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Online Social Network Sites have become a primary platform for brands and organizations to engage their

audience by sharing image and video posts on their timelines. Different from traditional advertising, these

posts are not restricted to the products or logo, but include visual elements that express more in general the

values and attributes of the brand, called brand associations. Since marketers are increasingly spending time

in discovering and re-posting user generated posts that reflect the brand attributes, there is an increasing

demand for such discovery systems. The goal of these systems is to assist brand experts in filtering through

online collections of new user media to discover actionable posts, which match the brand value and have the

potential to engage the consumers. Driven by this real-life application, we define and formulate a new task of

content discovery for brands and propose a framework that learns to rank posts for brands from their historical

timeline. We design a Personalized Content Discovery (PCD) framework to address the three challenges of

high inter-brand similarity, sparsity of brand-post interactions and diversification of timeline. In order to learn

fine-grained brand representation and to generate explanations for the ranking, we automatically learn visual

elements of posts from the timeline of brands and from a set of brand attributes in the domain of marketing.

To test our framework we use two large-scale Instagram datasets that contain a total of more than 1.5 million

image and video posts from the historical timeline of hundreds of brands from multiple verticals such as

food and fashion. Extensive experiments indicate that our model can effectively learn fine-grained brand

representations and outperform the closest state-of-the-art solutions.
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1 INTRODUCTION
The recent growth of user generated media posted on Social Network Sites (SNS) has greatly

impacted media industries such as media and advertising. Most brands and organizations widely use

Instagram and other SNS to regularly share posts and engage their audience. However, traditional

product-promoting messages are losing their effectiveness due to consumers becoming increasingly

resistant [36]. Marketers are therefore exploring not just new platforms to communicate their ads

and messages, but also new types of content, such as User Generated Content (UGC) [10, 11, 18, 31].

In this scenario the posts are not restricted to the products or logo only, but include certain

visual elements that reinforce more in general the values and attributes of the brand, called

brand associations [5]. For instance, it is common for car brands to post images of landscapes

to associate with their organization the brand attributes of freedom and sophistication. There is,

in fact, evidence that the consistent use of media relevant to the brand attributes contributes to

increase the interactions on the brand posts and improve consumer engagement [43].

However, the discovery of relevant UGC for brands requires a huge amount of manual effort

by marketing experts who understand the brand ideas and have the daunting task of browsing

through millions of possible posts. As a first step to simplify this process, companies such as Olapic,

Chite and Stackla
1
offer hashtag-based services for the discovery of such actionable UGCs, which

may severely limit the amount of relevant content that can be discovered. In fact, brand-related

hashtags require the users to be aware of a brand’s campaign and deliberately take action to be

discovered, missing a large slice of UGC which may be a better match for the brand, because of the

lack of related hashtags. To the best of our knowledge, the problem of automatically discovering

visual content that matches the unique visual elements and style of a brand is still unexplored.

Moreover, existing discovery systems ignore the known associations and attributes of brands, which

for example include the brand personality [1] and the Brand Asset Valuator (BAV) framework [32].

There has still been no study on the existence of links between brand attributes and the visual

elements in media posts of brands.

Driven by these real-life needs, we explore the task of using historical timelines of brands and

their attributes to learn to rank media posts based on their relevance to the brand.We identify three

main challenges for this problem. The first is the inter-brand similarity, where the same associations

are regularly used by multiple brands, resulting in visual posts having subtle differences from the

ones used by the competitors. For example, the visual elements of cars often appear in posts by

most automobile companies, and the differences may only be in the logo or visual style. It is thus a

fine-grained problem, where it is important to distinguish as much as possible the specific set of

unique values and associations of each brand. The second challenge is the sparsity of brand-post

interactions. It is extremely rare for different brands to post the same exact post. Marketers tend to

post original content, either for reason of copyright infringement or marketing strategy to project

brand uniqueness [4]. This is different from the recommendation scenarios, where for each item

(corresponding to a post) there are often multiple users (corresponding to brands) interacting with

it (e.g. likes, views) [24, 30, 35]. The sparse nature of the brand-post interaction leads to a weak

collaborative signal, which needs to be strengthened with content-based approaches. Finally, the

third challenge stems from the diversification of the timeline of brands. Figure 1 shows an example

of timeline diversification. The figure illustrates a sequence of images and video posts from the

Instagram timeline of the retail brand Wallmart. We can easily notice certain recurring themes,

as indicated by the four-color marks in the top-right corner of each post: young people happily

posing in an environment related to retail (green), meticulous product arrangements (red), food

(yellow) and interior spaces (blue). In fact, different posts are used to reinforce different brand

1
Olapic: www.olapic.com, Chute: www.ignitetech.com/chute, Stackla: www.stackla.com
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attributes as well as to engage different groups of users. For this reason each attribute is reflected

only by a subset of the posts. In this example, the posts marked in green reflect the brand attributes

Young, Trendy and Familiarity, while the ones in red can easily express High Quality and Chic.
This behaviour makes it difficult to learn which visual elements correspond to a particular brand

attribute since the method needs to learn which posts reflect it among the many on the timeline of

the brand.

Fig. 1. Example of Timeline Diversification. Four
different colors indicate four different brand as-
sociations

We formulate the new task of content discovery
for brands and propose the Personalized Content

Discovery (PCD) framework to addresses the three

above-mentioned challenges. PCD uses the histor-

ical timeline to learn the high-level semantics of

brand associations, which correspond to recurring

visual aspects of the historical timeline of brands. Be-

ing purely content-based, PCD can be used to rank a

set of unseen posts for a brand by simply measuring

their similarity. In order to improve the performance

and generate explanations for the ranking, we intro-

duce a variant of PCD to integrate brand attributes

from the domain knowledge of marketing. In fact,

a marketer may be interested in discovering a post

to communicate a specific brand attribute, as in one

of the four cases in Figure 1. The model uses prob-

abilistic optimization to learn which objects in the

image correspond to each of the brand attributes,

producing a more accurate ranking. By modeling

the diversified post timeline as a normal distribution

centered on a consensus value, our method is more

robust to timeline diversity than other methods that

fit all the posts equally to the same brand attribute.

