
Canonical views can be discovered near optimally by greedy
strategy as following steps

Algorithm 1 Canonical view mining
1: Extract visual feature for all landmark images.
2: Set canonical view set as empty, C = ∅.
3: for t = 1 to T do
4: Compute diff(In) = h(C ∪ In) − h(In) for each

landmark image In ∈ I.
5: Select the image with the maximum diff into C, I∗ =

arg maxIn∈I diff(In), and simultaneously remove it
from I, C ← C ∪ I∗, I ← I \ I∗.

6: end for

Theorem 1. [35] Let S∗ denote the global optimal so-
lution that solves the combinatorial optimization problem
arg maxS⊆L,|S|=T h(S), S denote approximate solution found
by the greedy algorithm. If h(S) is nondecreasing submodular
function with h(∅) = 0, we can have

h(S) ≥ h(S∗)ζ − 1

ζ

where ζ refers to the natural exponential.

As validated by Theorem 1, this greedy algorithm can
achieve a result that is no worse than a constant fraction
ζ−1
ζ away from the optimal value. The time complexity of

canonical view mining is reduced to O(NT ). Hence, the
canonical view discovery process can be completed efficiently.
Different modalities generally include complete information
[36]–[41]. Canonical views in different modalities may be
different. To comprehensively cover visual appearances of
landmarks, canonical view mining is performed in multiple
modalities, obtaining canonical view set {Cp}Pp=1, P is number
of modalities. We concatenate features of canonical views and
construct a matrix Ep = [ep1, ..., e

p
T ] ∈ Rdp×T in modality p,

dp is the corresponding feature dimension.

0.4 0.5 0.1+ + 0+=

Fig. 3. Visual contents of an arbitrary query landmark image can be sparsely
represented with its relations to canonical views.

B. Intermediate Representation Generation

With the discovered canonical views, we generate an in-
termediate representation for subsequent binary embedding.
As illustrated above, an arbitrary recorded landmark image
either describes a certain canonical view or the cross-scenery
among several particular canonical views. In both cases, visual
contents of the image can be sparsely represented with its
relations to several particular canonical views (as shown in
Fig. 3). Sparse coding performs well on robust representa-
tion with fix visual bases. In this paper, we leverage it for
intermediate representation generation. Specifically, we cal-
culate multi-modal sparse reconstruction coefficients between
image and canonical views, and the auto-generated response
coefficients are determined as the dimensions of intermediate
representation. Principally, the intermediate representation can
effectively characterize diverse visual contents by adaptively
adjusting the response coefficients on canonical views. Hence,
it can construct a robust foundation for subsequent discrete
binary embedding. Mathematically, the concrete computation
form is

min
{Y p}Pp=1

P∑
p=1

||Xp − EpY p||2F + σ

P∑
p=1

N∑
n=1

||dpn ⊗ ypn||2F

s.t. 1TT y
p
n = 1, dpn = exp(

dist(xpn, E
p)

ρ
), ∀p, n

(1)

where the first term measures the sparse reconstruction er-
rors from raw features to exemplars, the second term is
locality adaptor that ensures the generated sparse codes are
proportional to the similarities between their corresponding
raw features and exemplars. σ > 0 is a constant factor that
adjusts the balance between terms, ρ is set to be the mean
of pairwise distances, ⊗ denotes the element-wise product,
1T ∈ RT denotes a column vector with all ones. Xp =
[xp1, ..., x

p
N ] ∈ Rdp×N denotes features of database images in

modality p. Y p = [yp1 , ..., y
p
N ] ∈ RT×N denotes modality-

specific canonical view based intermediate representation.
Each column has r non-zeros coding coefficients. dpn is a
vector that measures the distances between raw feature and ex-
emplars, dist(xpn, E

p) = [dist(xpn, e
p
1), ...,dist(xpn, e

p
T )],

dist(xpn, e
p
1) is Euclidean distance between xpn and epT . The

problem in (1) can be efficiently solved by using the alter-
nating direction method of multipliers (ADMM) [42]. After
solving it, we concatenate the calculated Y p and construct
dimensions of intermediate representation

Y = [Y 1; ...;Y P ] ∈ RTP×N (2)

C. Discrete Binary Embedding Model

Based on the intermediate representation, we design a
discrete binary embedding model to learn final binary hash-
ing codes. Let us define V ∈ [−1, 1]c×N as the hashing
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codes of database images, c is the hashing code length.
Due to approximate canonical view mining, the intermedi-
ate representation generation inevitably brings about noises
from inaccurate canonical views. In addition, as a result of
information integration from multiple modalities, there exist
information redundancies among dimensions of intermediate
representation calculated from different modalities. Therefore,
it is very important to remove the involved noises and redun-
dancies during the binary embedding. To achieve this goal,
we propose latent structure learning with matrix factorization
to extract orthogonal Hamming space. In this space, each di-
mension corresponds to one hashing bit. Besides, we construct
a canonical view based graph [43]–[45] to measure visual
relationships among images captured by canonical views. That
is, if two landmark images have similar visual distributions on
intermediate representations, they are forced to be projected
to close points in hamming space. Moreover, we learn linear
projection based hashing functions to support queries that are
out of the database.

