
TEM: Tree-enhanced Embedding Model for
Explainable Recommendation

Xiang Wang
National University of Singapore

xiangwang@u.nus.edu

Xiangnan He∗
National University of Singapore

xiangnanhe@gmail.com

Fuli Feng
National University of Singapore

fulifeng93@gmail.com

Liqiang Nie
ShanDong University
nieliqiang@gmail.com

Tat-Seng Chua
National University of Singapore

dcscts@nus.edu.sg

ABSTRACT
While collaborative filtering is the dominant technique in
personalized recommendation, it models user-item interactions
only and cannot provide concrete reasons for a recommendation.
Meanwhile, the rich side information affiliated with user-item
interactions (e.g., user demographics and item attributes), which
provide valuable evidence that why a recommendation is suitable
for a user, has not been fully explored in providing explanations.

On the technical side, embedding-based methods, such as
Wide&Deep and neural factorization machines, provide state-of-
the-art recommendation performance. However, they work like a
black-box, for which the reasons underlying a prediction cannot
be explicitly presented. On the other hand, tree-based methods
like decision trees predict by inferring decision rules from data.
While being explainable, they cannot generalize to unseen feature
interactions thus fail in collaborative filtering applications.

In this work, we propose a novel solution named Tree-enhanced
Embedding Method that combines the strengths of embedding-
based and tree-based models. We first employ a tree-based model
to learn explicit decision rules (aka. cross features) from the
rich side information. We next design an embedding model
that can incorporate explicit cross features and generalize to
unseen cross features on user ID and item ID. At the core
of our embedding method is an easy-to-interpret attention
network, making the recommendation process fully transparent
and explainable. We conduct experiments on two datasets of tourist
attraction and restaurant recommendation, demonstrating the
superior performance and explainability of our solution.

CCS CONCEPTS
• Information systems → Recommender systems;

KEYWORDS
Explainable Recommendation, Tree-basedModel, Embedding-based
Model, Neural Attention Network

∗Xiangnan He is the corresponding author.

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04.
https://doi.org/10.1145/3178876.3186066

ACM Reference Format:
Xiang Wang, Xiangnan He, Fuli Feng, Liqiang Nie, and Tat-Seng Chua. 2018.
TEM: Tree-enhanced Embedding Model for Explainable Recommendation.
In WWW 2018: The 2018 Web Conference, April 23–27, 2018, Lyon, France.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3178876.3186066

1 INTRODUCTION
Personalized recommendation is at the core of many online
customer-oriented services, such as E-commerce, social media, and
content-sharingwebsites. Technically speaking, the recommendation
problem is usually tackled as a matching problem, which aims to
estimate the relevance score between a user and an item based
on their available profiles. Regardless of the application domain, a
user’s profile usually consists of an ID (to identify which specific
user) and some side information like age, gender, and income
level. Similarly, an item’s profile typically contains an ID and some
attributes like category, tags, and price.

Collaborative filtering (CF) is the most prevalent technique
for building a personalized recommendation system [21, 26]. It
leverages users’ interaction histories on items to select the relevant
items for a user. From thematching view, CF uses the ID information
only as the profile for a user and an item, and forgoes other
side information. As such, CF can serve as a generic solution
for recommendation without requiring any domain knowledge.
However, the downside is that it lacks necessary reasoning or
explanations for a recommendation. Specially, the explanation
mechanisms are either because your friend also likes it (i.e., user-
based CF [24]) or because the item is similar to what you liked before
(i.e., item-based CF [35]), which are too coarse-grained and may be
insufficient to convince users on a recommendation [14, 39, 45].

To persuade users to perform actions on a recommendation, we
believe it is crucial to provide more concrete reasons in addition
to similar users or items. For example, we recommend iPhone 7
Rose Gold to user Emine, because we find females aged 20-25 with
a monthly income over $10, 000 (which are Emine’ demographics)
generally prefer Apple products of pink color. To supercharge a
recommender systemwith such informative reasons, the underlying
recommender shall be able to (i) explicitly discover effective cross
features from the rich side information of users and items, and
(ii) estimate user-item matching score in an explainable way.
In addition, we expect the use of side information will help in
improving the performance of recommendation.

Nevertheless, none of existing recommendation methods can
satisfy the above two conditions together. In the literature,

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1543

https://doi.org/10.1145/3178876.3186066
https://doi.org/10.1145/3178876.3186066

embedding-based methods such as matrix factorization [23, 26,
34] is the most popular CF approach, owing to the strong
power of embeddings in generalizing from sparse user-item
relations. Many variants have been proposed to incorporate side
information, such as factorization machine (FM) [32], Neural
FM [20], Wide&Deep [12], and Deep Crossing [36]. While these
methods can learn feature interactions from raw data, we argue
that the cross feature effects are only captured in a rather implicit
way during the learning process; and most importantly, the cross
features cannot be explicitly presented [36]. Moreover, existing
works on using side information have mainly focused on the cold-
start issue [5], leaving the explanation of recommendation relatively
less touched.

In this work, we aim to fill the research gap by developing a
recommendation solution that is both accurate and explainable.
By accurate, we expect our method to achieve the same level
of performance as existing embedding-based approaches [32, 36].
By explainable, we would like our method to be transparent in
generating a recommendation and is capable of identifying the key
cross features for a prediction. Towards this end, we propose a
novel solution named Tree-enhanced Embedding Method (TEM),
which combines embedding-based methods with decision tree-
based approaches. First, we build a gradient boosting decision trees
(GBDT) on the side information of users and items to derive effective
cross features. We then feed the cross features into an embedding-
based model, which is a carefully designed neural attention network
that reweights the cross features according to the current prediction.
Owing to the explicit cross features extracted by GBDTs and the
easy-to-interpret attention network, the overall prediction process
is fully transparent and self-explainable. Particularly, to generate
reasons for a recommendation, we just need to select the most
predictive cross features based on their attention scores.

As a main technical contribution, this work presents a new
scheme that unifies the strengths of embedding-based and tree-
based methods for recommendation. Embedding-based methods
are known to have strong generalization ability [12, 20], especially
in predicting the unseen crosses on user ID and item ID (i.e.,
capturing the CF effect). However, when operating on the rich
side information, embedding-based methods lose the important
property of explainability — the cross features that contribute most
to the prediction cannot be revealed. On the other hand, tree-based
methods predict by generating explicit decision rules, making the
resultant cross features directly interpretable. While such a way is
highly suitable for learning from side information, it fails to predict
unseen cross features, thus being unsuitable for incorporating
user ID and item ID. To build an explainable recommendation
solution, we combine the strengths of embedding-based and tree-
based methods in a natural and effective manner, which to our
knowledge has never been studied before.

2 PRELIMINARY
We first review the embedding-based model, discussing its difficulty
in supporting explainable recommendation. We then introduce the
tree-based model and emphasize its explanation mechanism.

2.1 Embedding-based Model
Embedding-based model is a typical example of representation
learning [6], which aims to learn features from raw data for
prediction. Matrix Factorization (MF) [26] is a simple yet effective
embedding-based model for collaborative filtering, for which the
predictive model can be formulated as:

ŷMF (u, i) = b0 + bu + bi + p⊤u qi , (1)

where b0,bu ,bi are bias terms, pu ∈ Rk and qi ∈ Rk are the
embedding vector for user u and item i , respectively, and k denotes
the embedding size.