We propose a generic solution to integrate any kind

of brand attributes, including Aaker’s brand person-

ality and BAV dimensions.

We train our models end-to-end using two large scale Instagram datasets, which we collected

by crawling the historical timeline of two sets of brands from different verticals such as food,

fashion and auto. We benchmark the models against the state-of-the-art method, using five different

quantitative metrics and performed ablation studies and qualitative analysis of case studies.

We summarize the contributions of this work as follows: 1) We cast the emerging problem

of content discovery for brands as a content-based learning-to-rank problem and highlight the

three main challenges. 2) We design and benchmark Personalized Content Discovery (PCD) as a

novel content discovery framework that learns the high-level semantics of brand associations. The

method is able to outperform the closest state-of-the-art works in content-based recommendations.

3) We extend PCD to integrate brand attributes from the domain knowledge of marketing using

probabilistic optimization. Experiment and visualization indicate that our method is able to learn

visual elements that correspond to specific attributes as well as generate explanations. 4) We

collected two large scale Instagram datasets containing more than 1.1 million images and video

posts with brand attributes. The datasets are released to the research communities for further

studies on content discovery, popularity predictions and computational marketing.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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2 RELATEDWORK
We separate the related work into two parts, with the former describing the background scenario

of Social Media Marketing and the latter introducing the most relevant works on image ranking

systems.

2.1 Social Media Marketing and Computational Marketing
Social Media Marketing (SMM) is a real-life discipline which involves conducting marketing

campaigns on online social networks. Nonetheless, it has constantly solicited a vast amount of

research across different disciplines, not only in the marketing community but also in psychology

[3] and computer science. For example, Gensler et al. [17] outlined a list of research questions related

to SMM, such as investigating what kind of brand content will stimulate consumers and spread in

social networks. Such research question inspired scientists to use computational approaches for

explaining marketing dynamics in social media, which fall under the sub-field of Computational

Marketing. One popular case of these works is the study by De Vries et al [9], who employed

regression models to investigate which features of social brand posts engage users. The authors

outlined a set of post features that have a positive impact on popularity indicators such as the

number of likes and comments, including image vividness and post interactivity. In the same line,

several other works investigated similar indicators withmultiple social features on Facebook [23, 38],

Twitter [2] and Instagram [34, 37]. A second line of research tackled the problem of identifying

the brand associations from social media posts [26, 27]. These papers propose clustering-based

methods to automatically detect visual brand associations from social networks post as image

clusters. However, they treat each brand independently from the others, while we argue that the

same or similar associations are shared among different brands. We thus propose a model that

jointly learns brand associations among a large set of brands.

2.2 Image Ranking Systems
Since we formulate the problem of content discovery for brands as a learning-to-rank framework,

we here introduce some of the most relevant works on image ranking systems, which we divide into

recommendation and retrieval systems. For the former, which solves the problem of recommending

images to social users, we focus on the works that combine user-image interaction with image

content.

A first group of works is based on Factorization Machines (FM) and their neural extension, which

are designed to model the interaction between each combination of entities, including users, items

and any additional numerical value information available [6, 21, 39]. Factorization Machines have

been extended to content-based scenarios, adopting context information such as hashtags, text in

the image [7], or integrating dense image features extracted with a pre-trained CNN [13]. Other

frameworks make use of denoising auto-encoders [44, 47], attention models [6] or recurrent neural

networks [22] to integrate content features in recommendation architectures. All these works rely

on the hypothesis that users interact with multiple items, which does not hold in the scenario of

content discovery for brands, where the case of multiple brands using the exact same image post is

unrealistic.

The pairwise optimization framework Bayesian Personalized Ranking (BPR) by Rendle et al. [40]

inspired another line of recommendation works. Among these, VBPR (Visual Bayesian Personalized

Ranking) enriched the item latent vectors with image features [19], while Yu et al. [45] applied BPR

to the fashion domain. In a more general setting,Neural Personalized Ranking (NPR) by Niu et al.

[35] complements existing matrix factorization and VBPR with a new more flexible neural network
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Fig. 2. Illustration of data entities involved in the problem of content discovery for brands

architecture. The model supports image features as input, which can be used together with other

context clues such as topic or location.

However, these models are hybrid recommender systems, which integrate content-features

with the collaborative signal. Purely content-based solutions rely instead on content-features only

[16, 24, 30, 33], which have the advantage of preventing the item cold-start problem [42] as well as

being more robust to sparsity. The main idea of these works is to map users and images in the same

latent space, where recommendations are selected according to proximity. In a more general setting,

Lei et al. [30] proposed Comparative Deep learning (CDL) triplet network, where a positive and a

negative sample image are simultaneously forwarded through two convolutional sub-networks

with shared weights, together with information related to a user who interacted with the positive,

but not with the negative photograph. The user features are processed with a separate sub-network,

then compared with the two image latent features with element-wise subtraction. However, these

approach is unsuitable for our task because of the timeline diversification, since brand attributes

are not reflected by all the image posts of a brand.

