
IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2018 1

Learning to Compose and Reason with
Language Tree Structures for Visual Grounding

Richang Hong, Daqing Liu, Xiaoyu Mo, Xiangnan He, Hanwang Zhang

Abstract—Grounding natural language in images, such as localizing “the black dog on the left of the tree”, is one of the core problems
in artificial intelligence, as it needs to comprehend the fine-grained and compositional language space. However, existing solutions rely
on the association between the holistic language features and visual features, while neglect the nature of compositional reasoning
implied in the language. In this paper, we propose a natural language grounding model that can automatically compose a binary tree
structure for parsing the language and then perform visual reasoning along the tree in a bottom-up fashion. We call our model
RVG-TREE: Recursive Grounding Tree, which is inspired by the intuition that any language expression can be recursively decomposed
into two constituent parts, and the grounding confidence score can be recursively accumulated by calculating their grounding scores
returned by sub-trees. RVG-TREE can be trained end-to-end by using the Straight-Through Gumbel-Softmax estimator that allows the
gradients from the continuous score functions passing through the discrete tree construction. Experiments on several benchmarks
show that our model achieves the state-of-the-art performance with more explainable reasoning.

Index Terms—Fine-grained detection, tree structure, visual grounding, visual reasoning

F

1 INTRODUCTION

With the maturity of deep neural networks for object detec-
tion [1], we are more ambitious to fulfill the long-term goal
in computer vision: an intelligent agent that can compre-
hend human instructions in natural language and execute
them in visual environment. Once achieved, it will benefit
various human-computer interaction applications such as
visual Q&A [2], visual dialog [3], and robotic navigation [4].
To achieve this, a necessary step is to extend the current
object detection system from fixed-sized inventory of words
to open-vocabulary sentences, that is, grounding natural
language in images [5].

Thanks to the advance of visual deep features [6] and
neural language models [7], recent studies show promising
results on scaling up visual grounding to open-vocabulary
scenario, such as thousands of object categories [1], [8], rela-
tionships [9], and phrases [10]. However, grounding natural
language (cf. Fig. 1a) is still far from satisfactory as the key
is not only to associate related semantics to the target visual
object, but also to distinguish it from the contextual objects,
especially those of the same category. For example, as shown
in Fig. 1a, to ground the referring expression “a black dog
on the left of the tree”, we need to first detect objects in
the image and then distinguish the referent “black dog”

• R. Hong is with the School of Computer & Information,
Hefei University of Technology, Hefei, China. E-mail: see
https://sites.google.com/site/homeofrichanghong/

• D. Liu is with the University of Science and Technology of China, Hefei,
China. E-mail: liudq@mail.ustc.edu.cn

• X. Mo is with the School of Electrical & Electronic Engineering, Nanyang
Technological University, Singapore. E-mail: moxy@ntu.edu.sg

• X. He is with the School of Information Science and Technology, Univer-
sity of Science and Technology of China. E-mail: xiangnanhe@gmail.com

• H. Zhang is with the School of Computer Science & Engi-
neering, Nanyang Technological University, Singapore. E-mail: see
http://www.ntu.edu.sg/home/hanwangzhang/

Manuscript received xx xx, xxxx; revised xx xx, xxxx.

from other objects especially those with the same category
“golden dog” using the context “black”, “left of the tree”.

To make a successful discrimination between context and
referent, we need to parse the language into corresponding
semantic components. As illustrated in Fig. 1b, current state-
of-the-art models [11], [12], [13] learn to parse a sentence
into the (subject, predicate, object) triplets, and the referent
grounding score is the sum of the three grounding scores.
The intuition behind these compositional methods is that
the parsing helps to divide the original problem into easier
sub-tasks, i.e., finding the contextual regions that grounded
by “predicate” and “object” semantics is apparently helpful
to localize the referent. However, we argue that the above
triplet composition for a sentence is still too coarse. For
example, it is meaningful to parse short sentences such as
“person riding bike” into triplets, as it has a clear grounding
for individual “person”, “bike”, and their relationship; but
it is problematic for general longer sentences with adjective
clause, e.g., it is still difficult to parse the following long
sentence into one triplet: “a black dog on the left of the tree
which is bigger than others”.

In this paper, we propose a fine-grained natural lan-
guage grounding model called Recursive Grounding Tree
(RVG-TREE). The key motivation is to decompose any lan-
guage sentence into semantic constituents in a recursive
way, that is, every node or the root of every sub-tree can
be further decomposed and the decomposition stops at the
leaves which are the single words. As illustrated in Fig. 1c,
“black dog” can be decompose into “black” and “dog”, and
thus the compositional confidence for “black dog” can be
accumulated by “something is black” and “something is a
dog”. Therefore, by using RVG-TREE, we can accumulate
the grounding confidence score from the lower layers which
are relatively simpler grounding sub-tasks. Compared to
previous methods that rely on sentence embedding features,
RVG-TREE offers an explainable way of understanding how

IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2018 2

a black dog on the left of the tree

(a)

a black dog on the left of the tree

(b)

black dog

on left

of

tree black dog

on left

of

tree

(c)

Fig. 1: (a) A typical task of grounding the natural language
“a black dog on the left of the tree” in the image,
represented as a set of objects represented as bounding
boxes. The output should be the “dog” grounded with the
red box. (b) Most recent advances focus on simple compo-
sitions of the language such as (subject, predicate, object)
triplet. (c) Our RVG-TREE decomposes the sentence into
more fine-grained compositions, and then accumulates the
grounding confidence score in a bottom-up fashion.

the language is comprehended in visual grounding. One
may argue that such binary decomposition into over fine-
grained would be harmful, due to the fact that not all
nodes refer to the target object. For example, “the tree”. We
tackle this case by learning a node classifier whether returns
visual features for future grounding at higher nodes, or a
grounding score that should be accumulated. Thanks to this
design, our RVG-TREE is generic and flexible and thus can
be applied in longer natural language sentences.

The technical overview of RVG-TREE is illustrated in
Fig. 2. Inspired by the recent progress on tree structure
construction for sentence representations [14], we propose
to learn RVG-TREE in a bottom-up fashion, by dynamically
merging any two adjacent nodes. Specifically, we start from
leaf nodes which are words, where the two merged nodes
are chosen based on their association score (e.g., “black”
and “dog”). Then, the merged and un-merged nodes are
flushed to the next merging layer. Finally, the construction
is complete when there are only one node left in the pool.
Given an RVG-TREE constructed from a sentence, we design
a recursive grounding score function that accumulates the
grounding confidence from leaf to root. Considering any
sub-tree with one root and two children nodes, we first use
the node classifier to determine which children node is the
score or feature node; the score node returns the grounding
score from its own sub-tree, and the feature node returns the

estimated context visual regions, which are soft-attention
regions that the attention weights are normalized scores
returned from its own sub-tree. The overall grounding score
contains two non-differentiable decision-making processes:
1) the node merging process — choosing the highest associ-
ation score in the pool — in the RVG-TREE construction, and
2) the score and feature node classification in the recursive
grounding score calculation. To this end, we use Gumbel-
Softmax [15] with proper expert supervision to make the
overall architecture fully-differentiable, i.e., standard SGD
can be applied in the discrete decisions.

We perform extensive experiments on three challenging
referring expression grounding datasets: RefCOCO [16],
RefCOCO+ [16], and RefCOCOg [5]. Compared to existing
grounding models, RVG-TREE is the first model that has
totally transparent visual reasoning process for grounding
and achieves comparative or even better performances.

Our contributions are summarized as follows:
• We propose RVG-TREE: an explainable vision-language

reasoning model for visual grounding.
• RVG-TREE introduces a novel tree structure to parse the

language input and calculates the grounding score in an
efficiently recursive fashion, allowing machines to under-
stand natural language in a way similar to the language
constitution.

• RVG-TREE is designed to be fully-differentiable and thus
it can be trained efficiently with standard SGD.