In addition to IDs, users (items) are always associated with
abundant side information, which may contain relevance signal
of user preferences on items. Since most of these information are
categorical variables, they are usually converted to real-valued
feature vector via one-hot encoding [20, 32]. Let xu and xi denote
the feature vector for user u and item i , respectively. To predict yui ,
a typical solution is to concatenate xu and xi , i.e., x = [xu ,xi] ∈
Rn , which is then fed into a predictive model. FM [5, 32] is a
representative of such predictive models, which is formulated as:

ŷFM (x) = w0 +
n∑
t=1

wtxt +
n∑
t=1

n∑
j=t+1

v⊤t vj · xtx j , (2)

where w0 and wt are bias terms, vt ∈ Rk and vj ∈ Rk denote
the embedding for feature t and j, respectively. We can see that
FM associates each feature with an embedding, modeling the
interaction of every two (nonzero) features via the inner product
of their embeddings. If only user ID and item ID are used as the
features of x, FM can exactly recover the MF model; by feeding
IDs and side features together into x, FM models all pairwise (i.e.,
second-order) interactions among IDs and side features.

With the recent advances of deep learning, neural network
methods have also been employed to build embedding-based
models [12, 20, 36]. Specially, Wide&Deep [12] and Deep
Crossing [36] learn feature interactions by placing a multi-layer
perceptron (MLP) above the concatenation of the embeddings of
nonzero features; the MLP is claimed to be capable of learning any-
order cross features. Neural FM (NFM) [20] first applies a bilinear
interaction pooling on feature embeddings (i.e.,

∑n
t=1
∑n
j=t+1 xtvt ⊙

x jvj) to learn second-order feature interactions, followed by a MLP
to learn high-order features interactions.

Despite the strong representation ability of existing embedding-
based methods in modeling side information, we argue that they
are not suitable for providing explanations. FM models second-
order feature interactions only and cannot capture high-order cross
feature effects; moreover, it uniformly considers all second-order
interactions and cannot distinguish which interactions are more
important for a prediction [46]. While neural embedding models are
able to capture high-order cross features, they are usually achieved
by a nonlinear neural network above feature embeddings. The
neural network stacks multiple nonlinear layers and is theoretically
guaranteed to fit any continuous function [25], however, the fitting
process is opaque and cannot be explained. To the best of our
knowledge, there is no way to extract explicit cross features from
the neural network and evaluate their contributions to a prediction.

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1544

૙࢞ ൏ ૙ࢇ

૜࢞ ൏ ૜ࢇ

૛࢞ ൌ ૛ࢇ

૞࢞ ൏ ૞ࢇ

࢙ࢋ࢟ ࢕࢔

࢙ࢋ࢟

࢙ࢋ࢟

࢕࢔࢙ࢋ࢟

࢕࢔

࢕࢔

૙ࡸ࢜ ૚ࡸ࢜ ૛ࡸ࢜ ૜ࡸ࢜ ૝ࡸ࢜

w૙ w૚ w૛ w૜ w૝

ଵ࢞ ൏ ଵࢇ

ସ࢞ ൌ ସࢇ

࢙ࢋ࢟ ࢕࢔

࢙ࢋ࢟ ࢕࢔

૞ࡸ࢜ ૟ࡸ࢜ ૠࡸ࢜

w૞ w૟ wૠ

ܳଵ ܳଶ

Figure 1: An example of a GBDT model with two subtrees.

2.2 Tree-based Model
In contrast to representation learning methods, tree-based models
do not learn features for prediction. Instead, they perform prediction
by learning decision rules from data. We represent the structure
of a tree model as Q = {V, E}, whereV and E denote the nodes
and edges, respectively. The nodes in V have three types: the
root node v0, the internal (aka. decision) nodes VT , and the leaf
nodesVL . Figure 1 illustrates an example of a decision tree model.
Each decision node vt splits a feature xt with two decision edges:
for numerical feature (e.g., time), it chooses a threshold aj and
splits the feature into [xt < aj] and [xt ≥ aj]; for binary feature
(e.g., features after one-hot encoding on a categorical variable), it
determines whether the feature equals to a value or not, i.e., the
decision edges are like [xt = aj] and [xt ̸= aj].

A path from the root node to a leaf node forms a decision rule,
which can also be seen as a cross feature, such as in Figure 1 the
leaf node vL2 represents [x0 < a0]&[x3 ≥ a3]&[x2 ̸= a2]. Each
leaf node vLi has a valuewi , denoting the prediction value of the
corresponding decision rule. Given a feature vector x, the treemodel
first determines which leaf node x falls on, and then takes the value
of the leaf node as the prediction: ŷDT (x) = wQ (x), where Q maps
the feature vector to the leaf node based on the tree structure. We
can see that under such a prediction mechanism, the leaf node can
be regarded as the most prominent cross feature for the prediction.
As such, the tree-based model is self-interpretable by nature.

As one single tree may not be expressive enough to capture
complex patterns in data, a more widely used solution is to build
a forest, such as gradient boosting decision trees (GBDT) which
boosts the prediction by leveraging multiple additive trees:

ŷGBDT (x) =
S∑
s=1

ŷDTs (x), (3)

where S denote the number of additive trees, and ŷDTs denotes the
predictive model for the s-th tree. We can see that GBDT extracts S
rules to predict the target value of a given feature vector, whereas a
single tree model predicts based on one rule. As such, GBDT usually
leads to better accuracy than a single tree model [7, 18].

While tree-based models are effective in generating interpretable
predictions from rich side features, they suffer from generalizing
to unseen feature interactions. As such, tree-based models cannot
be used for collaborative filtering which needs to model the sparse
ID features of users and items.

We can see that the pros and cons of embedding-based and tree-
based models complement each other, in terms of generalization
ability and interpretability. Hence, to build an effective and
explainable recommender systems, a natural solution is to combine
the two types of models.

3 TREE-ENHANCED EMBEDDING METHOD
We first present our tree-enhanced embedding method (TEM) that
unifies the strengths of MF for sparse data modeling and GBDTs
for cross feature learning. We then discuss the explainability and
scrutability and analyze the time complexity of TEM.

3.1 Predictive Model
Given a useru, an item i , and their feature vectors [xu , xi] = x ∈ Rn

as the input, TEM predicts the user-item preference as,

ŷT EM (u, i, x) = b0 +
n∑
t=1

btxt + fΘ(u, i, x), (4)

where the first two terms model the feature biases similar to that of
FM, and fΘ(u, i, x) is the core component of TEM with parameters
Θ to model the cross feature effect, which is shown in Figure 2. In
what follows, we elaborate the design of fΘ step by step.