In the fashion domain, several works propose methods to suggest image products to scenes or

users. Kang et al. [24] proposed a method to perform recommendation of product images. They

use a siamese network and Bayes Personalized Ranking for learning fashion-aware based image

representation. As a follow up work, the same authors proposed the task of “complete the look”

where they aim at recommending visually compatible products based on scene images [25]. In

[49] the authors considers the aggregation of online posts by influencers as a mean to improve the

recommendation with a bidirectional LSTM [49].

Other works investigated the problem of ranking images or videos using attributes of external

entities, such as users or brands. Zhang et al. [48] defines nameable and unnameable attributes

for content based retrieval, where the former are human-readable labels which are learned from

annotated images and the latter are learned with an iterative clustering algorithm. Later, Cui et

al. used attributes of users for video recommendations [8]. Based on matrix factorization, their

method represents videos with attributes of users and represent users with content attributes of

videos. More recently, Gelli at al. [14] proposed a probabilistic framework for ranking images by

subjective attributes that use the Kullback-Leibler divergence [29] to learn how brand attributes are

reflected in their image posts. However, their framework is designed to rank images by a specific

visual attribute, while we aim at ranking image posts for brands instead.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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Fig. 3. PCD: Model Architecture

3 PERSONALIZED CONTENT DISCOVERY
We dedicate this section to first presenting the notations, followed by defining the problem of

content discovery for brands. We then describe the details of our Personalized Content Discovery

(PCD) framework. Finally, we describe the details of the optimization method that we use to train

the models.

3.1 Notations and Problem Formulation
In this paper, we use bold capital letters and bold lowercase letters to represent matrices and vectors

respectively. In the case of matrices, we use the subscript notation to denote a specific row. For

example, Ai indicates the i-th row of matrix A. We use capital cursive letters for sets and regular

lower case for the set elements, such as a ∈ A.

The data entities involved in the problem are illustrated in Figure 2. We indicate the set of brands

as B = {b1, ...,bN }, where bi ∈ B is a brand with an active social media account. We denote the

total set of image posts with the notation by P = {p1, ...,pM }We refer to the historical timeline of

brand b asH (b), whereH (b) ⊆ P. With this notation, we indicate that post p is posted by brand b
if p ∈ H (b). Because of the sparsity of brand-post interactions, timelines of different brands have

little or no overlap:H (bi ) ∩H (bj ) ∼ 0 . Finally, ab denotes the vector of attributes of brand b and,

for a post p, the image feature vector and the distribution vector over a set of pre-defined concepts

are xp and cp respectively. For a simpler notation, the brand and post indexes b and p are often

omitted in the following.

Given these notations for the input data, the goal of content discovery for brands is to learn a

function f : BxP 7→ R such that for each post pi ∈ H (b) we have:

f (b,pi ) > f (b,pj ) (1)

where pj is a post of any brand different from b: ˆb ̸= b. In other words, given a set of brands and

related posting histories, we aim to learn a relevance function f that can be used to rank a set of

new image posts, such that those that are relevant and likely to be adopted by the brand will be

ranked higher.

3.2 Personalized Content Discovery
The PCD model is based on the principle of mapping the users and items into the same latent

space [41]. We chose to adopt a similar model to learn a common latent space for both brands and

image posts since these frameworks can easily be extended to leverage the predictive power of

deep neural networks.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2020.



Learning Visual Elements of Images for Discovery of Brand Posts 1:7

The first component of PCD is dedicated to learning the brand representation, while the second

learns the post representation. When a post has a similar representation as the brand representation,

it is considered as a good match for the brand. Specifically, let b ∈ Rk and p ∈ Rk denote the latent

representation of brand b and post p respectively, the similarity between b and p is defined as:

f (b,p) =
bT p
∥b∥ ∥p∥

The whole PCD framework is represented in Figure 3, where the two components of brand and

post representation learning are illustrated on the left and right part respectively.

3.2.1 Brand Representation Learning. Because of high inter-brand similarity, simply adopting

one-hot brand ID may fail to learn the discriminative representation that is capable of making fine-

grained distinctions among competitor brands [24, 35]. Our solution is derived from the intuition

that each brand is uniquely characterized by multiple themes or brand associations. Different

from other works that pre-allocate aspects with fixed handcrafted features [20], PCD learns the

importance of every single association in an end-to-end manner for each brand. We automatically

learn a fixed-sized latent vector with high-level semantics for each brand association. We add a new

set of parameters representing the associations for each brand, which are learned at the training

stage. We name them association vectors and arrange them as rows of a matrix A ∈ Rhk , where h is

an arbitrary number of associations and k is the number of dimensions of the latent space. The final

brand representation is then learned from both the one-hot brand ID and the association vectors.

The brand representation is computed as:

b = φ(A,wb) =
h∑
i=1

Ai ◦wb (2)

where wb ∈ R
h
are the importance weights for brand b and ◦ indicate the element-wise multipli-

cation. Since brands are free to assume any weighted combination of the h association vectors

Ai , this method allows a richer learning of fine-grained brand representations compared with the

one-hot brand ID.

3.2.2 Post Representation Learning. Because of the sparsity of brand-post interactions, the one-hot

post ID as input feature does not provide sufficient information. For this reason, PCD uses uniquely

image content to learn image post representation, similar to the solution by Lei it al. [30]. This

approach also prevents the item cold-start problem [42], which is critical for ranking a set of new

posts that were not used to train the model.

We design a two-layer neural network ϕ for this task, whose sole input is the image content.