2 RELATED WORK

2.1 Grounding Natural Language
Referring expressions are natural language statements de-
scribing the referent objects within a particular scene, e.g.,
“the man on the left of the golden dog” or “the dog on
the sofa”. Grounding referring expression, which aims to
localize the referring expression in a image, is also known
as referring expression comprehension, and its inverse task
is called referring expression generation [5]. Based on valid
phrase grounding methods, referring expression grounding
steps further to recognize the referent from other objects
mentioned in the language input.

The task of grounding referring expression is to localize
the region in the image given a referring expression. To
solve this problem, joint embedding model is widely used
in recent works [17], [18], [19]. They model the conditional
probability P (o|r), where r is the referent and o is the ap-
propriate visual object. Instead of modeling P (o|r) directly,
others [5], [16], [20], [21], [22], [23], [24] compute P (r|o) by
using the CNN-LSTM structure for language generation.
The visual region o maximizing P (r|o) is considered to
be the target region. Taking advantages of both the above
mentioned approaches, Yu et al. [25] consider the joint-
embedding model as a listener, CNN-LSTM as a speaker,
and combine them to form a joint speaker-listener-reinforcer
model to achieve state-of-the-art results. Instead of using
holistic language feature to do referring expression ground-
ing, some recent work decompose the language input into
different parts. Modular Attention Network (MAttNet) [13]
decomposes expressions into three modules related to sub-
ject appearance, location, and relationship to other objects,
rather than treating them as a single unit. This model then

IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2018 3

Recursive

Grounding

Pruning

Input Language

the skis of the man in the red jacket

skis of man in red jacket
RvG-Tree

Constructor
Score Feature

Classification

skis

of man

in

red jacket

Constructed Tree

skis

of man

in

red jacket

RvG-Tree

Faster-RCNN

Input Image

skis

of man

in

red jacket

RvG-TreeRoI Features

Feature Node

Score Node

Score Flow

Fig. 2: The overview of using RVG-TREE for natural language grounding. Given an natural language sentence input,
we first use NLP tools to prune the sentence (Section 3.2) and then construct RVG-TREE. Then, we have a score-feature
classifier (Section 3.3) to determine each node to be the “score node” or “feature node”, where the score node returns the
recursive score and the feature node returns the feature (Section 3.3). The final score of the root node is accumulated
recursively in a bottom-up fashion (Section 3.3) and the visual region with the highest score is considered as the
grounding result. Note that all the nodes can be visualized by the corresponding region confidence scores and only
qualitative regions are visualized.

calculates an overall score dynamically from all the three
modules with weights learned from the language based
attention. Visual attention has been used to facilitate the
subject and relationship modules to focus on relevant image
regions. Compositional Modular Network (CMN) [11] is
a modular deep architecture which divides the input lan-
guage into vector representations of subject, relationship,
and object with attention and then integrates the scores of
these three modules into the final score indicating which
region is more qualified for the given language input.
Separating an entire sentence into several components and
analyzing these components using specific models makes
the analysis more fine-grained.

However, it is worth noting that natural language has
a latent hierarchical structure. Facilitating such latent struc-
ture information would make the grounding model more
reasonable and explainable. Our model steps further in
this direction by taking the latent hierarchical structure
of the language into account. We automatically compose
a tree structure to parse the language and then perform
visual reasoning along the tree in a bottom-up fashion by
accumulating grounding confidence scores.

2.2 Learning Tree Structures for Language

In their NLP community, learning tree structures for sen-
tences is becoming more and more popular in recent years.
Bowman et al. [26] built trees and compose semantics via a
generic shift-reduce parser, whose training relies on ground-
truth parsing trees. TreeRNNs combined with latent tree
learning has been deemed as an effective approach for sen-
tence embedding as it jointly optimizes the sentence embed-
ding and a task-specific objective. For instance, Yogatama et
al. [27] used REINFORCE algorithms [28] to train the shift-
reduce parser without ground truth. Instead of the shift-
reduce parsers, Maillard et al. [29] used a chart parser, which
is fully differentiable by introducing a softmax annealing
but suffers fromO(n3) time- and space-complexity. Gumbel
Tree-LSTM is a parsing strategy proposed by [14], which

introduces Tree-LSTM and calculates the merging score for
each adjacent node pair based on a learnable query vector
and greedily merges the best pair with the highest score in
the next layer. They introduced Straight-Through Gumbel-
Softmax estimator [15] to soften a hard categorical one-
hot distribution into a soft distribution so as to enable
end-to-end training. Comparison between above mentioned
models on several datasets, which is done by [30], shows
that Gumbel Tree-LSTM achieves the best performance. Our
model facilitates the approach to learn the latent tree struc-
ture out from a flat language input to do visual reasoning
for the natural language grounding task.

Tree structures for language have also been studied in
the field of vision-language tasks. Xiao et al. [31] introduced
the dependency parsing tree as a structural loss in visual
grounding, thus the grounding results are expected to be
more faithful to the sentence. Our work is fundamentally
different from theirs as we explicitly perform grounding
score calculation along the tree. In addition, note that our
tree is more similar to constitution tree but not dependency
tree. To minimize the biases in existing VQA datasets, John-
son et al. [32] proposed a diagnostic dataset CLEVR that tests
a range of visual reasoning abilities. Questions in the dataset
CLEVR are built using several categorical functions (e.g., Fil-
ter, Equal and Relate) by composing these simple building
blocks. Johnson et al. [33] proposed a method which con-
tains two main modules: program generator and execution
engine. The program generator takes a sequence of words
as inputs and outputs a program as a sequence of functions.
The resulting sequence of the functions is then converted
to a syntax tree for the execution of visual reasoning by
making use of the fact that the arguments of each function
are known. Hu et al. [34] proposed an End-to-End Module
Networks (N2NMNs) containing two components: a layout
policy, which inputs deep representation of a question and
outputs both a sequence of structural actions and a sequence
of attentive actions, and a network builder, which takes
these two sequences as input and outputs an appropriately

IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2018 4

structured network to complete visual reasoning. All the
above mentioned methods for VQA task seek to explore the
latent structure of the input question.

3 RVG-TREE MODEL

We first define the problem of natural language ground-
ing formally, and then introduce the RVG-TREE grounding
model as illustrated in Fig. 2 as a walk-through example. Fi-
nally, we show how to train RVG-TREE as a neural network.

3.1 Problem Definition
We represent an image as a set of Region of Interest
(ROI) features I = {x1,x2, ...,xn}, where xi ∈ Rd is
a d-dimensional feature vector, e.g., extracted from any
deep vision model such as Faster R-CNN [35]. Each ROI
is a visual object detected in the image. We represent a
natural language sentence as an m-length sequence L =
{w1,w2, ...,wm}, where wi ∈ Rb is a b-dimensional word
embedding vector, e.g., initialized from any word-vector
models such as GloVe [36]. The task of grounding language
L in image I can be represented as the following ranking
problem:

x∗ = argmax
i

S(xi,L), (1)

where S(·) is a grounding score function that evaluates the
association between region xi ∈ I and language L.

Designing a good score function for Eq. (1) is not trivial
because it is challenging to exploit the compositional na-
ture of the language: parsing the sentence into semantic
structures that capture the implied referent (i.e., the target
region) and the context (i.e., regions that help to distinguish
the referent out of others). Therefore, previous grounding
models that only uses holistic sentence-level [5] or phrase-
level [10] language features are straightforward but subop-
timal. Recently, the triplet composition [11] is proposed to
decompose the grounding score in Eq (1) into three sub-
scores: referent (or subject), context (or object), and their
pairwise relationship scores:

S(xi,L) := Ss(xi,ys) + Sv(xv,yv) + Sp([xi,xv],yp), (2)

where ys, yv , and yp are the b-dimensional language fea-
tures (the same dimension as the word embedding) for the
3 linguistic roles: referent, context, and relationship, respec-
tively. They are computed by soft-attention weighted sum
over the word vectors in the sentence, where the attention
weights are word-relevance to each of the linguistic roles.
xv ∈ Rd is the ROI feature for the context. As illustrated
in Fig. 1a, take “a black dog on the left of the tree” as an
example with perfect language parsing and visual detection,
ys = 0.5wblack + 0.5wdog, yv = wtree, and yp = wleft, and
xv should be the ROI of “tree”. Therefore, any region xi of
“dog” is expected to receive a higher score compared to the
regions of other objects.