By integrating the aforementioned considerations, we derive
the overall discrete binary embedding formulation as

min
W,U,V

||Y − UV ||2F + αTr(V LV T) + β(||V −W TY ||2F + γ||W ||2F )

s.t. V ∈ {−1, 1}c×N , V V T = NIc, V 1N = 0
(3)

where α, β, γ > 0 adjust the balance of terms. V ∈ [−1, 1]c×N

is discrete constraint on hashing codes. In addition, we also
consider the bit-uncorrelated constraint V V T = NIc which
guarantees that the learned Hamming space to be orthogonal
for information redundancy removal, and bit balance constraint
V 1N = 0 which forces each bit to have equal chance to
occur in the whole image database. ||Y −UV ||2F is for latent
structure learning, U is mapping between latent structure
and intermediate representation. Tr(V LV T) is graph regu-
larizer which preserves visual relations of landmark images
measured by canonical views. Tr(·) is trace operation, L is
Laplacian matrix calculated on canonical view based graph,
it is constructed based on intermediate representation, to
measure the visual relations of images on canonical views.
||V − W TY ||2F + γ||W ||2F learns linear projection matrix
W ∈ RTP×c equipped in hashing functions, ||V −W TY ||2F
is to reduce the loss between binary codes and the projected
values. It is worth noting that, as linear projection is leveraged,
the online mobile landmark search process is efficient.

The optimal W that solves Eq.(3) can be expressed in terms
of Y . We can derive the following theorem.

Theorem 2. Let W,U, V and Y be defined as before. Then
the optimal W that solves learning problem in (3) is given
by W = (Y Y T + γI)−1Y V T. The minimum problem in (3) is
equivalent to the following problem

min
U,V
||Y − UV ||2F + αTr(V AV T)

s.t. V ∈ {−1, 1}c×N , V V T = NIc, V 1N = 0
(4)

where A = L+ β
α (I − Y TQY ), Q = (Y Y T + γI)−1.

Proof. By calculating the derivation of the objective function
in Eq.(3) w.r.t W and setting it to be zero, we can have

W = (Y Y T + γI)−1Y V T (5)

Let Q = (Y Y T + γI)−1, then W = QY V T. By replacing W
into Eq.(3), we can derive that

||V −W TY ||2F + γ||W ||2F = Tr(V (IN − Y TQY )V T)

By summing three terms together, we derive that

||Y − UV ||2F + αTr(V LV T) + βTr(V (I − Y T

(Y Y T + γI)−1Y )V T) = ||Y − UV ||2F + αTr(V AV T)

where A = L + β
α (I − Y TQY ), Q = (Y Y T + γI)−1. This

completes the proof of the theorem.

With Theorem 2, the problem in (3) is transformed to

min
U,V
||Y − UV ||2F + αTr(V AV T)

s.t. V ∈ {−1, 1}c×N , V V T = NIc, V 1N = 0
(6)

The above objective function can be abstracted as graph-
based matrix factorization [46]. The main difference between
our formulation and [46] is the constraints imposed on hashing
codes. These three constraints bring new challenges to the
optimization process which have not yet been touched by
existing graph-based matrix factorization methods.

D. Discrete Solution

Essentially, solving problem (6) is a challenging combi-
natorial optimization problem due to three constraints. Most
existing hashing approaches apply “relaxing+rounding” opti-
mization [47]. They first relax three constraints to calculate
continuous values, and then binarize them to hashing codes
via rounding. This two-step learning can actually simplify the
solving process, but it may cause significant information loss
[27], [28]. In recent literature, several discrete hashing solu-
tions are proposed. However, they are developed for particular
hashing types. For example, graph hashing [27], supervised
hashing [28], [32], [48], cross-modal hashing [30]. Therefore,
their designed learning strategies cannot be directly applied to
solve our problem.