To achieve faster training, we adopt the same strategy as in VBPR [19] and utilize input features

extracted with a pre-trained CNN. We finally compute the post vector as p = ϕ(xp), where ϕ follows

the following form:

ϕ(x) = W2(ξ (W1x +γ1γ1γ1)) +γ2γ2γ2 (3)

whereW1 andW2 are learned matrices, γ1 and γ1 are bias terms and ξ (x ) is a Leaky Relu with slope

0.01:

ξ (x ) =

{
x if x > 0

0.01x otherwise

(4)

3.2.3 Optimization. Our training data T consist in a set of brand-post pairs (b,p). Similar to VBPR

[19], we adopt pairwise learning, which involves sampling a certain number of negative posts for

each pair. With pairwise learning, a single training data point has the following form: (b,ppos ,pneд)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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Fig. 4. PCD*: Model Architecture

where b is a brand, ppos ∈ H (p) and pneд /∈ H (p). The basic intuition is that for a brand, the positive

sample posts should be closer than the negative ones in the learned latent space.

We train our PCD model f : BxP 7→ R using the following ranking loss:

L(b,ppos ,pneд) =max (0, (f (b,pneд) − f (b,ppos )) + η) (5)

where η is the minimum distance desired between the negative and the positive samples. The final

ranking loss is computed as:

LPCD (b,ppos ,pneд) = L(b,ppos ,pneд) + α ∗
∑
i
|wb | + β ∗ ||θ | |2 (6)

where θ are the set of all the weights of the model and α and β control the importance of the

regularization terms. The two regularization terms are added to increase the interpretability of the

aspects associated with a brand and to reduce overfitting. For the first term, we recall that each

brand has weights for each association latent vector wb (Sect. 3.2.1). Our desired effect is that these

weights operate as “selectors”, positively or negatively affecting only a small set of associations for

each brand. As a result, we adopt a L1 regularization on wb to encourage a sparse representation

[28]. For the second term, we adopt L2 regularization on every weight of the model.

Parameters A, wb and all other parameters can be learned from the model using any optimizer

algorithm. We train our model for twenty epochs using the Adadelta algorithm, which adapts

the step interval dynamically over time without the need to set any learning rate [46]. We train

using mini batches of 256 brand-post pairs, which we shuffle at the beginning of each epoch before

batching. To improve generalization performance, we employ dropout with 50% dropping rate and

a loss margin of 0.3.

One of the major difficulties of pairwise learning is negative sampling. Computational require-

ments prevent training using all the possible brand-post pairs, hence negative data must be selected

using a sampling strategy. For this work we adopt uniform negative sampling: given each brand-post

pair (b,p), p ∈ H (b), we randomly sample ten negative sample posts such that pi /∈ H (b) ∀i .

3.3 Personalized Content Discovery with Brand Attributes
The most straightforward solution to integrate brand attributes, such as BAV or brand personality

factors, would be to consider such information as an additional brand feature a, affecting all the
brand-post pairs indiscriminately. Because of timeline diversification, this approach will introduce

a strong noise component, since it would uniformly assign all posts of a brand to the same attribute
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Learning Visual Elements of Images for Discovery of Brand Posts 1:9

scores. To address this limitation, we propose a variant of PCD named PCD*. The method is inspired

by the probabilistic optimization of [15], which is designed to learn the presence of subjective

attributes in images.

The brand representation block of PCD* has two blocks, the first for learning the latent brand

associations and a second to learn visual elements of brand attributes. While a generic brand

representation vector bx is computed in the same way as b in the standard PCD (Equation 2), we

compute an attributes-specific brand vector ba to capture information about the brand attributes.

We compute this vector as: ba = σ (ϕa (a)), where the function σ is the sigmoid function and ϕa is a

two-layer perceptron like in Equation 3. The function ϕa maps the vector of brand attributes in

a new vector of latent attributes with the same dimension. For a brand b, the two intermediate

vectors are concatenated in the final brand representation vector b = BrandRL(b) = cat (bx, ba).

In analogy to the brand representation learning block, for a post p we compute the post represen-

tation vector as p = PostRL(p) = cat (px, pa). The two components are respectively a generic post

representation vector px = ϕx (x) similar to PCD, and an attributes-specific vector pc = σ (ϕc (c)),
where ϕc has the same structure of Equation 3 and c are the probabilities of the 1000 ImageNet

concepts derived from the input image using a pre-trained concept classification neural network.

We choose to learn pc from the concept distribution under the assumption that marketers use

associative concepts to build brand attributes [5]. To reduce the correlations between the latent

features of the different brand attributes, we set a dropout rate of 0.75 for the elements of the brand

and post attributes-specific vectors ba and pc.

Algorithm 1 Optimization Algorithm

1: procedure train batch(a)

2: B ← batch size

3: K ← bucket size

4: M ← number of brand attributes

5: loss ← 0

6: for b=1,...,B do
7: X←zero matrix∈ R[K ,M]

8: sample K posts p
1
,p

2
, ...,pK ∈ H (b)

9: sample K points p ′
1
,p ′

2
, ...,p ′K /∈ H (b)

10: b← BrandRL(b)
11: for k=1,...,K do
12: p ← PostRL(pk )
13: p′← PostRL(p ′k )
14: loss ←loss+LPCD (b, p, p′)
15: pa ← select attributes-specific vector (last M elements of p)
16: Xk ,: ← add pa as k-th row

17: for i=1,...,M do
18: Pbi ← reference normal distribution with mean ai and std Σb ,i
19: Qbi ← fit normal distribution from X:,i
20: loss ←loss+LKL(Pbi | | Qbi )

21: nn,Σ← update parameters with back-propagation

Same as in standard PCD, px is a generic image feature expressed as a mixture of latent brand

associations. For the attributes-specific component pc, we want each i-th element to indicate

how much the image reflects the i-th latent brand attribute. We enforce this behaviour by using