However, it is still not easy to obtain accurate ys, yv , yp,
and xv in Eq. (2), especially, when the language consists of
more complex compositions such as “a black and white cat
on top of the tree which is in front of a truck”. The reasons
are due to the error-prone modules as follows.

Language Composition: The referent, context, and rela-
tionship compositions produced by off-the-shelf syntactic

jacketinman red

Score Node

Feature Node

ofskis

(a) Tree Construction

skis

of man

in

red jacket

skis of man

node

(b) Recursive Unit

Fig. 3: (a). Given a flat sentence, RvG-Tree computes a
score for every parent candidate indicating how qualified
each candidate is to be merged in the next layer. By
operating selection and merging recursively until RvG-
Tree reaches the root node, the tree is constructed and will
be used in the inference part. (b). RvG-Tree calculates
grounding confidence scores in a recursive way. Taking the
l -th node as an example, the grounding score returned by
it is a combination of the scores of itself and its children.

parsers do not always correspond to intuitive reasoning of
visual grounding. For example, the object of “a black and
white cat on top of the tree which is in front of a truck”
will be parsed, if perfectly, as “the tree which is in front of a
truck”, which is linguistically correct but visually difficult to
learn the visual-semantic correspondence between a region
and such a comprehensive expression. Therefore, we should
further parse it into more fine-grained components for the
ease of visual grounding.

Context Localization: Due to the prohibitively high cost
of annotating both referent and context in images [12], we
have to guess the context in a weakly-supervised way, that
is, during training, the context object is not localized as the
referent with ground-truth bounding boxes. Moreover, the
context is not a single region but a multinomial combination
of all the possible regions mentioned in the language. For
example, how to compose a comprehensive representation
xc accounting for “black and white” and “on top of the tree
which is in front of a truck” is challenging.

3.2 RVG-TREE Construction

To address the two challenges introduced above, we pro-
pose to further decompose our grounding score in a recur-
sive way by using a binary tree, allowing much more fine-
grained visual reasoning. The motivations are two-fold: 1)
the natural language can be generally divided into recursive
components: we can always use attributive clause to modify
a noun when necessary, and each clause can be recursively
parsed into two linguistic components, such as the (subject,
object), (attribute, subject), or (preposition, subject) pairs. 2)
by using trees, we can do more fine-grained localization
with simpler expressions and such simple grounding scores
can be accumulated along the tree in a bottom-up fashion.

Before we construct the tree, we prune the sentence by
discarding some determiners and symbols such as “a, an,
another, any, both, each, either, those, that”. We find that this
pruning does not affect the overall performance while boost
the speed. Similar to the method in [14], RvG-Tree calculates
a score indicating how valid a composition is for every
parent candidate. Composition here means to merge two
adjacent nodes into a parent one. Based on the validity score,

IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2018 5

the model recursively selects compositions in a bottom-up
fashion, until it reaches the root representation. Fig. 3a is
a walk-through example of RVG-TREE construction for the
sentence “skis of man in red jacket” in Fig. 2. The first
merging happens at “red” and “jacket”, then the merged
node together with other nodes: “skis”, “of”, “man”, and
“in”, are the input for the next merging process, and “of”
and “man” are merged. We repeat this process until we have
two nodes left: one merged from “skis of man” and the other
one merged from “in red jacket”.

Formally, we first need to embed each node into features
and then use them to decide which two nodes to merge in a
computational way. We start from the leaf nodes, where each
one is represented as the word embedding yl in the sentence
L. To encode the contextual information of the words in
sentence, we use a bi-directional LSTM (BiLSTM) [37] to
obtain the initial l-th node feature vt=1

l as:

v1
l =

[
h1
l

c1l

]
= BiLSTM(yl,h

1
l−1,h

1
l+1), (3)

where h1
l and c1l are hidden and memory cell vectors of the

BiLSTM. Then, we can use v1
l to merge two of them for the

next layer t = 2 by using Eq. (5), which will be discussed
soon. Next, we introduce how to obtain the node features
for layers t ≤ 2.

Without loss of generality, as shown in Fig. 3a, suppose
“red” and “jacket” are merged as new node for the next
layer t = 2, then all the other leaf nodes are upgraded to
t = 2 for the next merging step:

vt+1
j =

vt
j j < l[
ht+1; ct+1

]
= TreeLSTM(vt

j ,v
t
j+1) j = l

vt
j+1 j > l

(4)

where ht and ct are the hidden and memory cell vectors
from the Tree LSTM network (TreeLSTM) [38], which is a
simple extension of the original LSTM by concatenating the
children hidden states as the input hidden states.

Now, we introduce how to merge two adjacent nodes.
We introduce a trainable parameter θp to measure the va-
lidity of a parent. Specifically, we use θTp v

t
l as the unnor-

malized validity score of a candidate parent representation
in Eq. (4). Then, we decide whether to merge its two candi-
date children by selecting the largest (i.e., argmax) softmax
normalized score:

sl =
exp(θTp v

t
l)∑

j exp(θTp v
t
j)
. (5)

We repeat this procedure until we reach the root node of the
tree, i.e., the final RVG-TREE structure.

Note that the node feature embedding functions de-
scribed in Eq. (3) and Eq. (4) are differentiable, but the
merge procedure by using Eq. (5) is not, due to the greedy
argmax. To tackle the discrete nature of the tree structure
construction, we deploy the Gumbel-Softmax trick detailed
in Section 3.4.1.

3.3 Recursive Grounding
Given the constructed RVG-TREE described in the previous
section, we can accumulate the grounding confidence scores

according to the language composition along the tree in a
bottom-up fashion. Without loss of generality, suppose we
are interested in calculating the l-th node (Fig. 3b), which
has two children nodes: score node ls and feature node lv
(which will be discussed soon). Then, the grounding score
returned by the l-th node is defined in a recursive fashion
as:

Sl(xi,Ll) :=

score calculated at node l︷ ︸︸ ︷
Sl
s(xi,y

l
s) + Sl

p([xi, xlv︸︷︷︸
feature returned from node lv

],yl
p)

+ Sls(xi,Lls)︸ ︷︷ ︸
score returned from node ls

.

(6)

From the “divide & conquer” perspective, the “dirty” job
(i.e., conquer) is done by the “score calculated at node l”
terms, and the “easy” ones (i.e., divide) are just to ask the lv
and ls children to give us “feature returned from node lv”
and “score returned from node ls”, and thus the reasoning
can be performed in a bottom-up fashion. Interestingly,
Eq. (6) can be viewed as a more generic and hierarchical
formulation of the widely-used triplet composition [11],
[13], [16] as in Eq. (2); however, the key difference is that
our composition is achieved in an explicitly recursive way
along the sentence, while the previous one is learned in an
implicitly flat fashion.
Complexity. Compared to holistic or simple compositional
methods such as Hu et al. [11] and Yu et al. [13], the proposed
recursive grounding in Eq. (6) is more computationally
expensive but the overhead is linear to sentence length
and thus affordable. Suppose their computational cost is
unit 1 and the sentence length is N , the number of score
calculation is the number nodes: O(2N).

Next, we will discuss the design and notation details of
Eq. (6) as follows.