In this paper, we propose an effective optimization algo-
rithm based on augmented Lagrangian multiplier (ALM) [21]
to calculate the discrete solution within one step. Our method
can not only explicitly deal with the discrete constraint,
but also consider the bit-uncorrelated constraint and balance
constraint together. Our key idea is adding auxiliary variables
Γ, Θ to separate three challenging constraints, and transform
the objective function to an equivalent one. The substituted
variables and corresponding auxiliary ones are forced to be
close with each other. Specifically, in this paper, we set
Γ = Y − UV,Θ = V . Problem (6) is transformed as

min
U,V,Γ,Θ

||Γ||F +
η

2
||Y − UV − Γ +

Eη
η
||2F

αTr(V AΘT) +
µ

2
||V −Θ +

Eµ
µ
||2F

s.t. V ∈ {−1, 1}c×N ,ΘΘT = NIc,Θ1N = 0

(7)

where Eη, Eµ measure the difference between the target and
auxiliary variables, η, µ > 0 adjust the balance between terms.
We adopt alternate optimization to iteratively solve problem
(7). We optimize the objective function with respective to one
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Algorithm 2 Obtaining V via solving problem (7)
1: Initialize Eη , Eµ, V ;
2: while not convergence do
3: Optimize Γ while fixing the others with Eq.(9);
4: Optimize U while fixing the others with Eq.(12);
5: Optimize Θ while fixing the others with Eq.(17);
6: Optimize V while fixing the others with Eq.(20);
7: Update Eη , Eµ, η, µ with Eq.(21);
8: end while

variable while fixing other remaining variables. The key steps
for solving Z are summarized in Algorithm 2.

Step 3: Update Γ. By fixing other variables, the optimiza-
tion formulas for Γ are

min
Γ
||Γ||F +

η

2
||Y − UV − Γ +

Eη
η
||2F ) (8)

By calculating the derivative of the objective function with
respective to Γ, and setting it to 0, we can obtain that

Γ =
ηY − ηUV + Eη

2 + η
(9)

Step 4: Update U . The optimization formula for U is

min
U
||Y − UV − Γ +

Eη
η
||2F (10)

By calculating the derivative of the objective function with
respective to U , and setting it to 0, we can obtain that

UV = Y − Γ +
Eη
η

(11)

Since V V T = NIc, we can further derive that

U =
1

N
(Y − Γ +

Eη
η

)V T (12)

Step 5: Update Θ. The optimization formula for Θ is

min
Θ

αTr(V AΘT) +
µ

2
||V −Θ +

Eµ
µ
||2F

s.t. ΘΘT = NIc,Θ1N = 0

(13)

The objective function in Eq.(13) can be simplified as

min
Θ
||Θ− (V +

Eµ
µ
− α

µ
V A)||2F (14)

where C = V +
Eµ
µ −

α
µV A. The above equation is equivalent

to the following maximization problem

max
Θ

Tr(ΘTC) s.t. ΘΘT = NIc,Θ1N = 0 (15)

Mathematically, with singular value decomposition (SVD), C
can be decomposed as C = PΛQT , where the columns of
P and Q are left-singular vectors and right-singular vectors
of C respectively, Λ is rectangular diagonal matrix and its
diagonal entries are singular values of C. Then, we can derive
that maxV Tr(ΘTPΛQT)⇔ maxV Tr(ΛQTΘTP ).

Theorem 3. Given any matrix G which meets GGT = NI
and diagonal matrix Λ ≥ 0, the solution of maxG Tr(ΛG) is
diag(

√
N).

Proof. Let us assume λii and gii are the ith diagonal entry
of Λ and G respectively, Tr(ΛG) =

∑
i λiigii. Since GGT =

NI , gii ≤
√
N . Tr(ΛG) =

∑
i λiigii ≤

√
N

∑
i λii. The

equality holds only when gii =
√
N, gij = 0,∀i, j. Tr(ΛG)

achieves its maximum when G = diag(
√
N).

As Λ is calculated by SVD, we can obtain that Λ ≥ 0. On
other hand, we can easily derive that QTΘTPP TΘQ = NI .
Therefore, according to the Theorem 3, the optimal Θ can
only be obtained when QTΘTP = diag(

√
N). Hence, the

solution of Θ is
Θ =

√
NPQT (16)

Moreover, in order to satisfy the balance constraint Θ1N = 0,
we apply Gram-Schmidt process as [27] to construct matrices
P̂ and Q̂, so that P̂ TP̂ = IL−R, [P, 1]TP̂ = 0, Q̂TQ̂ = IL−R,
QQ̂T = 0, R is the rank of C. The close form solution for Θ
is

Θ =
√
N [P, P̂ ][Q, Q̂]T (17)

Step 6: Update V . By fixing other variables, the optimiza-
tion formula for V is

min
V ∈[−1,1]c×N

η

2
||Y − UV − Γ +

Eη
η
||2F + αTr(V AΘT)

+
µ

2
||V −Θ +

Eµ
µ
||2F

(18)

The above problem can be transformed as

min
V ∈[−1,1]c×N

||V − (Θ− Eµ
µ
− α

µ
ΘA+

η

µ
UT(Y − Γ +

Eη
η

))||2F
(19)

The discrete solution of V can be directly represented as

V = Sgn(Θ− Eµ
µ
− α

µ
ΘA+

η

µ
UT(Y − Γ +

Eη
η

)) (20)

where Sgn(·) is signum function which returns -1 if x < 0,
and 1 if x ≥ 0.