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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a probabilistic optimization learning algorithm. The algorithm introduces a new loss term that

encourages the vectors pc of postsp,∀p ∈ H (b) to be closer to vector a of brandb. Simplyminimising

the mean square error between pc and a would be sensitive to outliers because of the challenge

of the timeline diversification. For this reason, our algorithm constrains all image vectors pc of a

brand to follow a desired distribution. We illustrate this concept with an example in Figure 5a: if a

brand has a high score for the attribute Upper Class, we assume that the average Upper Class score
of all its images is near that score, even if there will be outlier images with much lower Upper Class
score. In the figure, photos of luxury cars are being used to enforce the attribute of Upper Class,
while the post of a can with the company logo is certainly an outlier. More formally, we make

the assumption that given attribute i for brand b, with score ai , all of its timeline posts are such

that their score pci ,∀p ∈ H (b) follow a one-dimensional normal distribution with mean ci , with
standard deviation Σb ,i unknown. In other words, we expect the consensus of the attribute-specific

scores pci being close to the score of brand attribute: ai .
During each epoch, our training procedure iterates over all brands b using mini-batches of size

B, as is shown in Algorithm 1. For each brand b in the mini-batch, we randomly sample K image

posts p and compute the brand representations with the neural network BrandRL (line 10). We then

iterate on the K posts in the image bucket of brand b, computing post representations with PostRL
(line 12). We repeat the same computation for the negative samples (line 13) and compute the

margin rank loss LPCD as in Section 3.2 (line 14). Since vector p is the concatenation of generic and

attributes-specific post representation vectors, we extract the latter by selecting the lastm elements

of p and add it as the i-th row of matrix X. The goal of the probabilistic loss is to ensure that the

elements of each column i of X, (corresponding to a single brand attribute) are generated by a

distribution centered on ai , like in Figure 5b. In order to encourage this, we fit a normal distribution

Qbi from X:,i (line 19), then use the Kullback-Leibler (KL) divergence to compute how well Qbi
approximates the ground truth distributions Pbi , which is centered on the brand attribute ai :

D
KL
(P | | Q) =

∑
i
P (i) log

2

P (i)

Q(i)
(7)

Since we have no knowledge of the real value of the standard deviation, we propose to learn the

standard deviations during training, together with the models’ parameters: Pq ∼ N (ai ,Σb ,i ). There

is no supervision on the standard deviation and the model is free to learn any value as long as

the distribution is centered to the ground truth label. During back-propagation, the parameters

of BrandRL, PostRL and the matrix of standard deviations Σ are updated to optimally fit the

supervision labels.

The expected behavior of our training procedure is illustrated in Figure 5b. In this example with

two brands, the KL loss is pushingQ1 andQ2 closer to P1 and P2 respectively, while at the same time

adjusting the broadness of the latter. In traditional neural networks, images that are far away from

the consensus (in the figure those small circles on Q1 and Q2 which are far from their mean) would

act as noisy inputs and would try to fit them close to the label. However, by modeling distributions

and not the points themselves, our learning method is not affected by such cases, and will only fit

those images close to the consensus.

The final expression of the loss can be written as:

(8)LPCD∗ = LPCD + α
∑

b=1, ...,B

∑
i=1, ...,M

D
KL
(Pbi | | Qbi ) + β | |θ | |2

where θ is the set of parameters and α and β control the importance of the regularization terms.

Because of the different batching mechanisms, we train our model for 10,000 epochs. We use

mini-batches of 64 brands and we sample K = 200 posts per brand. As initial value for Adadelta, we
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(a) Probabilistic assumption
(b) Probabilistic optimization

Fig. 5. 5a gives an illustration of our probabilistic assumption: even if not all posts by BMW reflect the high
Upper Class score, we assume that the mean of the distribution being centered on the attribute score. 5b
demonstrates the probabilistic optimization of two brands (in green and yellow): Q1 and Q2 are pushed by
the KL divergence loss to match P1 and P2 respectively

set the learning rate to 1.0. Since different brand attributes are defined in different ranges, we scale

them in the interval [0, 1]. All the other settings are the same as those for the standard PCD.

4 EXPERIMENTS
In this section, we first describe the collection of datasets and the experimental setup.We then report

several experiments and studies to demonstrate the effectiveness of our method and visualization

of the results. Experiments include a comparison with baselines, the performance of the individual

blocks of PCD, the impact of modeling brand attributes and the effectiveness of PCD*. Finally,

we report several qualitative experiments where we visualize the learned brand associations and

perform case studies on a selection of brands.

4.1 Datasets
Given the large amount of data required by neural networks, we collected two large-scale image

datasets containing the historical timeline of social media postings of brands from different verticals.

Beside posts of brands in SN websites, we also collected brand information on brand attributes, in

order to test the effectiveness of PCD*.

4.1.1 Existing Datasets. Among the public datasets of brand image posts in social networks, Gao

et al. released a popular large scale collection of over 1.2 million microblogs [12]. The authors

searched image microblogs by text keywords and selected those cases where a brand logo was

found. However, the dataset is not suitable for our task, because it only contains images with a

brand logo, while one of the aims of our work is to find images exhibiting a more complex set of

brand attributes beyond the product. Other works that study the popularity of brands [2, 37, 38]

use datasets where the task of discovering the content for brands may be applied. However, they

are either private, made ad-hoc for the popularity task or publicly unavailable. We hence decided

to build our own datasets.

4.1.2 Two new datasets for Content Discovery. We chose Instagram as our source of data, since it

has a more vibrant brand community due to its higher engagement rate
2
.