3.3.1 Score Node & Feature Node Definition
According to the primal score of Eq. (1), a grounding score is
to measure the association between any region xi and a lan-
guage sentence L. However, as our recursive grounding will
go through every word or sub-sequence in the sentence, it is
not always reasonable to explicitly calculate the association.
To this end, we introduce the score and feature nodes that
are specially designed for recursive grounding, as illustrated
in Fig. 3b.
Score Node. If a node l is a score node, its score will be
accumulated to the higher layer. In particular, every root is
a score node. Compared to the following introduced feature
node, a score node calculates the grounding score according
to Eq. (6) and pass it to the higher-layer node:

Sls ← Sl, (7)

where the score assignment denotes that the output of the
score node is the score Sls in Eq. (6). Thanks to the score
nodes, we can relax the unreasonable cases in visual ground-
ing that every language component should correspond to a
visual region. We will further discuss this intuition later in
Section 3.3.2.
Feature Node. If a node l is a feature node, it first adopts
the same procedure as score node: calculate the grounding
score according to Eq. (6), and then it further aggregates a

IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2018 6

(a) Feature Node (b) Score Node

Fig. 4: Word cloud visualizations of what nodes are likely
to be classified as (a) feature node or (b) score node. Every
word frequency is increased by 1 if it is a leaf under the
feature or score node. We can see that feature nodes are
generally related to visible concepts while score nodes are
generally not visible.

weighted sum over the region features, where the weights
are normalized by the grounding score:

x =
∑
i

exp
(
Sl(xi,Ll)

)∑
j exp (Sl(xj ,Ll))

xi,

xlv ← x.

(8)

Note that the above feature assignment indicates that the
weighted feature x at the current node l is passed to its
parent node and used as the output of the feature node xlv

in Eq. (6). In the point of view of the hierarchical feature
representations any deep network, we should feed-forward
the visual features in a bottom-up fashion, i.e., the feature
node. On the other hand, the score node is analogous to the
loss that accumulated from intermediate features [39].

3.3.2 Score Node & Feature Node Classification
To determine whether child node 1 (or 2) is the feature
node lv and the other one is the score node ls, we use the
following binary softmax to be the probability of the feature
node pv1:

pv1 =
exp(θTv v1)

exp(θTv v1) + exp(θTv v2)
, (9)

where θv is the trainable parameter, v1/2 is the children node
feature exactly as the same as in Eq. (4). Note that we also
have the following probabilities:

pv2 = ps1 = 1− pv1, ps2 = pv1, (10)

where ps· is probability of score node. Similar to the discrete
policy that causes non-differentiability in tree construction
as in Eq. (5), we deploy Gumbel-Softmax to resolve this
issue raised by Eq. (9).

Fig. 4 illustrates what nodes are likely to be classified as
the feature or score nodes. We can see that nodes which have
more visible leaf words like adjectives such as colors are
more likely to be the feature nodes, and those which have
more non-visible leaf words like relationships (“behind”
and “sitting”) are more likely to be the score nodes.

3.3.3 Language Feature
We use language feature to localize the corresponding visual
regions referred in the language. Essentially, we would like
to calculate the multimodal association between the visual
features and the language features. We denote yl

s as the

language feature used to associate with a single region
feature (i.e.,xi) and yl

p to associate with a pairwise visual
feature (i.e., [xi,xlv]). Specifically, the language feature is
calculated as a soft-weighted sum of the corresponding
word embeddings in the sub-sequence Ll:

yl
s =

|Ll|∑
i=1

αsiwi, yl
p =

|Ll|∑
i=1

αpiwi, (11)

where wi is the i-th word embedding vector and α is the
word-level attention weights:

αsi =
exp

(
θTs vi

)∑
j exp (θTs vj)

, αpi =
exp

(
θTp vi

)∑
j exp

(
θTp vj

) , (12)

where θ is the trainable parameter and v is the leaf node
feature that is the same as in Eq. (4)&(9). The reason why
we need word-level attention for extracting the language
feature is because not all the words are related to the
visual feature. Hence, suppressing irrelevant words will
help the multimodal association. It is worth noting that
the reason why we use the sum of word-level embeddings
while not the BiTreeLSTM hidden vectors is because the
latter is too diverse in the limited sentence pattern in our
training scenario; however, the former is more stable as the
diversity of words is significantly smaller than that of word
compositions of sentences.

3.3.4 Score Functions

The score function Sl
s indicates how likely xi is the ref-

erent given yl
s and Sl

p shows how the pair-wise visual
feature [xi,xlv] matches the relationship described in yl

p.
Formally, they are defined as the following simple two-layer
MLPs [11], [12]:

Sl
s(xi,y

l
s) = θTs1

[
L2Norm

(
θTs2xi � yl

s

)]
, (13)

Sl
p([xi,xlv],yl

p) = θTp1

[
L2Norm

(
θTp2[xi,xlv]� yl

p

)]
(14)

where the θs are the trainable parameters,� is element-wise
multiplication, L2Norm is used to normalize the vector as
unit L2 norm.

3.3.5 Leaf Case

The recursive Eq. (6) will arrive at the one layer above the
leaves, that is, when the two children nodes are words,
we may encounter extreme cases that the words cannot be
visually grounded such as “with”, “of”, and “is”, causing
difficulties in interpreting the scores Sl

s and Sl
p. Fortunately,

in these cases, the score functions defined in Eq. (13) and
(14) will calculate similar scores for each region, as none of
them is visually related to the words. As a result, accumulat-
ing such trivial scores would not affect the overall ranking
score.

When the recursion in Eq. (6) arrives at the leaves, Sls

will calculate a grounding score for an empty sentence.
Thus, we define the exit of the recursion as:

Sls(xi,Lls) = Sls(xi, φ) = 0, if l = leaf. (15)

IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2018 7

Algorithm 1: RVG-TREE GROUNDING PIPELINE

Input : Language sentence, Image features
1 Prune the language sentence;
2 Embed words into node features as Eq. (3);
3 Initialize grounding scores as Eq. (15);
4 for Each layer do
5 Find which two adjacent nodes to merge as Eq. (5);
6 Classify score node and feature node as Eq.(9);
7 Update node features as Eq. (4);
8 Update grounding scores for each node ad Eq. (6);
9 end

Output: Grounding score of root

3.4 RVG-TREE Training
The inference of the RVG-TREE model is summarized in
Algorithm 1. The model can be trained end-to-end in a su-
pervised fashion when the ground truth region xg referred
in the language L is given. To distinguish the referring
region from other regions, the model is expected to output
a high S(xg,L) for the ground-truth region and a low
S(xi,L) whenever i 6= g. Therefore, we train our model
using the following cross-entropy loss:

L(Θ) = − log
exp (S(xg,L))∑
i exp(S (xi,L))

, (16)

where Θ denotes all the trainable parameters in our model.
Note that this loss is also called the Maximum Mutual
Information (MMI) training in the pioneering work [5],
as it is the same as maximizing the mutual information
between the referent region and others (with the assumption
of a uniform prior). The purpose is to ground the referent
unambiguously by penalizing the model if it grounds other
regions with high scores. Within a similar spirit, we can
reformulate Eq. (16) into a large-margin triplet loss as in [25]
with hard-negative sample mining. However, in our exper-
iments, we observed only marginal performance gain but
more tricky learning rate adjustment. Thus, we use Eq. (16)
as the overall training objective in this paper.

3.4.1 Straight-Through Gumbel-Softmax Estimator
Note that it is prohibitive to use stochastic gradient descent
(SGD) that back-propagates gradients of Eq. (16) to update
the parameters of our model. The reason is that the gra-
dients are blocked in the steps that make discrete policies
where we greedily choose a parent node according to Eq. (5)
and decide which child is the feature node according to
Eq. (9). To bridge the gradients over the gap raised by
the discrete policies, we deploy the Straight-Through (ST)
Gumbel-Softmax estimator [15], which takes different paths
in the forward and backward propagation by replacing
the discrete argmax function with a differentiable and re-
parameterized softmax function. Formally, given unnormal-
ized probabilities {p1, . . . , pn}, a sample bi ∈ {b1, . . . , bn}
from the Gumbel-Softmax distribution is drawn by bi ∼ πi:

πi =
exp((log(pi) + gi)/τ)∑n

j=1 exp((log(pj) + gj)/τ)
, (17)

where gi = − log(−log(ui)) and ui ∼ Uniform(0, 1). gi is
called the Gumbel noise perturbing each log(pi) and τ is a

temperature parameter which diminishes to zero, a sample
from the Gumbel-Softmax distribution becomes a cold one
resembling the one-hot sample.