3.1.1 Constructing Cross Features. Instead of embedding-
based methods that capture the cross feature effect opaquely during
the learning process, our primary consideration is to make the
cross features explicit and explainable. A widely used solution in
industry is to manually craft cross features, and then feed them
into an interpretable method that can learn the importance of
each cross feature, such as logistic regression. For example, we
can cross all values of feature variables age and traveler style to
obtain the second-order cross features like [age≥ 18] & [traveler
style=friends]. However, the difficulty of such method is that it is not
scalable. For modeling higher-order feature interactions, one has to
cross multiple feature variables together, resulting in exponential
increase in complexity. With a large space of billions of features,
even performing feature selection [43] is highly challenging, not
to mention learning from them. Although through careful feature
engineering such as crossing important variables or values only [12],
one can control the complexity to a certain extent, it requires
extensive domain knowledge to develop an effective solution and
is not easily domain-adaptable.

To avoid such labor-intensive feature engineering, we leverage
the GBDT (briefed in Section 2.2), to automatically identify useful
cross features. While GBDT is not specially designed for extracting
cross features, considering that a leaf node represents a cross feature
and the trees are constructed by optimizing predictions on historical
interactions, it is reasonable to think that the leaf nodes are useful
cross features for prediction.

Formally, we denote a GBDT as a set of decision trees, Q =
{Q1, · · · ,QS }, where each tree maps a feature vector x to a leaf
node (with a weight); we use Ls to denote the number of leaf nodes
in the s-th tree. Distinct from the original GBDT that sums over
the weights of activated leaf nodes as the prediction, we keep the
activated leaf nodes as cross features, feeding them into a neural
attention model for more effective learning. We represent the cross
features as amulti-hot vector q, which is a concatenation ofmultiple
one-hot vectors (where a one-hot vector encodes the activated leaf
node of a tree):

q = GBDT (x|Q) = [Q1(x), · · · ,QS (x)]. (5)

Here q is a sparse vector, where an element of value 1 indicates an
activated leaf node and the number of nonzero elements in q is S .

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1545

' (&%)& *") +"&,%%-$#+

./")0$!"'

$1/

./")

 !!)$2.!"/

$!"'

 !!)$2.!"/

 !"#$%&' (')*

+&(, +&(- +&(.

3
4
5
6
/

7
!!
"
#
!$
*
"
&8
'
2
"
1
1
$#
+

& ()&)(

/& 0(1, 1-

 !!"#!$%#&#"!

23 2,

1.

Figure 2: Illustrative architecture of our TEM framework.
Let the size of q be L =

∑
s Ls . For example, in Figure 1, there are two

subtrees Q1 and Q2 with 5 and 3 leaf nodes, respectively. If x ends
up with the second and third leaf node of Q1 and Q2, respectively,
the resultant multi-hot vector q should be [0, 1, 0, 0, 0, 0, 0, 1]. Let
the semantics of feature variables (x0 to x5) and values (a0 to a5) of
Figure 1 be listed in Table 1, then q implies the two cross features
extracted from x:
(1) vL1 : [Age< 18] & [Country ̸=France] & [Restaurant Tag= French].
(2) vL7 : [Expert Level≥ 4] & [Traveler Style̸=Luxury Traveler].

3.1.2 Prediction with Cross Features. With the explicit
cross features, we can employ sparse linear methods to learn the
importance of each cross feature, and select the top cross features as
the explanation for a prediction. The prior work by Facebook [22]
has demonstrated the effectiveness of such a solution, which feeds
the leaf nodes of a GBDT into a logistic regression (LR) model. We
term this solution as GBDT+LR. Although GBDT+LR is capable of
learning the importance of cross features, it assigns a cross feature
the same weight for predictions of all user-item pairs, which limits
the modeling fidelity. In real applications, it is common that users
with similar demographics may choose similar items, but they are
driven by different intents or reasons.

As an example, let (u, i, x) and (u ′, i ′, x′) be two positive instances.
Assuming x equals to x′, then the two instances will have the same
cross features from GBDT. Since each cross feature has a global
weight independent of the training instance in LR, the predictions
of (u, i) and (u ′, i ′) will be interpreted as the same top cross features,
regardless of the possibility that the actual reasons behind u chose
i and u ′ chose i ′ are different. To ensure the expressiveness, we
believe it is important to score the cross features differently for
different user-item pairs, i.e., personalizing the weights on cross
features rather than using a global weighting mechanism.

Recent advances on neural recommender models such as
Wide&Deep [12] and NFM [20] can allow personalized importance
on cross features. This is achieved by embedding user ID, item ID,
and cross features together into a shared embedding space, and

Table 1: The semantics of feature variables and values of the
GBDT model in Figure 1.

x0 ← Age x1 ← Expert Level x2 ← Restaurant Tag
a0 ← 18 a1 ← 4 a2 ← French

x3 ←Country x4 ←Traveler Style x5 ← Price
a3 ← France a4 ← Luxury Traveler a5 ← $$$$

then performing nonlinear transformations (e.g., by fully connected
layers) on the embedding vectors. The strong representation power
of nonlinear hidden layers enables complicated interactions among
user ID, item ID, and cross features to be captured. As such, a
cross feature can impact differently when predicting with different
user-item pairs. However, such methods cannot interpret the
personalized weights of cross features, due to the hardly explainable
nonlinear hidden layers. As such, for explainability purpose we
have to discard the use of fully connected hidden layers, although
they are helpful to a model’s performance in existing methods.

To develop a method that is both effective and explainable, we
introduce two essential ingredients of our TEM — embedding
and attention. Specifically, we first associate each cross feature
with an embedding vector, allowing the correlations among cross
features to be captured. We then devise an attention mechanism
to explicitly model the personalized weights on cross features.
Lastly, the embeddings of user ID, item ID, and cross features are
integrated together for the final prediction. The use of embedding
and attention endows TEM strong representation ability and
guarantees the effectiveness, even though it is a shallow model
without any fully connected hidden layer. In what follows, we
elaborate the two key ingredients of TEM.

Embedding. Given the cross feature vector q generated by GBDT,
we project each cross feature j into an embedding vector vj ∈ Rk ,
where k is the embedding size. After the operation, we obtain a
set of embedding vectorsV = {q1v1, · · · ,qLvL }. Since q is a sparse
vector with only a few nonzero elements, we only need to include
the embeddings of nonzero features for a prediction, i.e.,V = {vl }
where ql ̸= 0. We use pu and qi to denote the user embedding and
item embedding, respectively.

There are two advantages of embedding the cross features into a
vector space, compared to LR that uses a scalar to weight a feature.
First, learning with embeddings can capture the correlations among
features, e.g., frequently co-occurred features may yield similar
embeddings, which can alleviate the data sparsity issue. Second, it
provides a means to seamlessly integrate the output of GBDT with
the embedding-based collaborative filtering, being more flexible
than a late fusion on the model predictions (e.g., boosting GBDT
with FM as used in [49]).

Attention. Inspired by the previous work [9, 46], we explicitly
capture the varying importance of cross features on prediction
by assigning an attentive weight for the embedding of each cross
feature. Here we consider two ways to aggregate the embeddings of
cross features, average pooling and max pooling, to obtain a unified
representation e(u, i,V) for cross features:




eavд (u, i,V) = 1
|V |

∑
vl ∈V wuilvl ,

emax (u, i,V) = max_poolvl ∈V (wuilvl),
(6)

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1546

 !!"#!$%#&#"!