For our first dataset (Dataset1), we selected fourteen verticals on themarketingWebsite Iconosquare

and collected the list of Instagram accounts from the Website. We filtered out brands with less

2
https://locowise.com/blog/instagram-engagement-rate-is-higher-than-facebook
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Table 1. Number or brands for each vertical in Dataset1

Alcohol Airlines Auto Fashion Food Furnishing Electronics

69 57 83 98 85 49 79

Non-profit Jewellery Finance Services Entertainment Energy Beverages

71 71 37 69 88 4 67

Table 2. Metrics for comparison of PCD with baselines

Metric Range Description
AUC [0-1] Probability that the classifier will rank a randomly chosen positive example

higher than a randomly chosen negative one.

cAUC [0-1] Probability that the classifier will rank a randomly chosen positive example

higher than a randomly chosen negative sample from a competitor.

NDCGx [0-1] Measures the quality of a ranking list based on the post position in the sorted

result list. Truncated at x . The higher the better.
MedR [0-inf] The median position of the first relevant document. The lower the better.

than 100 posts to avoid sample insufficiency, retaining a set of 927 brands. For each of these, we

crawled at most 2,000 recent posts from their historical timeline, for a total of 1,158,474 posts

(approximately 1,250 posts per brand on average). For each post, we collected the image or video

together with all the metadata available such as the posting time, number of likes and comments.

Table 1 shows the distribution of brands in each of the 14 verticals. The vertical with the lowest

number of brands is Energy with only 4 brands, We believe that energy brands such as OCTG oil &

gas, target businesses rather than end customers and hence don’t have a wide presence on social

media. We split the dataset into training and testing sets, where the test set contains the 10 most

recent posts for each brand and all the remaining data was used for training. This gives rise to a

total of 1, 149, 204 posts for training and 9,270 for testing. We denote the training posts for a brand

b as Htrain (b), and the testing posts as Htest (b).

Fig. 6. Positive correlations between six Ima-
geNet concepts and six attributes in dataset 2.
All correlations are greater than 0.09

We collected a second dataset (Dataset2) to in-

clude brand attributes from the domain of marketing.

We use the same dataset as in [15], which consists

of 698,230 posts (693,230 for training and 4,939 for

testing) from 462 brands. For each brand the dataset

has hundreds of brand attributes, from which we

sampled 89 variables, including BAV metrics (differ-
entiation, relevance, esteem and knowledge), brand
personality attributes (cutting edge, classic, superior,
chic, customer centric, outgoing, no nonsense, distant)
and other attributes from surveys (daring, trendy,
excitement, emphcool, emphyoung, emphleader, etc).

More details can be found in [32].

Figure 6 shows an example of the positive corre-

lations of concepts from ImageNet with brand at-

tributes, computed from Dataset2.

4.1.3 Metrics. We adopted the metrics described in

Table 2. To measure the probability of choosing the
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most relevant examples, we adopt AUC as in [40]:

AUC =

1

|B |

∑
b

1

|E(b)|

∑
(pi ,pj )∈E(b)

δ (f (b,pi ) > f (b,pj )) (9)

where δ is the indicator function and the evaluation pairs per brand b are:

E(b) = {(pi ,pj )|px ∈ Htest (b) ∧ py ∈ Htest (c), c ̸= b} (10)

In order to assess the ability of our model to learn fine-grained brand representation for discrimi-

nating between subtle differences among competitor brands, we introduce a novel metric called

Competitors AUC (cAUC). The metric is computed exactly as the regular AUC, but restricting the

evaluation pairs to only those involving competitor brands.

E(b) = {(pi ,pj )|px ∈ Htest (b) ∧ py ∈ Htest (c),V (c) = V (b)} (11)

where V (b) is the vertical of brand b.
We also employ NDCG (Normalized Discounted Cumulative Gain) to evaluate the performance

of post discovery by taking into account the ranking of relevant posts. We compute the relevance

score of position i as follow:

rb (i) =

{
1 if pi ∈ Htest (b)

0 otherwise

(12)

where b is the target brand, pi is the post ranked at position i andHtest (b) are the testing set images

posted by brand b. Intuitively, given a brand, a high-performance discovery model will rank as high

as possible the test images posted by that brand. Thus, in addition to NDCG, we also introduce

the metric MedR, which is the median position of the first relevant post retrieved. A low MedR

indicates that the first relevant post is ranked as the most relevant results most of the times.

4.1.4 Baselines. Since there are no existing methods specifically designed for content discovery

for brands, we compare our method against a set of baselines inspired by the pairwise models in

image recommendations, which are the closest to PCD.

Random: we generate a random ranking for testing posts.

BrandAVG: we perform nearest neighbor retrieval with respect to brand representation which is

the mean feature vector among the image features of all images appearing in the brand’s posting

timeline.

DVBPR [24]: Visually-aware Deep Bayesian Personalized Ranking is a pairwise model inspired by

VBPR [19], which excludes non-visual latent factors. We adopt the variant with pre-trained image

features as described in the paper.

CDL [30]: Comparative Deep Learning is a pure content-based pairwise architecture. We use

pre-trained image features and one-hot brand ID as user information.

NPR [35]: Neural Personalized Ranking is one of the most recent pairwise content-based architec-

ture. Since our formulation is a pure content-based scenario, we use image features as the sole item

input, using pre-trained image features after PCA as described in the paper.

4.2 Experiment 1: PCD vs Others
We perform this experiment to evaluate quantitatively the performance of PCD versus the baselines.