Then, the straight-through (ST) gradient estimator is
used as follows: in the forward propagation, bi is sampled
by argmax; in the backward propagation, bi has a continu-
ous value:

bi =

{
argmaxj bj , forward prop
πi, backward prop

. (18)

Intuitively, the estimator applies some random explorations
(controlled by ui) to select the best policy greedily in the
forward pass, and it back-propagates the errors to all poli-
cies with a scaling factor πi. Note that the noise in forward
propagation of Eq. (18) is turned off in the test phase.
Though this ST estimator is biased, it is shown to perform
well in previous work [40] and our experiments. Gumbel-
Softmax and its ST estimator is a re-parameterization trick
for feature-based random variable where the output of a
random choice is a feature while not a discrete layout.
Thanks to this trick, the ST estimator can be considered as
a soft-attention mechanism that efficiently back-propagates
errors for all possible discrete tree structures, smartly avoid-
ing from sampling the prohibitively large layout space such
as REINFORCE [28]. In our experiments, we found that
REINFORCE with Monte-Carlo sampling does not converge
with even very small learning rate such as 1e-6.

3.4.2 Supervised Pre-Training

Minimizing the loss function in Eq. (16) from scratch is
challenging: one need to simultaneously learn the all the
parameters, especially those for the tree construction and
feature/score node selection policies, which may suffer from
a weaker stability and be trapped to a local optimum,
greatly affecting the performance of our RVG-TREE. There-
fore, we would like to apply a common practice: we first
use the supervised pre-training to find a fair solution, i.e.,
a good exploitation, and then use the end-to-end straight-
through Gumbel Softmax as weakly supervised fine-tuning
to achieve better exploration. However, there is no such
an expert policy to generate a RVG-TREE like binary tree.
To tackle this challenge, we borrow a third-part toolkit:
Stanford CoreNLP (SCNLP) [41], which contains a con-
stituency parser that takes a cleaned flat sentence as input
and outputs a multi-branch constituency tree, where the
children of a node are words constituting a phrase, e.g.,
“furry black dog”. SCNLP cleans the input sentence using
pos tag before feeding it into the constituency parser by
discarding punctuations and articles that bring unnecessary
redundancy in the tree.

To transform the multi-branch constituency tree into a
binary one, we apply a simple separation rule: for a sub-
tree with n children, from left to right, we group every two
consecutive words that constitutes a sub-binary-tree, and
the left one, if any, is upgraded to be a single sub-tree with
itself as the root. For example, the five children “a”, “furry”,
“and”, “black”, “dog” are separated into “a furry”, “and
black”, and “dog”, and are further merged to “a furry and
black” and “dog”. Thus, we use this binary tree as the expert
layout to train Eq. (5) with supervision. Fig. 5 illustrates

IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2018 8

in front

human arm

behind girl

is

that

(a) Expert Tree

human arm

in front

girl

is behind

that

(b) Fine-tuned Tree

Fig. 5: Examples of binary tree structures from (a) SC-
NLP constituency parser and (b) overall fined-tuned by
Straight-Through Gumbel-Softmax estimator. We can see
that the tree structure is more meaningful after fine-
tuning.

the differences between an expert tree and a resultant tree
after fine-tuning. First, the expert rules divides the sentence
into two chuncks that are difficult for grounding: “human
arm that is behind girl” and “in front”; however, after fine-
tuning, we can construct the tree in a more meaningful way:
“human arm” that is the referent and “that is behind girl in
front” as the context to be further parsed.

4 EXPERIMENTS

We conducted extensive experiments on three benchmarks
of referring expression comprehension, i.e., grounding the
referent object described in the language. The motivation of
our experimental design is to answer the following three
questions:
• Is the tree structure better than holistic and triplet lan-

guage models?
• Is the recursive grounding score effective?
• Is RVG-TREE explainable?

4.1 Datasets
RefCOCO [16]. It contains 142,210 expressions, which are
collected using an interactive game, for 50,000 object in-
stances in 19,994 images. All expression-referent pairs in
this dataset are split into four mutually-exclusive parts:
train, validation, Test A and Test B. This dataset allots
120,624 and 10,834 pairs to the train and validation part,
respectively. Test A is alloted with 5,657 images, where each
image has multiple people and Test B contains the rest
5,095 expression-referent pairs, where each image contains
multiple objects.
RefCOCO+ [16]. It contains 141,564 referring expressions
for 49,856 referents in 19,992 images. The referring ex-
pressions are collected in the same way as RefCOCO. It
describes the referents with only appearance information by
excluding absolute location words, making it different from
RefCOCO. The train, validation, Test A, and Test B sections
mutually exclusively contain 120,191, 10,758, 5726, and 4,889
expression-referent pairs, respectively.
RefCOCOg [5]. It contains 95,010 expressions for 49,822
referents in 25,799 images. The expressions containing both
appearance and location expressions, which are collected in
a non-interactive way, are longer than those in RefCOCO
and RefCOCO+. There are two kinds of data separations for
RefCOCOg. The first one [5] has no testing split released, so

most recent works evaluate their models on the validation
section. It is worth noting that the first partition randomly
separates objects into training and validation sets, which
leads to the fact that the images in both training and val-
idation sets are not mutually exclusive. The second one [20]
randomly splits images into training, validation and testing
sets. We report our experimental results on both of them.
RefCOCOg has significantly richer language and hence is
more challenging than the previous two datasets.

4.2 Settings and Metrics
We set the length of each sentence in RefCOCO, RefCOCO+,
and RefCOCOg, to 10, 10, 20, respectively, since such lengths
can cover almost 95 percent sentences on all datasets. We use
’pad’ symbol to pad expression sequences whose lengths are
less than the set length. We use three specific vocabularies
for the three datasets and the vocabulary sizes are 1,969,
2,596, and 3,314 for RefCOCO, RefCOCO+ and RefCOCOg,
respectively. Word frequency in vocabularies was counted
in all expressions and we discarded them that appeared less
than 5 times in the entire dataset, then we replaced them
with ‘unk’ in the vocabulary. Note that these ‘unk’s were
still evaluated with the merge score in Eq. (5) and involved
in the Gumbel-Softmax in training and softmax in test with
zero-out mask, that is, the ‘unk’s were not considered in
greedy merge. We used GloVe pre-trained word vectors [36]
to initialize our word vectors. However, random initialized
word vectors did not significantly degrade the performance.

We used ROI visual features annotated by MSCOCO for
all three datasets. These ROIs are represented by 2048-d vec-
tors, which are the fc7 output of a ResNet-101 based Faster-
RCNN [35] trained on MSCOCO, 1024-d vectors, which are
the pool5 output of the same Faster-RCNN, and 5-d vectors,
which indicate the location of ROI in an image. Note that the
goal of our experiments is to diagnose the visual reasoning
capability of the grounding model, therefore, we did not use
the most recent strong visual attribute features as in [13].
However, RVG-TREE is compatible to any visual feature
input.

We used Adam [42] with initial learning rate 0.001,
α = 0.8, β = 0.999, and ε = e−8, as our optimizer.
We set 128 images to mini-batch size. For each sentence
grounding, we calculated the intersection-over-union (IoU)
of the selected bounding box with the ground-truth bound-
ing box and considered the one with IoU larger than 0.5 as
correct. We compute the fraction of correctly grounded test
expressions as the grounding accuracy (i.e., Top-1 Accuracy).

4.3 Ablative Studies
We conducted extensive ablative studies of RVG-TREE to
justify our proposed design and training strategy. The abla-
tions and their motivations are detailed as follows.
• Chain: We used BiLSTM to encode the sentence. Every

word has two representations: 1) the 2048-d concatenation
of its corresponding two-directional LSTM hidden vectors,
and 2) the 300-d word embeddings. The first represen-
tation is used to calculate the word-level soft-attentions
and then the language feature is represented as the soft-
attention weighted average of the word embeddings. This
ablation ignores the structure information of the language.

IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2018 9

• RVG-TREE-Fix: We used TreeLSTM to encode the sen-
tence. The binary tree is the constituent parsing tree result
from Stanford Parser [43]. Similar to Chain, every word
has 1) word embedding representations and 2) LSTM
hidden state representations.

• RVG-TREE-Scratch: This is the full RVG-TREE model
without the binary tree expert supervision, i.e., the tree
is constructed from scratch.

• RVG-TREE/Node: The tree is constructed in the same
way as the full RVG-TREE model. The difference is that
we ignore the first two scores in Eq. (6). We used this
ablation to justify that the node-level score is an essential
complementary to the bottom-up score accumulation.

• RVG-TREE/S: This is the RVG-TREE model without accu-
mulating the score form the score node. That is, we ignore
the Sls in Eq. (6).

• RVG-TREE/F: This is the RVG-TREE model without the
node view pairwise score Sl

p in Eq. (6). This ablation
discards the visual feature returned by the feature node.

Table 1 shows the grounding accuracies of the ablative
methods on the three benchmarks. We can have the follow-
ing observations:

1) On all datasets, RVG-TREE-Fix outperforms Chain.
This is because that the tree structure is more suitable for
language decomposition, that is, the tree sentence feature
captures more structure semantics than the holistic language
feature, especially for longer sentences such as RefCOCOg.
However, we should note that the improvement is limited.
We believe that this is due to that the RVG-TREE-Fix is
essentially still a holistic language representation as only the
root embedding is used in visual reasoning. This motivates
us to design grounding score function that exploits the tree
structure explicitly.

2) If we delete the node view score, RVG-TREE/Node
is significantly worse than the full RVG-TREE. The reasons
are two-fold: first, the node view score is an independent
score to correct, if any, wrong grounding confidence passed
from children nodes; second, the node view offers a more
comprehensive linguistic view compared to its children
view, as its related sub-sequence is a joint set of the two
children.

3) The reason why RVG-TREE/S is worse than RVG-
TREE is because the grounding score is not accumulated.
This demonstrates that compositional visual reasoning is
crucial for the task of grounding natural language.

4) Without the pairwise score calculated from the vi-
sual feature returned by the feature node, RVG-TREE/F is
inferior to RVG-TREE. This demonstrates that the pairwise
relationship is essential for distinguishing the referent from
its context. This is especially useful for longer sentences in
RefCOCOg: RVG-TREE considerably higher than its non-
pairwise counterpart RVG-TREE/F.

5) We can see that tree construction from scratch gener-
ally fails. This is not surprising as it is quite challenging to
learn language composition without any prior knowledge.
Note that this observation also agrees with many works in
reinforcement learning that requires supervised training as
the teacher forcing [34].

4.4 Comparison with State-of-the-Arts

We compared RVG-TREE with state-of-the-art referring ex-
pression grounding models published in recent years. In
light of whether the model requires language composition,
these comparing methods can be categorized as follows:
1) the resultant region is the one that can generate the
referring expression sentence with maximum probability
(by maximizing a posteriori probability), such as the pio-
neering MMI [5], Attribute [19], and the Speaker [25] and
LISTENER [25]. Though the score mechanism exploits lan-
guage composition during the sentence generation, it does
not consider the different visual regions while generation. 2)
localization based grounding methods that only use holis-
tic language features, such as NegBag [20]. 3) localization
based grounding methods that use language composition
such as CMN [11], VC [12], MAttN [13]. Note that RVG-
TREE belongs to the family of the last localization based
grounding models, but its language composition is much
more fine-grained than the previous state-of-the-arts.

4.4.1 Results on Ground-Truth Regions

From the results on RefCOCO, RefCOCO+, and RefCOCOg
in Table 3, we can see that RVG-TREE achieves the state-
of-the-art performance. We believe that the improvement
is attributed to the recursive grounding score along the
tree structure. First, on all datasets, RVG-TREE outperforms
all the other sentence generation-comprehension methods:
MMI, Attribute, Speaker, Listener, that do not consider
language structure and visual context. Second, RVG-TREE
outperforms the triplet compositional models such as CMN
and VC. The improvement is attributed to the fact that
RVG-TREE recursively applies the triplet-like grounding
score along the tree structure, and hence the grounding
confidence is more comprehensive than those methods. This
demonstrates the effectiveness of the recursive fashion of the
compositional grounding.

As shown in Fig. 6, we illustrate some qualitative cor-
rect grounding results, the learned tree structure, and their
intermediate grounding process. Each intermediate node
is visualized by the soft-attention map for the contextual
feature if it is a feature node, or the score map of regions
if it is a score node. We can see that most of the grounding
results show reasonable intermediate results. For example,
in the tree of “baseball player swinging bat at baseball”,
“baseball player” on the left sub-tree scores high value for
both of the player regions; however, by the help of the right
sub-tree “swinging bat at baseball” which scores higher
for the person who is “swinging”, RVG-TREE can pinpoint
the correct referent in the end. This is intuitively similar
to human reasoning and the purpose of using attributive
clause in English. Moreover, the classification of score and
feature node also sheds some light on the tree structure. For
example, due to that the goal is to distinguish the baseball
player, then the base player itself is working as a context
feature vector, i.e., feature node, and the score should be thus
dominated by the score node with words “swinging bat at
baseball”. If the image contains more than one object class,
the top score node is usually connected with the referent,
e.g., “backpack” and “bike”. We also note that some of the
tree structure is trivially deep, by always merging the last

IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2018 10

RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val test

Chain 80.14 80.54 79.61 65.77 66.80 60.97 72.77 71.69
RVG-TREE-Fix 81.52 80.77 80.53 66.33 68.16 62.53 73.69 73.07
RVG-TREE-Scratch 79.65 79.22 79.33 65.01 66.12 61.12 71.83 72.00
RVG-TREE/Node 82.93 82.41 82.30 67.76 69.33 64.47 74.10 74.36
RVG-TREE/S 82.24 81.12 80.91 67.32 68.87 64.05 74.21 73.18
RVG-TREE/F 82.50 81.79 81.49 67.48 69.37 64.29 74.12 73.98
RVG-TREE 83.48 82.52 82.90 68.86 70.21 65.49 76.82 75.20

TABLE 1: Top-1 Accuracy% of ablative models on the three datasets with ground-truth object bounding boxes.
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test
Chain 72.01 75.55 67.34 59.44 62.78 53.90 64.05 64.73
RVG-TREE-Fix 73.59 77.23 68.81 60.80 64.30 54.29 64.87 65.04
RVG-TREE-Scratch 71.34 74.80 67.22 59.48 62.71 53.96 63.71 63.50
RVG-TREE/Node 74.66 77.23 68.50 62.28 66.30 55.72 65.58 65.53
RVG-TREE/S 74.22 76.89 68.02 61.95 65.77 55.01 65.12 64.99
RVG-TREE/F 74.13 77.28 68.21 62.38 65.98 55.34 65.55 65.25
RVG-TREE 75.06 78.61 69.85 63.51 67.45 56.66 66.95 66.51

TABLE 2: Top-1 Accuracy% of ablative models on the three datasets with detected object bounding boxes.
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val* val test
MMI [5] - 63.15 64.21 - 48.73 42.13 62.14 - -
NegBag [20] 76.90 75.60 78.80 - - - - - 68.40
Attribute [19] - 78.85 78.07 - 61.47 57.22 69.83 - -
CMN [11] - 75.94 79.57 - 59.29 59.34 69.30 - -
VC [12] - 78.98 82.39 - 62.56 62.90 73.98 - -
Speaker [25] 79.56 78.95 80.22 62.26 64.60 59.62 72.63 71.65 71.92
Listener [25] 78.36 77.97 79.86 61.33 63.10 58.19 72.02 71.32 71.72
AccAttn [23] 81.27 81.17 80.01 65.56 68.76 60.63 73.18 - -
MAttN∗ [13] 82.06 81.28 83.20 64.84 65.77 64.55 - 75.33 74.46
RVG-TREE 79.04 78.82 80.53 62.38 62.82 61.28 72.77 72.32 71.95
RVG-TREE∗ 83.48 82.52 82.90 68.86 70.21 65.49 76.29 76.82 75.20

TABLE 3: Top-1 Accuracy% of various grounding models on the three datasets with ground-truth object bounding
boxes. ∗ indicates that this model uses res101 features.

RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val* val test

MMI [5] - 64.90 54.51 - 54.03 42.81 45.85 - -
NegBag [20] 57.30 58.60 56.40 - - - 39.50 - 49.50
Attribute [19] - 72.08 57.29 - 57.97 46.20 52.35 - -
CMN [11] - 71.03 65.77 - 54.32 47.76 57.47 - -
VC [12] - 73.33 67.44 - 58.4 53.18 62.30 - -
Speaker [25] 69.48 72.95 63.43 55.71 60.43 48.74 59.51 60.21 59.63
Listener [25] 68.95 72.95 62.98 54.89 59.61 48.44 58.32 59.33 59.21
MAttN∗ [13] 72.96 76.61 68.20 58.91 63.06 55.19 - 64.66 63.88
RVG-TREE 71.59 76.05 68.03 57.56 61.07 53.18 63.45 63.73 63.38
RVG-TREE∗ 75.06 78.61 69.85 63.51 67.45 56.66 66.20 66.95 66.51

TABLE 4: Top-1 Accuracy% of various grounding models on the three datasets with detected object bounding boxes. ∗

indicates that this model uses res101 features.

two nodes, for example, “man sitting on coach using laptop”
and “backpack of last skier”. So far, we cannot find out what
the cause is, but it seems that such trivial structures are still
reasonable for their corresponding grounding scenario.

Fig. 7 shows some failure cases of RVG-TREE performed
on RefCOCOg. We can see that most of the errors are caused
by the wrong comprehension of the nuanced visual rela-
tionships, especially those contain comparative semantics.
For the example of “girl wearing pink shirt and jeans on
bed next desk”, from the intermediate results, we are happy
to see that our model correctly grounds “pink shirt” and
“jeans” but it fails to distinguish the which girl is “on” bed
and “next” to the desk. In fact, both of the girls are “on”
and “next” visually, that is, our visual model does not fail.
However, the true semantic meaning should be “sit on”,
which is very challenging for current model to discover. This

failure may shed some lights on our future direction. As
another example, though the model successfully identifies
the “walking” out of “person walking behind bus shelter”,
its final score is lower (though close) than something that
is “behind”. This reveals some the drawback of RVG-TREE
is that more linguistic prior knowledge should be used.
For example, if we can identify the referent adjective is
“walking”, we may assign higher weights on the “walking
person” but not the background “behind”. Some failures are
due to the imperfect visual recognition models for human
actions, for example, “catching”. This kind of failures is
expected to be resolved by more fine-grained human action
recognizer using parsed human bodies.

4.4.2 Results on Detected Regions
So far, our results are on grounding tasks with ground-truth
object bounding boxes, that is, each visual region is guaran-

IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2018 11

Fig. 6: Qualitative results of correct grounding results from RefCOCOg. Red circle is the score node and black circle is
the feature node. Each node is visualized by the score map or attention map of different regions: larger transparency
indicates lower score. The ground-truth region is in green box and the result is in red box.

teed to be a valid object. Though this setting eliminates the
errors from imperfect object detection and hence allows the
algorithmic design to focus on the discrimination between
similar regions, it is not practical in real applications, where
we always use object detectors to obtain the image regions.
Therefore, it is also necessary to evaluate our methods on the
various number of detected bounding boxes using Faster-
RCNN. We followed the classic MS-COCO detection task
NMS to obtain 10 to 100 objects per image.

From Table 4, we can see that the performance of all
methods have been dropped due to the imperfect bounding
box detections. However, the observations discovered in
previous ground-truth box experiments still hold in de-
tected boxes. It is worth noting that the performance of

methods without compositional reasoning: MMI, NegBag,
Attribute, Speaker, and Listener, dropped the most. It is due
to the fact that these models only learn language and region
associations that are easily overfitted to the distribution bias
of the ground-truth bounding boxes; when our test moves
to the detected boxes, the bias no longer holds. Compared
to other compositional reasoning models: CMN, VC, and
MAttN, our RVG-TREE is better. This demonstrates the
robustness of our model to noisy visual regions.

5 CONCLUSIONS

In this paper, we propose a novel model called Recursive
Grounding Tree (RVG-TREE) that localizes the target region
by recursively accumulating the vision-language grounding

IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2018 12

Fig. 7: Qualitative results of incorrect grounding results from RefCOCOg. Red circle is the score node and black circle
is the feature node. Each node is visualized by the score map or attention map of different regions: larger transparency
indicates lower score. The ground-truth region is in green box and the result is in red box.

scores. To the best of our knowledge, this is the first vi-
sual grounding model that leverages the entire language
compositions. RVG-TREE learns to compose a binary tree
structure, with proper supervised pre-training, and the final
grounding score of the root is defined in a recursive way
that accumulates grounding confidence from two children
sub-trees. This process is fully differentiable. We conducted
extensive ablative, quantitative, and qualitative experiments
on three benchmark datasets of referring expression ground-
ing. Results demonstrate the effectiveness of RVG-TREE in
visual reasoning: 1) the complex language composition is
decomposed into easier sub-grounding tasks, and 2) the
overall grounding score can be easily explained by in-
specting the intermediate grounding results along the tree.
Therefore, compared to existing models, RVG-TREE is more
compositional and explainable.

The key limitation of RVG-TREE is that the linguistic
prior knowledge is not fully exploited. However, acquiring
such knowledge is essentially important for machine com-
prehension of natural language and then grounding it based
on the comprehension. Although we have demonstrated
that using constituency parsers as prior knowledge can
boost the performance, it is not sufficient. In future, we are
going to add more linguistic cues into the recursive ground-
ing score function to guide the confidence accumulation.

REFERENCES

[1] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
CVPR, 2017.

[2] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Lawrence Zit-
nick, and D. Parikh, “Vqa: Visual question answering,” in ICCV,
2015.

[3] A. Das, S. Kottur, J. M. Moura, S. Lee, and D. Batra, “Learning co-
operative visual dialog agents with deep reinforcement learning,”
in ICCV, 2017.

[4] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra,
“Embodied question answering,” in CVPR, 2018.

[5] J. Mao, J. Huang, A. Toshev, O. Camburu, A. L. Yuille, and
K. Murphy, “Generation and comprehension of unambiguous
object descriptions,” in CVPR, 2016.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016.

[7] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur,
“Recurrent neural network based language model,” in ACISCA,
2010.

[8] R. Hu, P. Dollár, K. He, T. Darrell, and R. Girshick, “Learning to
segment every thing,” in CVPR, 2018.

[9] H. Zhang, Z. Kyaw, S.-F. Chang, and T.-S. Chua, “Visual transla-
tion embedding network for visual relation detection,” in CVPR,
2017.

[10] B. A. Plummer, A. Mallya, C. M. Cervantes, J. Hockenmaier, and
S. Lazebnik, “Phrase localization and visual relationship detection
with comprehensive image-language cues,” in Proc. ICCV, 2017.

[11] R. Hu, M. Rohrbach, J. Andreas, T. Darrell, and K. Saenko, “Mod-
eling relationships in referential expressions with compositional
modular networks,” CVPR, 2017.

[12] H. Zhang, Y. Niu, and S.-F. Chang, “Grounding referring expres-
sions in images by variational context,” in CVPR, 2018.

[13] L. Yu, Z. Lin, X. Shen, J. Yang, X. Lu, M. Bansal, and T. L. Berg,
“Mattnet: Modular attention network for referring expression
comprehension,” in CVPR, 2018.

[14] J. Choi, K. M. Yoo, and S.-g. Lee, “Learning to compose task-
specific tree structures,” in AAAI, 2018.