/&

0(

14

9
%
#
9

!"
#

!"

+&(4

Figure 3: Illustration of the attention network in TEM.

wherewuil is a trainable parameter denoting the attentive weight
of the l-th cross feature in constituting the unified representation,
and importantly, it is personalized to be dependent with (u, i).

While the above solution seems to be sound and explainable, the
problem is that for (u, i) pairs that have never co-occurred before,
the attentive weight wuil cannot be estimated. In addition, the
parameter space ofw is too large — there are U IL weights in total
(whereU , I , and L denote the number of users, items, and the size of
q, respectively), which is impractical to materialize for real-world
applications. To address the generalization and scalability issues, we
consider modelingwuil as a function dependent on the embeddings
of u, i , and l , rather than learningwuil freely from data. Inspired
by the recent success [4, 9, 46] that uses multi-layer perceptrons
(MLPs) to learn the attentive weights, we similarly use a MLP to
parameterizewuil . We call the MLP as the attention network, which
is defined as:




w ′uil = h⊤ReLU (W ([pu ⊙ qi , vl]) + b)

wuil =
exp(w ′uil)∑

(u,i,x)∈O exp(w ′uil)
, (7)

where W ∈ Ra×2k and b ∈ Ra denote the weight matrix and
bias vector of the hidden layer, respectively, and a controls the
size of the hidden layer. The vector h ∈ Ra projects the hidden
layer into the attentive weight for output. We used the rectifier
as the activation function and normalized the attentive weights
using softmax. Figure 3 illustrates the architecture of our attention
network, and we term a as the attention size.

Final Prediction. Having established the attentive embeddings,
we obtain a unified embedding vector e(u, i,V) for cross features.
To incorporate the CF modeling, we concatenate e(u, i,V) with
pu ⊙ qi , which reassembles MF to model the interaction between
user ID and item ID. We then apply a linear regression to project
the concatenated vector to the final prediction. This leads to the
predictive model of our TEM as:

ŷT EM (u, i, x) = b0 +
m∑
t=1

btxt + r⊤1 (pu ⊙ qi) + r⊤2 e(u, i,V), (8)

where r1 ∈ Rk and r2 ∈ Rk are the weights of the final linear
regression layer. As can be seen, our TEM is a shallow and
additive model. To interpret a prediction, we can easily evaluate the
contribution of each component. We use TEM-avg and TEM-max
to denote the TEM that uses eavд (·) and emax (·), respectively, and
discuss their explanation schemes in Section 3.3.1.

3.2 Learning
Similar to the recent work on neural collaborative filtering [21],
we solve the item recommendation task as a binary classification
problem. Specifically, an observed user-item interaction is assigned

to a target value 1, otherwise 0. We optimize the pointwise log loss,
which forces the prediction score ŷui to be close to the target yui :

L =
∑

(u,i,x)∈O
−yui logσ (ŷui) − (1 − yui) log (1 − σ (ŷui)), (9)

where σ is the activation function to restrict the prediction to
be in (0, 1), set as sigmoid σ (x) = 1/(1 + e−x) in this work. The
regularization terms are omitted here for clarity (we tuned the
L2 regularization in experiments when overfitting was observed).
Note that optimizing other objective functions are also technically
viable, such as the pointwise regression loss [20, 41, 42] and ranking
loss [9, 33, 44]. In this work, we use the log loss as a demonstration
of our TEM.

Since TEM consists of two cascaded models, both them
are trained to optimize the same log loss. We first train the
GBDT, which greedily fits additive trees on the whole training
data [10]. After obtaining the cross features from GBDT, we
optimize the embedding-based prediction model using the mini-
batch Adagrad [16]. Each mini-batch contains stochastic positive
instances and randomly paired negative instances. Same as the
optimal setting of [21], we pair one positive instance with four
negative instances, which empirically shows good performance.

3.3 Discussion
3.3.1 Explainability&Scrutability. The two poolingmethods

as defined in Equation (6) aggregate the embeddings of cross
features differently, resulting in different explanation mechanisms
for TEM-avg and TEM-max. Specifically, the average pooling
linearly combines all embeddings, with each embedding a weight
to denote its importance. As such, thewuil of eavд (u, i,V) can be
directly used to select top cross features (i.e., decision rules) as the
explanation of a prediction [4, 46]. In contrast, the max pooling is
a nonlinear operator, where the d-th dimension of emax (u, i,V) is
set to be that of the l-th cross feature embedding with the maximum
wuilvld . As such, atmostk cross feature embeddingswill contribute
to the unified representation1, and we can treat the max pooling
as performing feature selection on cross features in the embedding
space. To select top cross features for explanation, we need to track
the embeddings of which cross features contribute most during the
max pooling, rather than simply relying on wuil . We conduct a
case study on explainability of TEM in Section 4.4.1.

Empowered by the transparency in generating a recommendation,
TEM allows the recommender to be scrutable [39]. If a user is
unsatisfied with a recommendation due to improper reasons, TEM
allows a user to correct the reasoning process to obtain refreshed
recommendations. As Equation (8) shows, we can easily obtain
the contribution of each cross feature on the final prediction, e.g.,
yuil = wuil r⊤2 vl for TEM-avg. When getting feedback from a
user (i.e., the signals indicating what she likes or not), we can
localize the cross features that contain the signals, and then modify
the corresponding attentive weights. As such, we can refresh
the predictions and re-rank the recommendation list without re-
training the whole model. We use a case study to demonstrate the
scrutability of TEM in Section 4.4.2.

1Typically, the embedding size k is smaller than the number of trees S in GBDT.

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1547

3.3.2 TimeComplexityAnalysis. Aswe separate the learning
procedure into two phases, we can calculate the computational costs
step by step. Generally, the time complexity of building a GBDT
model is O(SD ∥x∥0 logn), where S is the number of trees, D is the
maximum depth of trees, n is the number of training instances,
and ∥x∥0 denotes the average number of non-zero entries in the
training instances. Moreover, we can speed up the greedy algorithm
in GBDT by using the block structure like XGBoost [10].

For the embedding component, calculating the attention score
for each (u, i, l) costs time O(2ak), where a and k are the attention
and embedding size, respectively. Accordingly, adopting the pooling
operation for each (u, i) costs O(2akS). As such, to train the
embedding model of TEM over n training instances, the complexity
is O(2akSn). Therefore, the overall time complexity for training
TEM from scratch is O(SD ∥x∥0 logn + 2akSn).

4 EXPERIMENTS
As the key contribution of the work is to generate accurate and
explainable recommendations, we conduct experiments to answer
the following questions:

(1) RQ1: Compared with the state-of-the-art recommendation
methods, can our TEM achieve comparable accuracy?

(2) RQ2: Can TEM make the recommendation results easy-to-
interpret by using cross features and the attention network?

(3) RQ3: How do different hyper-parameter settings (e.g., the
number of trees and embedding size) affect TEM?