Step 7: Update Eη , Eµ, η, µ. The update rules are

Eη = Eη + η(Y − UV − Γ)

Eµ = Eµ + µ(V −Θ)

η = ρη, µ = ρµ

(21)

ρ > 1 is learning rate that controls the convergence.
Hashing Function Learning. After obtaining V , we substi-

tute the value into W = (Y Y T+γI)−1Y V T and get the linear
projection matrix. The hashing functions can be represented
as H(x) = sgn(W Tx).

Online Mobile Landmark Search. Given a landmark query
image q from mobile device, we first extract intermediate
representation Yq as Eq.(2). Its binary hashing codes are
calculated as Vq = sgn(W TYq).

E. Summarization and Computational Complexity Analysis
The key steps of CV-DMH based MLS are described in

Algorithm 3. It can be easily derived that the computation
cost of multi-modal canonical view mining is O(NPT ), as
there are P visual modalities and T iterations for mining.
The part of intermediate generation solves a constrained
least square fitting problem which also consumes O(NPT ).
The computational complexity of discrete optimization is
O(#iter(TPN + TPc + cN)), where #iter denotes the
number of iterations in Algorithm 2. Given N � TP > c, this
process scales linearly with N . The computation of hashing
functions solves a linear system, which consumes O(N).
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Algorithm 3 CV-DMH based mobile landmark search
Input:

Query image q. Database images I = {In}Nn=1.
Output:

Discrete hashing codes of database images V . Hashing
functions H . Image retrieval results for image query q.
Offline Learning

1: Extract multi-modal canonical views as illustrated in IV-A;
2: Generate intermediate landmark representation as IV-B;
3: Compute hashing codes of database images V by solving

problem (6) with Algorithm 2;
4: Construct hashing functions H with the projection matrix;

Online Searching
5: Extract multi-modal visual features of query image and

transform them to a unified intermediate representation;
6: Project query into hashing codes with the learned H;
7: Perform searching in Hamming space and return results.

V. EXPERIMENTAL CONFIGURATION

A. Experimental Datasets and Setting

In this paper, three real landmark datasets, Oxford5K [49],
Paris6K [50], and Paris500K [51]3, are applied in empirical
study. Oxford5K is comprised of 5,062 images recorded for
17 landmarks in Oxford. Paris6K consists of 6,412 Paris
landmark images in 12 categories. Paris500K contains 41,673
images with clustering ground truth which describes 79 land-
marks. For Oxford5K and Paris6K, 10%, 20%, and 70% im-
ages are used as query images, training images, and database
images, respectively. For Paris500K, the corresponding ratios
are 10%, 10%, and 80%. For three datasets, both query and
database images appear with great visual diversity. Each image
is represented by features in 5 heterogenous visual modalities:
81-D Color Moments (CM) [52], 58-D Local Binary Pattern
(LBP) [53], 80-D Edge Direction Histogram (EDH) [54],
1,000-D BoVW4 [55], and 512-D GIST [56].

B. Evaluation Metrics

In our experimental study, mean average precision (mAP) is
adopted as the evaluation metric for effectiveness. The metric
has been widely used in literature [57]. For a given query,
average precision (AP) is calculated as

AP =
1

NR

R∑
r=1

pre(r)rel(r) (22)

where R is the total number of retrieved images, NR is the
number of relevant images in retrieved set, pre(r) denotes
the precision of top r retrieval images, which is defined as
the ration between the number of the relevant images and the
number of retrieved images r, and rel(r) is indicator function
which equals to 1 if the rth image is relevant to query, and
0 vice versa. mAP is defined as the average of the AP of all
queries. Larger mAP indicates the better retrieval performance.

3In this experiment, the maximum number of images in each category is
limited to 2000 to avoid bias.

4128-D SIFT is employed as local descriptor.

In experiments, we set R as 100 to collect experimental results.
Furthermore, Precision-Scope curve is also reported to reflect
the retrieval performance variations with respect to the number
of retrieved images.