The results of PCD against the baselines on our two datasets are reported in Table 3. From the

table, it can be seen that our method has the best performance according to all metrics, except for

the metric in the second dataset. The reason is that DVBPR directly maximises the AUC, while

PCD is based on a margin rank loss. However, in terms of cAUC, PCD outperforms the baselines

for both datasets, confirming that our method learns a more fine-grained brand representation
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Table 3. Comparison of MedDiscR with the baselines. We use cut-offs of 10 and 50 for NDCG

AUC cAUC NDCG10 NDCG50 MedianRank
Random 0.503 0.503 0.001 0.003 568

BrandAVG 0.796 0.687 0.068 0.105 29

DVBPR 0.862 0.734 0.059 0.102 20

CDL 0.807 0.703 0.079 0.119 19

NPR 0.838 0.716 0.040 0.076 33

PCD 0.880 0.785 0.151 0.213 5
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Fig. 7. PCD vs PCD1H: the improved performance of learning brand representation from associations is
shown by a higher NDCG curve in the case of PCD for all the cut-off points

compared to content-based recommender systems. Moreover, we notice that the cAUC values are

consistently lower than AUC, confirming that, for the challenge of inter-brand similarity, it is hard

to discriminate between the subtle differences of competitors.

By inspection of the NDCG and Medr metrics, we notice that the performance of NPR is inferior

when compared to the other baselines. We believe the reason is that NPR is the only non content-

based method, which is designed for a less sparse collaborative filtering scenario.

Finally, PCD has the highest NDCG values and the lower MedR, indicating that the learned brand

and post embedding have a higher capability of discovering a small number of relevant posts in the

large test set.

4.3 Experiment 2: Latent Brand Associations
This experiment is an ablation study we design to investigate if explicitly modeling brand associa-

tions yield better rankings than directly learning brand representation from the one-hot brand ID.

For this purpose we define PCD1H, which is a variant of PCD without the brand representation

learning component, learning a brand embedding from the one-hot brand ID, instead.

In Figure 7 we compare the NDCG of PCD and PCD1H for increasing cut-off values, on dataset

1. We notice that PCD values are consistently higher than that of PCD1H, at all cut-offs points.

This result confirms the effectiveness of our brand representation learning and the importance of

explicitly modeling brand associations.

We observe that PCD has a more marked v-shape than PCD1H, particularly on the left side. For

example, considering the cut-off of 1, PCD retrieves a relevant result in the top position for 202 out

of 927 brands, while in the case of PCD1H, this only happens in 127 cases. This indicates that our

brand representation learning is particularly attractive in retrieving the relevant posts at the top
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ten positions of the ranking. The reason for the curves to invert their trends is due to the discount

effect of NDCG.

4.4 Experiment 3: Brand Verticals

Fig. 8. Box plot of performances for brand verti-
cals. AUC and NDCG@50 are represented in red
and green boxes respectively

Different from previous works on brand associations

[27], PCD processes all the brands of our datasets

with an end-to-end framework. For this reason, the

evaluation metrics we use in the previous studies are

computed as average among the 927 brands (except

Median Rank). We perform an additional study to

investigate the performance of the model one step

deeper in terms of brand verticals.

We compute AUC and NDCG@50 for each brand

in dataset 1 and plot these results respectively using

a red and green box plot, organized by verticals. Each

box in Figure 8 represents the distribution of perfor-

mance scores for all the brands belonging to a certain

vertical, such as food or alcohol. The boxes indicate

the median value, the upper and lower quartile and

extremes. We omit the outliers for a clearer repre-

sentation. Similar performance is observed among

brands in fashion, alcohol, entertainment, food, bev-

erage, jewelry and furniture, with a median NDCG

and AUC of approximately 0.19 and 0.86 respectively. In terms of NDCG, we learn that images for

brands in automobiles, airlines, energy and finance are the hardest to discover. However, the former

two verticals still achieve high AUC, while for the latter ones, this metric is also poor. One possible

explanation for energy and finance having lower performance is that they lack clear recurring

visual elements. On the other hand, images from automobile and airline verticals commonly share

similar visual elements, thus we believe that these are the hardest brands in terms of fine-grained

distinctions between competitors.

4.5 Experiment 4: PCD*
Finally, we evaluate the performance of PCD* over PCD. The goal of this experiment is to assess if

there is a link between image posts and the brand attributes, as well as to evaluate if PCD* is able

to leverage them to generate a better ranking. To carry out this experiment we use dataset 2, since

dataset 1 does not have information on brand attributes.

We follow the first setting as in experiment 4.3 and compare the NDCG for different cut-off

values. We show the NDCG curves in figure 9. From the curves, we observe that PCD* has a

NDCG@5 score of approximately 0.35, while that for the standard PCD is 0.3. This indicates that
brand attributes are reflected in social media posts, and integrating them with PCD* yields better

results.

4.6 Case Study 1: Ranking Visualization
To achieve a deeper understanding of what kind of image posts our model discovers, we offer

a qualitative analysis of eight case studies. We select eight among the most popular brands in

our dataset and we use PCD to rank the posts of our testing dataset for each of them. We aim to

show for each of these brands what kind of posts were correctly discovered, what relevant posts

were missed and what are the posts from other brands that erroneously obtained high positions in
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Fig. 10. Case study for eight brands. For each brand, the three columns show each one example of true
positive, false negative and false positive. Please note that all examples were manually selected, hence this
picture has no indication of performance

the ranking. Figure 10 tabulates results for the eight selected cases: beer brand Carlsberg, Qatar
Airways, computer manufacturer Lenovo, Ford motor company, Coca-Cola, Italian fashion brand

Gucci and video-game companies Nintendo and Ubisoft. For each brand, the first column shows a

relevant post that PCD ranked in one of the top-10 positions of the ranking (true positive), while

the central example is another relevant post for which the model failed to attribute a high ranking

score (false negative). Finally, the third column shows an example image of a post from another

brand (either competitors or otherwise) that erroneously achieve the top-10 positions in the ranking

(false positives), together with the name of the brand the image belongs to.