4.1 Data Description
We collect data from two populous cities in TripAdvisor2,
London (LON) and New York City (NYC), and separately perform
experiments of tourist attraction and restaurant recommendation.
We term the two datasets as LON-A and NYC-R respectively. In
particular, we crawl 1, 001 tourist attractions (e.g., British Museum)
from LON with the corresponding ratings written by 17, 238 users
from August 2014 to August 2017; similarly, 8, 791 restaurants (e.g.,
The River Cafe) and 16, 015 users are obtained fromNYC. The ratings
are transformed into binary implicit feedback as ground truth,
indicating whether the user has interacted with the specific item.
To ensure the quality of the data, we retain users/items with at least
five ratings only. The statistics of two datasets are summarized
in Table 2. Moreover, we have collected the natural or system-
generated labels that are affiliated with users and items as their
side information (aka. profile). Particularly, the profile of each user
includes gender (e.g., Female), age (e.g., 25-34), and traveler styles
(e.g., Foodie and Beach Goer); meanwhile, the side information of
an item consists of attributes (e.g., Art Museum and French), tags
(e.g., Rosetta Stone and Madelenies), and price (e.g., $$$). We have
summarized all types of user/item side information in Table 3.

For each dataset, we holdout the latest 20% interaction history of
each user to construct the test set, and randomly split the remaining
data into training (70%) and validation (10%) sets. The validation
set is used to tune hyper-parameters and the final performance
comparison is conducted on the test set.

2https://www.tripadvisor.com.

Table 2: Statistics of the datasets.
Dataset User# User Feature# Item# Item Feature# Interaction#
LON-A 16, 315 3, 230 953 4, 731 136, 978
NYC-R 15, 232 3, 230 6, 258 10, 411 129, 964

Table 3: Statistics of the side information, where the
dimension of each feature is shown in parentheses.

Side Information Features (Category#)

LON-A/NYC-R User Feature Age (6), Gender (2), Expert Level (6),
Traveler Styles (18), Country (126), City (3, 072)

LON-A Attraction Feature Attributes (89), Tags (4, 635), Rating (7)
NYC-R Restaurant Feature Attributes (100), Tags (10, 301), Price (3), Rating (7)

4.2 Experimental Settings
4.2.1 Evaluation Protocols. Given one positive user-item

interaction in the testing set, we pair it with 50 negative instances
that the user did not consume before. Then each method outputs
prediction scores for these 51 instances. To evaluate the prediction
scores, we adopt two metrics: the error-based log loss and the
ranking-aware ndcg@K .
• logloss: logarithmic loss [36] measures the probability that one
predicted user-item interaction diverges from the ground truth.
A lower logloss indicates a better performance.
• ndcg@K : ndcg@K [17, 19, 21, 29, 30] assigns the higher
importance to the items within the topK positions of the ranking
list. A higher ndcg@K reflects a better accuracy of getting top
ranks correct.

We report the average scores for all testing instances, where logloss
indicates the generalization ability of each model, and ndcg reflects
the performance for top-K recommendation. The same settings
apply for the hyper-parameter tuning on the validation set.

4.2.2 Baselines. We compare our TEM with the following
methods to justify the rationality of our proposal:
• XGBoost [10]: This is the state-of-the-art tree-based method
that captures complex feature dependencies (aka. cross features).
• GBDT+LR [22]: This method feeds the cross features extracted
from GBDT into the logistic regression, aiming to refine the
weights for each cross feature.
• GB-CENT [49]: Such state-of-the-art boosting method combines
the prediction results from MF and GBDT. To adjust GB-CENT to
perform our tasks, we input the ID features and side information
to MF and GBDT, respectively.
• FM [32]: This is a generic embedding-based model that encodes
side information and IDs with embedding vectors. It implicitly
models all the second-order cross features via the inner product
of any two feature embeddings.
• NFM [20]: Neural FM is the state-of-the-art factorization model
under the neural network framework. It stacks multiple fully
connected layers above the inner products of feature embeddings
to capture higher-order and nonlinear cross features. Specially,
we employed one hidden layers for NFM as suggested in [20].

4.2.3 Parameter Settings. For a fair comparison, we optimize
all the methods with the same objective function of Equation (9).
We implement our proposed TEM3 using Tensorflow4. We use

3https://github.com/xiangwang1223/TEM.
4https://www.tensorflow.org.

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1548

https://www.tripadvisor.com
https://github.com/xiangwang1223/TEM
https://www.tensorflow.org

Table 4: Performance comparison between all the methods,
where the significance test is based on logloss of TEM-max.

Dataset LON-A NYC-R
Method logloss ndcg@5 p-value logloss ndcg@5 p-value
XGBoost 0.1251 0.6785 8e−5 0.1916 0.3943 4e−5
GBDT+LR 0.1139 0.6790 2e−4 0.1914 0.3997 4e−4
GB-CENT 0.1246 0.6784 6e−5 0.1918 0.3995 4e−5

FM 0.0939 0.6809 1e−2 0.1517 0.4018 5e−5
NFM 0.0892 0.6812 2e−2 0.1471 0.4020 8e−4

TEM-avg 0.0818 0.6821 − 0.1235 0.4019 −

TEM-max 0.0791 0.6828 − 0.1192 0.4038 −

XGBoost5 to implement the tree-based components of all methods,
where the number of trees and the maximum depth of trees is
searched in {100, 200, 300, 400, 500} and {3, 4, 5, 6}, respectively. For
all embedding-based components, we test the embedding size of
{5, 10, 20, 40}, and empirically set the attention size same as the
embedding size. All embedding-based methods are optimized using
the mini-batch Adagrad for a fair comparison, where the learning
rate is searched in {0.005, 0.01, 0.05, 0.1, 0.5}. Moreover, the early
stopping strategy is performed, where we stopped training if the
logloss on the validation set increased for four successive epoches.
Without special mention, we show the results of tree number 500,
maximum depth 6, and embedding size 20, and more results of the
key parameters are shown in Section 4.5.

4.3 Performance Comparison (RQ1)
We start by comparing the performance of all the methods. We then
explore how the cross features affect the recommendation results.

4.3.1 Overall Comparison. Table 4 displays the performance
comparison w.r.t. logloss and ndcg@5 on LON-A and NYC-R
datasets. We have the following observations:
• XGBoost achieves poor performance since it treats sparse
IDs as ordinary features and hardly derives useful cross
features based on the sparse data. It hence fails to capture the
collaborative filtering effect. Moreover, it cannot generalize to
unseen feature dependencies. GBDT+LR slightly outperforms
XGBoost, verifying the feasibility of treating cross features as
the input of one classifier and revising the weight of each cross
feature.
• The performance of GB-CENT indicates that such boosting
may be insufficient to fully facilitate information propagation
between two models. Note that to reduce the computational
complexity, the modified GB-CENT only conducts GBDT over all
the instances, rather than performing GBDT over the supporting
instances of each categorical feature as suggested in [49]. Such
modification may contribute to the unsatisfactory performance.
• When performing our recommendation tasks, FM and NFM,
outperform XGBoost, GBDT+LR, and GB-CENT. It is reasonable
since they are good at modeling the sparse interactions and the
underlying second-order cross features. NFM benefits from the
higher-order and nonlinear feature correlations by leveraging
neural networks, thus leads to better performance than FM.
• TEM achieves the best performance, substantially outperforming
NFM w.r.t. logloss and obtaining a comparable ndcg@5. By
integrating the embeddings of cross features, TEM can achieve

5https://xgboost.readthedocs.io.

the comparable expressiveness to NFM. While NFM treats all
feature interactions equally, TEM can employ the attention
networks on identifying the personalized attention of each cross
feature. We further conduct one-sample t-tests to verify that all
improvements are statistically significant with p-value < 0.05.