C. Compared Approaches

We compare CV-DMH with several state-of-the-art multi-
modal hashing approaches. They include5:
• Composite hashing with multiple information sources

(CHMIS) [24]. It is the first work to extend uni-modal
spectral hashing to multiple modalities. CHMIS preserves
visual similarity with graph and simultaneously integrates
information from multiple modalities into the hashing
codes with adjusted weights.

• Multi-view anchor graph hashing (MVAGH) [15]. It gen-
erates the nonlinearly integrated binary codes as a subset
of eigenvectors calculated from an averaged similarity
matrix.

• Multiple feature hashing (MFH) [16]. MFH preserves
the local structural information of each individual feature
modality and also globally considers the local structures
for all the features to learn hashing codes.

• Compact multiple kernel hashing (CMKH) [17]. CMKH
formulates multi-modal hashing as a similarity preserving
problem with linearly combined multiple kernels.

• Multi-view latent hashing (MVLH) [18]. MVLH first
transforms multi-modal features into a unified kernel
feature space, then applies matrix factorization to learn
the latent factors as the target binary codes.

• Multi-view alignment hashing (MVAH) [26]. MVAH
first learns multi-modal fused projected vectors with a
regularized kernel nonnegative matrix factorization. Then,
hashing functions are learned via multivariable logistic
regression.

Besides, we also compare CV-DMH with several state-of-
the-art uni-modal hashing approaches6: AGH [25], ITQ [58],
SGH [59] and DPLM [33]. For them, multi-modal features
are concatenated into a unified vector for subsequent learning.
The involved parameters of the compared approaches are
strictly adjusted to report the maximum performance with the
guidance of relevant literature.

D. Implementation Details

CV-DMH has three parameters: α, β, and γ in hashing
objective function Eq.(3). They are used to play the balance
between the formulated regularization terms. In experiment,
we choose the best parameters from {10−4, 10−2, 1, 102, 104}.
The best performance of CV-DMH is achieved when {α =
10−2, β = 10−4, γ = 102}, {α = 10−2, β = 10−2, γ = 104},
{α = 10−2, β = 10−2, γ = 102} on Oxford5K, Paris6K,

5For CHMIS, MFH, and CMKH, implementation codes of them are
provided by the authors. For MVAGH, MVLH, and MVAH, we implement
them according to the relevant literature.

6Implementation codes of all these methods are downloaded directly from
author websites
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TABLE I
MAP OF ALL APPROACHES ON THREE DATASETS. THE BEST PERFORMANCE IN EACH COLUMN IS MARKED WITH BOLD.

Methods Oxford5K Paris6K Paris500K
32 48 64 128 32 48 64 128 32 48 64 128

AGH 0.3164 0.2990 0.3098 0.3067 0.3301 0.3283 0.3524 0.3267 0.3427 0.3798 0.3872 0.3944
ITQ 0.2778 0.2800 0.2910 0.2917 0.2835 0.2942 0.3059 0.3275 0.2251 0.2765 0.3063 0.3621
SGH 0.2944 0.3000 0.3190 0.3315 0.3214 0.3497 0.3594 0.3793 0.3242 0.3718 0.4103 0.4620

DPLM 0.2985 0.3134 0.3112 0.3065 0.2706 0.2800 0.2962 0.3112 0.3044 0.3490 0.3663 0.3903
CHMIS 0.2959 0.3087 0.2991 0.3211 0.3256 0.3253 0.3265 0.3674 0.3937 0.4429 0.4681 0.5312
MVAGH 0.2947 0.3124 0.3105 0.3011 0.2646 0.2725 0.2882 0.3205 0.2907 0.3181 0.3403 0.3647

MFH 0.2718 0.2874 0.3027 0.3206 0.2897 0.3066 0.3108 0.3546 0.3537 0.4202 0.4461 0.5211
CMKH 0.2999 0.3034 0.2994 0.3026 0.3396 0.3351 0.3441 0.3481 0.4094 0.4680 0.5096 0.5493
MVLH 0.2918 0.3092 0.3051 0.3203 0.3152 0.3183 0.3531 0.3936 0.2965 0.3433 0.3570 0.4124
MAVH 0.2980 0.2856 0.2861 0.3021 0.2975 0.3188 0.3385 0.3565 0.2889 0.3177 0.3353 0.3876

CV-DMH 0.3028 0.3153 0.3275 0.3458 0.3350 0.3534 0.3799 0.4190 0.4533 0.5029 0.5293 0.6025
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Fig. 4. Precision-Scope curves on Oxford5K varying code length.
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Fig. 5. Precision-Scope curves on Paris6K varying code length.
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Fig. 6. Precision-Scope curves on Paris500K varying code length.

and Paris500K respectively. The parameters µ and η in Eq.(7)
are set for ALM based discrete optimization. The best perfor-
mance is obtained when {µ = 1, η = 1}, {µ = 0.01, η = 1},
{µ = 0.01, η = 1} on Oxford5K, Paris6K, and Paris500K
respectively. In addition, the best canonical view size T is set
to 100 on Oxford5K and Paris6K, and 300 on Paris500K. The
best number of nearest canonical views r in Eq.(1) is set to
70 on Oxford5K and Paris6K, and 200 on Paris500K. σ in
Eq.(1) is set to 10−4 to maximize the performance.