[15] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” in ICLR, 2017.

[16] L. Yu, P. Poirson, S. Yang, A. C. Berg, and T. L. Berg, “Modeling
context in referring expressions,” in ECCV, 2016.

[17] L. Wang, Y. Li, and S. Lazebnik, “Learning deep structure-
preserving image-text embeddings,” in CVPR, 2016.

[18] A. Rohrbach, M. Rohrbach, R. Hu, T. Darrell, and B. Schiele,
“Grounding of textual phrases in images by reconstruction,” in
ECCV, 2016.

[19] J. Liu, L. Wang, M.-H. Yang et al., “Referring expression generation
and comprehension via attributes,” in CVPR, 2017.

IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2018 13

[20] V. K. Nagaraja, V. I. Morariu, and L. S. Davis, “Modeling context
between objects for referring expression understanding,” in ECCV,
2016.

[21] R. Hu, H. Xu, M. Rohrbach, J. Feng, K. Saenko, and T. Darrell,
“Natural language object retrieval,” in CVPR, 2016.

[22] R. Luo and G. Shakhnarovich, “Comprehension-guided referring
expressions,” in CVPR, 2017.

[23] C. Deng, Q. Wu, Q. Wu, F. Hu, F. Lyu, and M. Tan, “Visual
grounding via accumulated attention,” in CVPR, 2018.

[24] Z. Yu, J. Yu, C. Xiang, Z. Zhao, Q. Tian, and D. Tao, “Rethink-
ing diversified and discriminative proposal generation for visual
grounding,” in IJCAI, 2018.

[25] L. Yu, H. Tan, M. Bansal, and T. L. Berg, “A joint speakerlistener-
reinforcer model for referring expressions,” in CVPR, 2017.

[26] S. R. Bowman, J. Gauthier, A. Rastogi, R. Gupta, C. D. Manning,
and C. Potts, “A fast unified model for parsing and sentence
understanding,” in ACL, 2016.

[27] D. Yogatama, P. Blunsom, C. Dyer, E. Grefenstette, and W. Ling,
“Learning to compose words into sentences with reinforcement
learning,” ICLR, 2017.

[28] R. J. Williams, “Simple statistical gradient-following algorithms
for connectionist reinforcement learning,” Machine learning, 1992.

[29] J. Maillard, S. Clark, and D. Yogatama, “Jointly learning sentence
embeddings and syntax with unsupervised tree-lstms,” arXiv
preprint arXiv:1705.09189, 2017.

[30] A. Williams, A. Drozdov, and S. R. Bowman, “Learning to parse
from a semantic objective: It works. is it syntax?” arXiv preprint
arXiv:1709.01121, 2017.

[31] F. Xiao, L. Sigal, and Y. Jae Lee, “Weakly-supervised visual
grounding of phrases with linguistic structures,” in CVPR, 2017.

[32] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L.
Zitnick, and R. Girshick, “Clevr: A diagnostic dataset for com-
positional language and elementary visual reasoning,” in CVPR,
2017.

[33] J. Johnson, B. Hariharan, L. van der Maaten, J. Hoffman, L. Fei-
Fei, C. L. Zitnick, and R. B. Girshick, “Inferring and executing
programs for visual reasoning.” in ICCV, 2017.

[34] R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko, “Learn-
ing to reason: End-to-end module networks for visual question
answering,” in ICCV, 2017.

[35] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in NIPS,
2016.

[36] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in EMNLP, 2014.

[37] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” TSP, 1997.

[38] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng,
and C. Potts, “Recursive deep models for semantic compositional-
ity over a sentiment treebank,” in EMNLP, 2013.

[39] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in CVPR, 2015.

[40] J. Chung, S. Ahn, and Y. Bengio, “Hierarchical multiscale recurrent
neural networks,” in ICLR, 2017.

[41] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and
D. McClosky, “The stanford corenlp natural language processing
toolkit,” in ACL, 2014.

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in ICLR, 2015.

[43] M. Zhu, Y. Zhang, W. Chen, M. Zhang, and J. Zhu, “Fast and
accurate shift-reduce constituent parsing,” in ACL, 2013.

Richang Hong (M11) received the Ph.D. degree
from the University of Science and Technology
of China, Hefei, China, in 2008. He is currently
a Professor with the Hefei University of Technol-
ogy, Hefei. His research interests include mul-
timedia content analysis and social media, in
which he has co-authored over 100 publications.
He is a member of the ACM and an Executive
Committee Member of the ACM SIGMM China
Chapter. He was a recipient of the Best Paper
Award at the ACM Multimedia 2010, the Best

Paper Award at the ACM ICMR 2015, and the Honorable Mention of the
IEEE TRANSACTIONS ON MULTIMEDIA Best Paper Award 2015. He
was an Associate Editor of the IEEE Multimedia Magazine, Information
Sciences and Signal Processing, Elsevier, and the Technical Program
Chair of the MMM 2016, ICIMCS 2017, and PCM 2018.

Daqing Liu received the B.E. degree in Automa-
tion from Chang’an University, Xi’an, China, in
2016, and currently working toward the Ph.D.
degree from the Department of Automation, Uni-
versity of Science and Technology of China,
Hefei, China. His research interests mainly in-
clude computer vision and multimedia.

Xiaoyu Mo received the B.E. degree from
Yangzhou University, Yangzhou, China, in 2015,
the M.E. degree from Huazhong University
of Science and Technology, Wuhan, China,
in 2017. He was a research associate with
Nanyang Technological University, Singapore,
from Sep. 2017 to Jan. 2019. He is now a Ph.D.
student in Nanyang Technological University. His
research interests include consensus and au-
tonomous vehicles.

Xiangnan He is currently a professor with the
University of Science and Technology of China
(USTC). He received his Ph.D. in Computer
Science from National University of Singapore
(NUS) in 2016, and did postdoctoral research
in NUS until 2018. His research interests span
information retrieval, data mining, and multi-
media analytics. He has over 50 publications
appeared in several top conferences such as
SIGIR, WWW, and MM, and journals including
TKDE, TOIS, and TMM. His work on recom-

mender systems has received the Best Paper Award Honourable Men-
tion in WWW 2018 and ACM SIGIR 2016. Moreover, he has served
as the PC member for several top conferences including SIGIR, WWW,
MM, KDD etc., and the regular reviewer for journals including TKDE,
TOIS, TMM, TNNLS etc.

IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. 14, NO. 8, AUGUST 2018 14

Hanwang Zhang is currently an Assistant Pro-
fessor at Nanyang Technological University, Sin-
gapore. He was a research scientist at the De-
partment of Computer Science, Columbia Uni-
versity, USA. He has received the B.Eng (Hons.)
degree in computer science from Zhejiang Uni-
versity, Hangzhou, China, in 2009, and the Ph.D.
degree in computer science from the National
University of Singapore in 2014. His research
interest includes computer vision, multimedia,
and social media. Dr. Zhang is the recipient of

the Best Demo runner-up award in ACM MM 2012, the Best Student
Paper award in ACM MM 2013, and the Best Paper Honorable Mention
in ACM SIGIR 2016and TOMM best paper award 2018. He is also the
winner of Best Ph.D. Thesis Award of School of Computing, National
University of Singapore, 2014.

	Introduction
	Related Work
	Grounding Natural Language
	Learning Tree Structures for Language

	RvG-Tree Model
	Problem Definition
	RvG-Tree Construction
	Recursive Grounding
	Score Node & Feature Node Definition
	Score Node & Feature Node Classification
	Language Feature
	Score Functions
	Leaf Case

	RvG-Tree Training
	Straight-Through Gumbel-Softmax Estimator
	Supervised Pre-Training

	Experiments
	Datasets
	Settings and Metrics
	Ablative Studies
	Comparison with State-of-the-Arts
	Results on Ground-Truth Regions
	Results on Detected Regions

	Conclusions
	References
	Biographies
	Richang Hong
	Daqing Liu
	Xiaoyu Mo
	Xiangnan He
	Hanwang Zhang