4.3.2 Effect of Cross Features. To analyze the effect of cross
features, we consider the variants that remove cross feature
modeling, termed as FM-c, NFM-c, TEM-avg-c, and TEM-max-c.
For FM and NFM, one user-item interaction is represented only by
the sum of the user and item ID embeddings and their attribute
embeddings, without any interactions among features. For TEM,
we skip the cross feature extraction and direct feed into the raw
features. As shown in Figure 4, we have the following findings:
• For all methods, removing cross feature modeling hurts the
expressiveness adversely and degrades the recommendation
performance. FM-c and NFM-c assume one user/item and her/its
attributes are linearly independent, which fail to encode any
interactions between them in the embedding space. Taking
advantages of the attention network, TEM-avg-c and TEM-max-
c still model the interactions between IDs and attributes, and
achieve better representation ability than FM-c and NFM-c.
• As Figures 4(a) and 4(b) demonstrate, TEM significantly
outperforms FM and NFM by a large margin w.r.t. logloss,
verifying the substantial influence of explicit cross feature
modeling. While FM and NFM consider all the underlying
feature correlations, neither of them explicitly presents the cross
features or identifies the importance of each cross feature. This
makes them work as a black-box and hurts their explainability.
Therefore, the improvement achieved by TEM again verifies the
effectiveness of the explicit cross features refined from the tree-
based component.
• Lastly, while exhibiting the lowest logloss, TEM achieves only
comparable performance w.r.t. ndcg@5 to that of NFM, as shown
in Figures 4(c) and 4(d). It indicates the unsatisfied generalization
ability of TEM, since the cross features extracted from GBDT
only reflect the feature dependencies observed in the dataset and
consequently TEM cannot generalize to the unseen rules. We
leave the further exploration of the generalization ability of our
TEM as the future work.

4.4 Case Studies (RQ2)
Apart from being comparable at predictive accuracy, the key
advantage of TEM over other methods is that its learning process is
transparent and easily explainable. Towards this end, we show
examples drawn from TEM-avg on LON-A to demonstrate its
explainability and scrutability.

4.4.1 Explainability. To demonstrate the explainability of
TEM, we focus on a sampled user, whose profile is {age: 35-49,
gender: female, country: the United Kingdom, city: London, expert
level: 4, traveler styles: Art and Architecture Lover, Peace and Quite
Seeker, Family Vacationer, Urban Explorer}; meanwhile, we randomly
select five attractions, {i31: National Theatre, i45: The View form the
Shard, i49: The London Eye, i93: Camden Street Art Tours, i100: Royal
opera House}, from the user’s holdout testing set. Figure 5 visualizes
the learning results, where a row represents an attraction, and a

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1549

https://xgboost.readthedocs.io

(a) logloss on LON-A (b) logloss on NYC-R (c) ndcg@5 on LON-A (d) ndcg@5 on NYC-R
Figure 4: Performance comparison of logloss w.r.t. the cross features on LON-A and NYC-R datasets.

column represents a cross feature (we sample five cross features
which are listed in Table 5). The left heat map presents her attention
scores over the five sampled cross features and the right displays
the contributions of these cross features for the final prediction.

We first focus on the left heat map of attention scores. Examining
the attention scores of a row, we can explain the recommendation
for the corresponding attraction using the top cross features. For
example, we recommend The View from the Shard (i.e., the second
row i45) for the user mainly because of the dominant cross feature
v130, evidenced by the highest attention score of 1 (cf. the entry
at the second row and the third column). Based on the attention
scores, we can attribute her preferences on The View from the Shard
to her special interests in the item aspects of Walk Around (from
v130), Top Deck & Canary Wharf (from v22), and Camden Town
(from v148). To justify the rationality of the reasoning, we further
check the user’s visiting history, finding that the three item aspects
have frequently occurred in her historical items.

In right heat map of Figure 5, an entry denotes the contribution
of the corresponding cross feature (i.e., y′uil = wuil r⊤2 vl) to the
final prediction Jointly analyzing the left and right heat maps, we
find that the attention scorewuil is generally consistent with yuil ,
which contains useful cues about the user’s preference. Based on

Figure 5: Visualization of cross feature attentions produced
by TEM-avg on LON-A. An entry of the left and right heat
map visualizes the attention valuewuil and its contribution
to the final prediction, i.e.,wuil r⊤2 vl , respectively.

Table 5: Descriptions of the cross features in Figure 5.
ID Description of Cross Features shown in Figure 5

v1
[User Country=UK] & [User Style=Art and Architecture Lover]
⇒ [Item Attribute=Concerts and Shows] & [Item Tag=Imelda Staunton]

v22
[User Age=35-49] & [User Country=UK]
⇒ [Item Tag=Camden Town] & [Item Rating=4.0]

v130
[User Age̸= 25-34] & [User Gender=Female] & [User Style=Peace and Quiet Seeker]
⇒ [Item Attribute=Sights & Landmarks] & [Item Tag=Walk Around]

v148
[User Age̸= 50-64] & [User Country̸=USA]
⇒ [Item Tag=Top Deck & Canary Wharf]

v336
[User Age=35-49] & [User Country=UK] & [User Style=Art and Architecture Lover]
⇒ [Item Tag=Royal Opera House] & [Item Tag=Interval Drinks]

such outcome, we can utilize the attention scores of cross features
to explain a recommendation (e.g., the user prefers i45 owing to
the top rules of v130 and v148 weighted with personalized attention
scores of 1 and 0.33). This case demonstrates TEM’s capability
of providing more informative explanations according to a user’s
preferred cross features, which we believe are better than mere
labels or similar user/item list.

4.4.2 Scrutability. Apart from making the recommendation
process transparent, our TEM can further allow a user to correct
the process, so as to refresh the recommendation as she desires.
This property of adjusting recommendation is known as the
scrutability [19, 39]. As for TEM, the attention scores of cross
features serve as a gateway to exert control on the recommendation
process. We illustrate it using another sampled user in Table 6.

The profile of this user indicates that she enjoys the traveler
style of Urban Explorer most; moreover, most attractions in the
historical interactions of her are tagged with Sights & Landmarks,
Points of Interest and Neighborhoods. Hence, TEM detects such
frequent co-occurred cross features and accordingly recommends
some attractions like Old Compton Street and The Mall to her.
Assuming that the user attempts to scrutinize TEM and would
like to visit some attractions tagged with Garden that are suitable
for the Nature Lover. Towards this end, we assign the cross features
containing [User Style=Nature Lover] & [Item Attribute=Garden]
with a higher attentive weight, and then get the predictions of TEM
to refresh the recommendations. In the adjusted recommendation
list, the Greenwich Foot Tunnel, Covent Garden, and Kensington
Gardens are ranked at the top positions. Therefore, based on the
transparency and simulated scrutability, we believe that our TEM
is easy-to-interpret, explainable and scrutable.