In experiments, hashing code length on all datasets is varied
in the range of [32, 48, 64, 128] to observe the performance.
Further, The retrieval scope on three datasets is set from 100
to 1000 with step size 100. In the first step of Algorithm 2,

the initial values of Eη, Eµ are set to 0. The values of V is
calculated by PCAH [60].

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Performance Comparison Results

We report mAP results and Precision-Scope curves of all
approaches in Table I and Figure 4, 5, 6, respectively. From
the presented results, we can easily find that CV-DMH out-
performs the competitors on almost all cases. It is interesting
to find that, even with less binary bits, CV-DMH can still
achieve higher mAP than many competitors with longer binary
codes. Further, Figure 6 shows that, on Paris500K and 128
bits, the precision gain of CV-DMH over the second best
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TABLE II
CANONICAL VIEWS IMPROVE THE ROBUSTNESS OF CV-DMH. CV-DMH-I DENOTES DIRECT MULTI-MODAL HASHING WITHOUT CANONICAL VIEWS.

Methods Oxford5K Paris6K Paris500K
32 48 64 128 32 48 64 128 32 48 64 128

CV-DMH-I 0.2855 0.3005 0.3053 0.3319 0.2905 0.3177 0.3225 0.3488 0.3558 0.4229 0.4509 0.5222
CV-DMH 0.3028 0.3153 0.3275 0.3458 0.3350 0.3534 0.3799 0.4190 0.4533 0.5029 0.5293 0.6025

TABLE III
EFFECTS OF CANONICAL VIEW MINING IN MULTIPLE MODALITIES.

Methods Oxford5K Paris6K Paris500K
32 48 64 128 32 48 64 128 32 48 64 128

CM 0.2131 0.2188 0.2192 0.2287 0.1954 0.1971 0.2043 0.2230 0.1511 0.1782 0.1945 0.2451
LBP 0.2619 0.2695 0.2872 0.2950 0.2249 0.2284 0.2504 0.2582 0.2585 0.3107 0.3422 0.3899
EDH 0.2465 0.2658 0.2663 0.2645 0.2224 0.2325 0.2380 0.2620 0.2291 0.2821 0.3147 0.3965

BOVW 0.2932 0.3155 0.3022 0.3300 0.3060 0.3252 0.3380 0.3776 0.3255 0.3959 0.4381 0.5112
GIST 0.2589 0.2634 0.2675 0.2781 0.2517 0.2669 0.2797 0.3042 0.2528 0.3200 0.3745 0.4695

CV-DMH 0.3028 0.3153 0.3275 0.3458 0.3350 0.3534 0.3799 0.4190 0.4533 0.5029 0.5293 0.6025

TABLE IV
EFFECTS OF SUBMODULAR FUNCTION BASED CANONICAL VIEW DISCOVERY.

Methods Oxford5K Paris6K Paris500K
32 48 64 128 32 48 64 128 32 48 64 128

Random 0.2740 0.2795 0.2727 0.3097 0.3254 0.3394 0.3529 0.3859 0.4028 0.4415 0.4659 0.5206
K-means 0.2648 0.2877 0.2829 0.3199 0.3102 0.3267 0.3466 0.3879 0.3944 0.4418 0.4739 0.5363

DL 0.2523 0.2683 0.2699 0.2848 0.2615 0.2807 0.2822 0.3191 0.3306 0.3568 0.3770 0.4440
R-CV-DMH 0.2890 0.3036 0.3151 0.3434 0.3350 0.3627 0.3832 0.4181 0.4443 0.4916 0.5198 0.5923

CV-DMH 0.3028 0.3153 0.3275 0.3458 0.3350 0.3534 0.3799 0.4190 0.4533 0.5029 0.5293 0.6025

approach is more than 10%, and it becomes larger when more
images are returned. Moreover, we observe that performance
improvement on Paris500K is more than that obtained on
Oxford5K and Paris6K. Indeed, images in Paris500K have
more landmark images and diverse visual appearances. This
experimental phenomenon validates the desirable property of
CV-DMH on accommodating the visual variations. Finally,
we observe that the retrieval performance of CV-DMH on
Oxford5K is steadily improved when binary code length in-
creases. However, we don’t gain similar observations for many
approaches studied in this experimental study. This is because
CV-DMH adopts discrete optimization to solve hashing codes
directly without any relaxing. The design can successfully
avoid the accumulated quantization errors brought in compared
approaches. In this case, more binary bits will bring more
discriminative information and thus enable CV-DMH to gain
higher discriminative capability.