Fig. 9. PCD* vs PCD: the increase in performance
after integrating brand attributes is shown by a
higher NDCG curve in the case of PCD* for all
the cut-off points

While the examples in the first column evidently

match their brand expected style and content, the

ones in the second column are much harder to dis-

cover. For example, in the case of Carlsberg, the
method is able to easily retrieve an image of a beer

glass on a green background, but fails to retrieve

another image posted by the brand, featuring two

astronauts visiting the beer company on the first

anniversary of their space mission. Also in the other

cases, we notice that the false negatives are to a cer-

tain extent sporadic and occasional for the brands,

which partially explains why they were missed.

Finally, the false positives in the third columns

are those image posts that were mistakenly included

in the top-ten. In the case of Carlsberg, PCD selects

another picture of a beer glass on a grass background

by German beer brand Astra, most likely because it

learned to associate the green color with the brand.

We observe that not all the false positives are from the competitor brands. For example, a post

from the financial services company Allianz is retrieved for the brand Ford, featuring a truck in

an outdoor environment. This confirms that in these cases PCD captured fine-grained stylistic

features, rather than stopping at high-level category level representation.
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Fig. 11. Top results for five brand attributes and last results for the attribute Prestigious

4.7 Case Study 2: Brand attributes
We design this case study to assess the ability of PCD* to learn brand attributes in images as well

as generate explanations.

We first assess if the model correctly learns to rank images by marketing attributes. To conduct

this study, we use the network ωa to rank the images in the testing set by six specific attributes.

To generate a ranking, we forward the distribution of image concepts cp to ωa , computing the

attributes-specific post vector pa for each testing image. The i-th element of pa indicates the

strength of the i-th brand attribute in the post. We then select the six brand attributes of Upper
Class, Fun, Stylish, Cool, Corporate, Prestigious and rank the testing images by the corresponding

element of pa We sample five posts from the top 20 and show them in Figure 11, with the only

exception for the attribute Prestigious, for which we sample among the last 20 results. From the

figure we learn that images of cocktails are often used by brands which are considered being Upper
Class and Cool by their consumers. Posts related to cartoons are instead related to attribute Fun,
since the brands in our dataset with the highest score for these attributes are in the entertainment

vertical. Unsurprisingly, the top Corporate posts feature skyscrapers and men in business attire,

while fashion posts occupy the top positions in the Stylish rank. Finally, images about drinks in

plastic bottles are ranked last for the attribute Prestigious.
Beside ranking by the attributes themselves, another important application of brand attributes is

to generate explanations for the original task of ranking images for a specific brand. Once the testing

images are ranked, we can look at the attributes-specific component pa of the image representation

vector p to produce a list of top brand attributes of the ranked images. For this study we rank

images for the brands: BMW, Burger King, Gucci and Nike. We sample four posts among the top

20 results for each brand and list the three top attributes as explanations. Figure 12 shows how

different image recommendations can be explained with different brand attributes. For example,

a black SUV on a sunny landscape can be used to express the ideas of a young, cool and spirited

brand; while a white vehicle on a snow-covered background is more suitable to communicate

reliability and trustworthiness. Such results can be used by marketers as an additional help to pick

the most appropriate post according to their campaign goals.

4.8 Case Study 3: Latent Brand Associations
To visualize which latent associations are automatically learned by the model, we use our trained

model to project all training images into the latent space and select the nearest neighbor posts to the

association latent vector using cosine similarity. Figure 13 shows a selection of qualitative examples

of brand associations. The example shows some high-level semantics aspects which are captured

by latent vectors of brand associations. For example dedicate brand associations are automatically
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(a) BMW (b) Burger King

(c) Gucci (d) Nike

Fig. 12. Brand attributes as explanation to Content Discovery for Brands

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13. Nine examples of brand associations. For each association, four example images are selected for
display from the training set using nearest neighbors

learned to represent the visual aspects of coffee cups, seawater, cars, alcohol bottles, rings, cyclists,

dogs, fashion items and classical buildings. By looking into a brand’s weight vector wb, we can

understand which brands adopt a particular brand association the most. For the associations in

Figure 13, we retrieve the 50 brands that were positively affected the most. Among these, association

(a) affects brands such as Costa Coffee, Starbucks and Salt Spring Coffee, while association (d) is

adopted by alcohol brands such as Dom Pérignon and Moët & Chandon. Finally, association (c) is

adopted by most of the car manufacturer brands in our dataset, such as Rolls-Royce, Tesla, Cadillac
and Volvo.

5 CONCLUSIONS
Inspired by a real-life marketing problem, we introduced the new problem of content discovery for

brands to automatically filter images which match the brand associations, namely the set of values

of the brand. We proposed a content-based method called Personalized Content Discovery (PCD)
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to generate a personalized ranking by learning the fine-grained brand representation from their

historical timeline. We integrated brand characteristics from surveys to improve the performance

and to generate explanations with the top results of the ranking. We tested our methods on

two Instagram datasets, in terms of performance comparisons, ablation studies and qualitative

visualizations. Our findings first indicate that, thanks to modelling brand associations and brand

attributes, our method can outperform state-of-the-art solutions. Second, our model can be used to

visualize the visual elements of brand attributes, like in the case of skyscrapers and suits which are

learned for attribute Corporate.
A promising future direction is to integrate a knowledge graph built with domain knowledge in

marketing, to better understand the similarities between brands in terms of featured products and

other brand attributes.
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