4.5 Hyper-parameter Studies (RQ3)
We empirically study the influences of several factors, such as the
number of trees and the embedding size, on our TEM method.

4.5.1 Impact of Tree Number. The number of trees in TEM
indicates the coverage of cross features, reflecting how much useful

Table 6: Scrutable recommendation for a sampled user on
LON-A, where the first row and second row list the original
and adjusted recommended attractions, respectively.

Top Ranked Recommendation List on LON-A

1. Original 1. London Fields Park, 2. Old Compton Street, 3. The Mall,
4. West End, 5. Millennium Bridge

2. Adjusted 1. London Fields Park, 2. Greenwich Foot Tunnel, 3. Covent Garden,
4. Kensington Gardens, 5. West End

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1550

(a) logloss vs. tree number S (b) logloss vs. embedding size k
Figure 6: Performance comparison of logloss w.r.t. the tree
number S and the embedding size k .
information is derived from the datasets. Figure 6(a) presents the
performance w.r.t. logloss by varying the tree number S . We can see
the logloss of TEM gradually decreases with more trees, whereas
the performance is generally improved. Using a tree number of
400 and 500 leads to the best performance on NYC-R and LON-A,
respectively. When the tree number exceeds the optimal settings
(e.g., S equals to 500 on NYC-R), the logloss increases, which may
suffer from overfitting. This emphasizes the significance of the tree
settings, which is consistent with [22, 49]

4.5.2 Impact of Embedding Size. The empirical results
displayed in Figure 6(b) indicates the substantial influence of
embedding size upon TEM. Enlarging the embedding size, TEM
benefits from more powerful representations of the user-item pairs.
Moreover, TEM-max shows consistent improvement over TEM-avg
in most cases. We attributed such improvement to the nonlinearity
achieved by the max pooling operation, which can select most
informative cross features out, as discussed in Section 3.1.2.
However, the oversized embedding may cause overfitting and
degrade the performance, which is consistent with [20, 44]

5 RELATEDWORK
We can roughly divide explanation styles into similarity-based
and content-based categories. The similarity-based methods [1, 2]
present explanations as a list of most similar users or items. For
example, Behnoush et al. [1] used Restricted Boltzmann Machines
to compute the explainability scores of the items in the top-K
recommendation list. While the similarity-based explanation can
serve as a generic solution for explaining a CF recommender, the
drawback is that it lacks concrete reasoning.

Content-based works have considered various side information,
ranging from item tags [38, 40], social relationships [31, 37],
contextual reviews written by users [13, 15, 28, 31, 48] to knowledge
graphs [3, 8, 47].

Item Tags. To explain a recommendation, the work [40]
considered the matching between the relevant tags of an item and
the preferred tags of the user.

Social Relations. Considering the user friendships in social
networks, [37] proposed a generative model to investigate the
effects of social explanations on user preferences.

Contextual Reviews. Zhang et al. [48] developed an explicit
factor model, which incorporated user sentimentsw.r.t. item aspects
as well as the user-item ratings, to facilitate generating aspect-
based explanations. Similarly, He et al. [19] extracted item aspects
from user reviews and modeled the user-item-aspect relations
in a hybrid collaborative filtering model. More recently, Ren et

al. [31] involved the viewpoints, a tuple of user sentiment and item
aspect, and trusted social relations in a latent factor model to boost
recommendation performance and present personalized viewpoints
as explanations.

Knowledge Graphs. Knowledge graphs show great potential
on explainable recommendation. Yu et al. [47] introduced a meta-
path-based factor model that paths learned from an information
graph can enhance the user-item relations and further provide
explainable reasoning. Recently, Alashkar et al. [3] integrated
domain knowledge represented as logic-rules with the neural
recommendation method.

Despite the promising attempts achieved, most previous works
treat the extracted feature (e.g., item aspect, user sentiment, or
relationship) as an individual factor in factor models, same as the
IDs. As such, little attention has been paid to discover the effects of
cross features (or feature combinations) explicitly.

In terms of techniques, existing works have also considered
combining tree-based and embedding-based models, among which
the most popular method is boosting [11, 27, 49]. These solutions
typically perform a late fusion on the prediction of two kinds of
models. GB-CENT proposed in [49] composes of embedding and
tree components to achieve the merits of both models. Particularly,
GB-CENT achieves CF effect by conducting MF over categorical
features; meanwhile, it employs GBDT on the supporting instances
of numerical features to capture the nonlinear feature interactions.
Ling et al. [27] shows that boosting neural networks with GBDT
achieves the best performance in the CTR prediction. However,
these boosting methods only fuse the outputs of different models
and may be insufficient to fully propagate information between
tree-based and embedding-basedmodels. Distinct from the previous
works, our TEM treats the cross features extracted from GBDT as
the input of embedding-based model, facilitating the information
propagation between twomodels. More importantly, the main focus
of TEM is to provide explanations for a recommendation, rather
than only for improving the performance.

6 CONCLUSION
In this work, we proposed a tree-enhanced embedding method
(TEM), which seamlessly combines the generalization ability of
embedding-based models with the explainability of tree-based
models. Owing to the explicit cross features extracted from tree-
based part and the easy-to-interpret attention network, the whole
prediction process of our solution is fully transparent and self-
explainable. Meanwhile, TEM can achieve comparable performance
as the state-of-the-art recommendation methods.

In future, we will extend our TEM in three directions. First,
we attempt to jointly learn the tree-based and embedding-based
models, rather than separately modelling two components. This can
facilitate the information propagation between two components.
Second, we consider other context information, such as time,
location, and user sentiments, to further enrich our explainability.
Third, we will explore the effectiveness of involving knowledge
graphs and logic rules into our TEM.
Acknowledgement This research is part of NExT++ project,
supported by the National Research Foundation, Prime Minister’s
Office, Singapore under its IRC@Singapore Funding Initiative.

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1551

REFERENCES
[1] Behnoush Abdollahi and Olfa Nasraoui. 2016. Explainable Restricted Boltzmann

Machines for Collaborative Filtering. (2016).
[2] Behnoush Abdollahi and Olfa Nasraoui. 2017. Using Explainability for

Constrained Matrix Factorization. In RecSys. 79–83.
[3] Taleb Alashkar, Songyao Jiang, ShuyangWang, and Yun Fu. 2017. Examples-Rules

Guided Deep Neural Network for Makeup Recommendation. In AAAI. 941–947.
[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine

translation by jointly learning to align and translate. In ICLR.
[5] Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. 2017. A

Generic Coordinate Descent Framework for Learning from Implicit Feedback. In
WWW. 1341–1350.

[6] Y. Bengio, A. Courville, and P. Vincent. 2013. Representation Learning: A Review
and New Perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence 35, 8 (2013), 1798–1828.

[7] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32.
[8] Rose Catherine and William W. Cohen. 2016. Personalized Recommendations

using Knowledge Graphs: A Probabilistic Logic Programming Approach. In
RecSys. 325–332.