B. Canonical View or Not?

To see how the canonical view mining can benefit multi-
modal hashing learning, we first compare the performance of
CV-DMH with the one (denoted as CV-DMH-II) which per-
forms hashing (Eq.(3)) directly on raw concatenated multiple
low-level features. Table II presents the detailed comparative
results. From it, we easily find that CV-DMH can consistently
yield better performance. On three datasets, the maximum
search precision improvements reach about 2%, 7%, and 9%,
respectively. The performance improvement is attributed to
the fact that, canonical views capture key visual contents of

landmarks, diverse visual contents can be robustly accommo-
dated with intermediate representation, and thus hashing codes
learned on intermediate representation enjoy better robustness.

Then, we investigate the effects of canonical view mining
in multiple modalities. We compare the performance of CV-
DMH with the approaches that perform hashing (Eq.(3)) on
only uni-modal canonical view set. We denote them directly
with the corresponding modality names: CM, LBP, EDH,
BOVW, and GIST respectively. Table III presents the main
results. It demonstrates that CV-DMH can achieve the best
performance. The reason is that, with multi-modal learning,
canonical view set can cover more visual variations and thus
CV-DMH can enjoy better robustness. All the above results
clearly demonstrate that CV-DMH adopts a reasonable strategy
by employing canonical views for MLS.

Finally, we validate the effects of the proposed submod-
ular function based canonical view selection approach. We
compare the performance of CV-DMH with four variants
of our method. The first two competitors random and K-
means discover canonical views by randomly sampling and K-
means respectively. The third competitor DL learns canonical
views by dictionary learning with K-SVD [61]. The last
one R-CV-DMH selects canonical views by only considering
representativeness of view set. The detailed comparison results
are presented in Table IV. It can be easily observed that CV-
DMH can achieve better performance in most cases. These
results demonstrate the effectiveness of submodular function
on discovering canonical views of landmarks. The reasons for
the weakness of competitors can be explained as follows: the
approach random discovers canonical views without consider-
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TABLE V
CANONICAL VIEWS IMPROVE THE ROBUSTNESS OF CV-DMH. CV-DMH-II DENOTES DIRECT MULTI-MODAL HASHING WITH ANCHOR

TRANSFORMATION.

Methods Oxford5K Paris6K Paris500K
32 48 64 128 32 48 64 128 32 48 64 128

CV-DMH-II 0.2829 0.2816 0.2903 0.2994 0.2699 0.2768 0.2852 0.2822 0.2877 0.3248 0.3450 0.3750
CV-DMH 0.3028 0.3153 0.3275 0.3458 0.3350 0.3534 0.3799 0.4190 0.4533 0.5029 0.5293 0.6025

TABLE VI
EFFECTS OF DISCRETE OPTIMIZATION. CV-DMH-II: IT ONLY CONSIDERS BIT-UNCORRELATED CONSTRAINT BY RELAXING THE DISCRETE CONSTRAINT

AND REMOVING BALANCE CONSTRAINT IN THE EQ.(3). CV-DMH-III: IT CONSIDERS BIT-UNCORRELATED CONSTRAINT AND BALANCE CONSTRAINT
TOGETHER WITH DISCRETE CONSTRAINT RELAXING.

Methods Oxford5K Paris6K Paris500K
32 48 64 128 32 48 64 128 32 48 64 128

CV-DMH-III 0.2905 0.3179 0.3160 0.3403 0.3110 0.3194 0.3397 0.3887 0.4423 0.4918 0.5189 0.5917
CV-DMH-IV 0.2932 0.3177 0.3219 0.3373 0.3175 0.3510 0.3510 0.4003 0.4421 0.4935 0.5205 0.5915

CV-DMH 0.3028 0.3153 0.3275 0.3458 0.3350 0.3534 0.3799 0.4190 0.4533 0.5029 0.5293 0.6025

ing any underlying visual landmark distributions. K-means and
R-CV-DMH only consider representativeness of the selected
view set, they unfortunately ignore the visual redundancy of
views. In this case, with the fixed size of canonical view set,
real representative views may be excluded by redundant ones.
DL seeks the optimal “dictionary” views that fit the visual
distributions of training data. However, the learned dictionaries
may not well adapt the query visual contents. In contrast, our
approach comprehensively considers representativeness and
redundancy of view set. The canonical views capture the key
visual characteristics of landmarks and thus can characterize
the visual contents of both query and database images.