[9] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-
Seng Chua. 2017. Attentive Collaborative Filtering: Multimedia Recommendation
with Item- and Component-Level Attention. In SIGIR. 335–344.

[10] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In SIGKDD. 785–794.

[11] Tianqi Chen, Linpeng Tang, Qin Liu, Diyi Yang, Saining Xie, Xuezhi Cao,
Chunyang Wu, Enpeng Yao, Zhengyang Liu, Zhansheng Jiang, et al. 2012.
Combining factorization model and additive forest for collaborative followee
recommendation. KDD CUP (2012).

[12] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In DLRS. 7–10.

[13] Zhiyong Cheng, Ying Ding, Lei Zhu, andMohan Kankanhalli. 2018. Aspect-Aware
Latent Factor Model: Rating Prediction with Ratings and Reviews. InWWW.

[14] Zhiyong Cheng and Jialie Shen. 2016. On Effective Location-Aware Music
Recommendation. TOIS 34, 2 (2016), 13:1–13:32.

[15] Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alexander J. Smola, Jing Jiang, and
Chong Wang. 2014. Jointly modeling aspects, ratings and sentiments for movie
recommendation (JMARS). In KDD. 193–202.

[16] John C. Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive Subgradient
Methods for Online Learning and Stochastic Optimization. JMLR 12 (2011),
2121–2159.

[17] Fuli Feng, Xiangnan He, Yiqun Liu, Liqiang Nie, and Tat-Seng Chua. 2018.
Learning on Partial-Order Hypergraphs. InWWW.

[18] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[19] Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. 2015. TriRank: Review-
aware Explainable Recommendation by Modeling Aspects. In CIKM. 1661–1670.

[20] Xiangnan He and Tat-Seng Chua. 2017. Neural Factorization Machines for Sparse
Predictive Analytics. In SIGIR. 355–364.

[21] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. InWWW. 173–182.

[22] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine
Atallah, Ralf Herbrich, Stuart Bowers, and Joaquin Quiñonero Candela. 2014.
Practical Lessons from Predicting Clicks on Ads at Facebook. In ADKDD. 5:1–5:9.

[23] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast
Matrix Factorization for Online Recommendation with Implicit Feedback. In
SIGIR. 549–558.

[24] Jonathan L Herlocker, Joseph A Konstan, and John Riedl. 2000. Explaining
collaborative filtering recommendations. In CSCW. 241–250.

[25] K. Hornik, M. Stinchcombe, and H. White. 1989. Multilayer Feedforward
Networks Are Universal Approximators. Neural Networks 2, 5 (1989), 359–366.

[26] Yehuda Koren and Robert Bell. 2015. Advances in collaborative filtering. In
Recommender systems handbook. 77–118.

[27] Xiaoliang Ling, Weiwei Deng, Chen Gu, Hucheng Zhou, Cui Li, and Feng Sun.
2017. Model Ensemble for Click Prediction in Bing Search Ads. InWWW. 689–
698.

[28] Julian J. McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics:
understanding rating dimensions with review text. In RecSys. 165–172.

[29] Liqiang Nie, Meng Wang, Zheng-Jun Zha, and Tat-Seng Chua. 2012. Oracle in
Image Search: A Content-Based Approach to Performance Prediction. TOIS 30, 2
(2012), 13:1–13:23.

[30] Liqiang Nie, Shuicheng Yan, Meng Wang, Richang Hong, and Tat-Seng Chua.
2012. Harvesting visual concepts for image search with complex queries. In MM.
59–68.

[31] Zhaochun Ren, Shangsong Liang, Piji Li, Shuaiqiang Wang, and Maarten de
Rijke. 2017. Social Collaborative Viewpoint Regression with Explainable
Recommendations. InWSDM. 485–494.

[32] Steffen Rendle. 2010. Factorization machines. In ICDM. 995–1000.
[33] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI. 452–
461.

[34] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010.
Factorizing Personalized Markov Chains for Next-basket Recommendation. In
WWW. 811–820.

[35] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. InWWW. 285–295.

[36] Ying Shan, T. Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and JC Mao. 2016.
Deep Crossing: Web-Scale Modeling Without Manually Crafted Combinatorial
Features. In KDD. 255–262.

[37] Amit Sharma and Dan Cosley. 2013. Do social explanations work?: studying and
modeling the effects of social explanations in recommender systems. InWWW.
1133–1144.

[38] Nava Tintarev. 2007. Explanations of recommendations. In RecSys. 203–206.
[39] Nava Tintarev and Judith Masthoff. 2011. Designing and evaluating explanations

for recommender systems. Recommender Systems Handbook (2011), 479–510.
[40] Jesse Vig, Shilad Sen, and John Riedl. 2009. Tagsplanations: explaining

recommendations using tags. In IUI. 47–56.
[41] Meng Wang, Weijie Fu, Shijie Hao, Hengchang Liu, and Xindong Wu. 2017.

Learning on Big Graph: Label Inference and Regularization with Anchor
Hierarchy. TKDE 29, 5 (2017), 1101–1114.

[42] MengWang, Weijie Fu, Shijie Hao, Dacheng Tao, and XindongWu. 2016. Scalable
Semi-Supervised Learning by Efficient Anchor Graph Regularization. TKDE 28,
7 (2016), 1864–1877.

[43] Suhang Wang, Charu Aggarwal, and Huan Liu. 2017. Randomized Feature
Engineering As a Fast and Accurate Alternative to Kernel Methods. In SIGKDD.
485–494.

[44] Xiang Wang, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. 2017. Item Silk
Road: Recommending Items from Information Domains to Social Users. In SIGIR.
185–194.

[45] Xiang Wang, Liqiang Nie, Xuemeng Song, Dongxiang Zhang, and Tat-Seng Chua.
2017. Unifying Virtual and Physical Worlds: Learning Toward Local and Global
Consistency. TOIS. 36, 1 (2017), 4:1–4:26.

[46] Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua.
2017. Attentional Factorization Machines: Learning the Weight of Feature
Interactions via Attention Networks. In IJCAI. 3119–3125.

[47] Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi
Khandelwal, Brandon Norick, and Jiawei Han. 2014. Personalized entity
recommendation: a heterogeneous information network approach. In WSDM.
283–292.

[48] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping
Ma. 2014. Explicit factor models for explainable recommendation based on
phrase-level sentiment analysis. In SIGIR. 83–92.

[49] Qian Zhao, Yue Shi, and Liangjie Hong. 2017. GB-CENT: Gradient Boosted
Categorical Embedding and Numerical Trees. InWWW. 1311–1319.

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1552

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Embedding-based Model
	2.2 Tree-based Model

	3 Tree-enhanced Embedding Method
	3.1 Predictive Model
	3.2 Learning
	3.3 Discussion

	4 Experiments
	4.1 Data Description
	4.2 Experimental Settings
	4.3 Performance Comparison (RQ1)
	4.4 Case Studies (RQ2)
	4.5 Hyper-parameter Studies (RQ3)

	5 Related Work
	6 Conclusion
	References