C. Effects of Intermediate Representation

Intermediate representation bridges the canonical view min-
ing and discrete binary embedding model. It is generated by
calculating the multi-modal sparse reconstruction coefficients
between image and canonical views. This subsection evaluates
its effectiveness. Specifically, we compare CV-DMH with the
variant approach CV-DMH-II that generates intermediate rep-
resentation by calculating the similarities between images and
canonical views. The calculating process is similar to anchor
transformation in many existing hashing approaches [25], [27],
[28]. In this experiment, we set the same number of nearest
canonical views in two compared approaches for calculation.
Table V summarizes the main results. It clearly demonstrates
that CV-DMH can consistently outperform the CV-DMH-
II on all datasets and code lengths. The potential reason
is that: the auto-generated sparse reconstruction coefficient
can robustly accommodate the visual variations of landmark
images with certain canonical views, they can provide more
robust representation bases for subsequent binary embedding.

D. Effects of Discrete Optimization

To evaluate the effects of discrete optimization, we compare
the performance between CV-DMH and its two variants.
CV-DMH-III: it only considers bit-uncorrelated constraint by
relaxing the discrete constraint and removing balance con-
straint in the Eq.(3). CV-DMH-IV: it considers bit-uncorrelated

constraint and balance constraint together with discrete con-
straint relaxing. Both two variants adopt conventional “re-
laxing+rounding” optimization as many existing hashing ap-
proaches. The relaxed hashing values are also solved with
ALM and the final binary hashing codes are generated by
mean thresholding. Table VI gives main mAP comparison
results. We can clearly observe that CV-DMH can achieve
better performance in all cases. These results validate the
effects of direct discrete optimization and considering three
constraints.

E. Convergency Analysis

At each iteration in Algorithm 2, the updating of variables
will decrease the objective function value. As indicated by
ALM optimization theory [21], the iterations will make the
optimization process converged. We also conduct empirical
study on the convergence property using Paris500k. Fig.7(d)
presents the results. We observe that the objective function
value first decreases with the number of iterations and then
becomes steady after certain iterations (about 7 ∼ 8 iterations).
This result demonstrates that the convergence of the proposed
method.

F. Parameter Study

In this subsection, we conduct empirical experiments to
study the performance variations with involved parameters in
CV-DMH. Specifically, we observe the performance variations
of CV-DMH with α, β, and γ. They are used in Eq.(3) to play
the trade-off between regularization terms and empirical loss.
Due to the limited space, we only report the results on Paris5K
when hashing code length is 128. Similar results can be found
on other code lengths and datasets. We test the results when
α, β, γ are varied from [10−4, 10−2, 1, 102, 104]. We observe
performance variations with two of them by fixing the other
parameter. Experimental results are presented in Fig.7(a-c).
From these figures, we can clearly find that the performance
is relatively stable to a wide range of α, β, γ variations.
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Fig. 7. (a-c) CV-DMH performance variations with parameters in Eq.(3) on Paris5K when binary code length is 128. (d) Performance performance variations
with iterations in Algorithm 2.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel hashing scheme CV-DMH
to learn compact hashing codes for supporting efficient and
robust mobile landmark search. The design of CV-DMH has
inspired by an interesting observation that: only canonical
views of landmarks are frequently photographed and dis-
seminated by different tourists, these views naturally provide
effective visual representation basis of landmark hashing. We
first develop submodular function based iterative mining to
select canonical views that are discriminative and with limited
redundancy. An intermediate representation is then generated
on canonical views to robustly characterize the diverse vi-
sual landmark contents with sparse visual relations. At the
final stage, we design a discrete binary embedding model to
transform continuous intermediate representation to compact
binary codes. To avoid relaxing quantization errors brought in
conventional methods, we propose ALM-based optimization
method to directly solve discrete solution. Experimental results
on three real landmark datasets demonstrate that our proposed
approach can achieve superior performance compared with
several state-of-the-art approaches.

The current work will continue along several directions for
further investigation:
1. Recent works [1] indicate that contextual modalities as-

sociated with landmark images enjoy better discrimina-
tive capability. They inspire us to integrate contextual
modalities with our hashing model and thus embed more
discriminative semantics into hashing codes.

2. Current three learning components of our approach are
operated in three subsequent steps. In the further, we will
try to develop a unified learning formulation to systemically
integrate them together for further performance improve-
ment.

3. The Laplacian matrix construction based on visual graph
in Eq.(3) consumes O(N2). In the future, we will explore
strategies to further reduce the computation from algorith-
mic perspective.

4. We will apply our hashing model to other applications with
the similar characteristics with landmarks.
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