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Outline of Tutorial

• Unified view of matching in search and recommendation
• Part 1: Traditional Approaches to Matching
• Part 2: Deep Learning Approaches to Matching
• Summary
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Overview of Web Search Engine
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User intent is explicitly reflected in query: 
- Keywords, Question

Query

Relevant 
webpages

Web Search 
Engine Information and 

knowledge base

Content is in
- Webpages, images, …

Key challenge: query-document semantic gap

Information pull: a user pulls information by making a specific request



Example of Query-Document Mismatch

Query Document Term 
matching

Semantic 
matching

seattle best hotel seattle best hotels no yes
pool schedule swimmingpool schedule no yes
natural logarithm 
transformation

logarithm transformation partial yes

china kong china hong kong partial no
why are windows so 
expensive

why are macs so expensive partial no
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Same Search Intent Different Query Representations
Example: “Distance between Sun and Earth”
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Same Search Intent Different Query Representations
Example: “Youtube”
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Overview of Recommendation Engine

User Interest is implicitly reflected in:
- Interaction history
- Demographics 
- Contexts

User, Contexts 
(Query)

Items of Interest 
(Documents)

Recommendation 
Engine Item Corpus

Items can be: 
- Products, News, Movies, 

Videos, Friends …

Key challenge: user-item semantic gap
- Even severe than search, since user and item are two different 
types of entities and are represented by different features

Information push: the system pushes information to a user by guessing the user interest



Example of User-Item Semantic Gap
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Movie Recommendation

?
User Profile (query):
- User ID
- Rating history
- Age, Gender
- Income level
- Time of the day

…….

Item Profile (document):
- Item ID
- Description
- Category
- Price
- Image

…….

There may be no overlap between user features and item features
Matching cannot be done on the superficial feature level!



Information Providing Mechanisms of Search and 
Recommendation (Hector et al., CACM’ 11)

Search Recommendation
Delivery model Pull Push or pull
Beneficiary User User and provider
Unexpected good? No Yes
Collective knowledge Maybe Maybe
Query available Yes Maybe
Context dependent Maybe Maybe
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Unified View on Matching in Search and 
Recommendation (Hector et al, CACM’11)
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Information objects

User information Content: documents, items, products etc. 

Search Mechanism Recommendation Mechanism

matching

Search results

Recommendations

query user history

user location

Information needs and context

. . . 

Difference for search and recommendation: features used for matching! 



Semantic Gap is Biggest Challenge in 
both Search and Recommendation

Query-document Mismatch
• Same intent can be 

represented by different 
queries (representations)

• Search is still mainly based 
on term level matching

• Query document mismatch 
occurs, when searcher and 
author use different 
representations

User-item Semantic Gap
• Features are used to 

represent a user and an item 
may be totally different (e.g., 
ID feature)

• Even when they partially 
overlap in features, it is 
insensible to conduct direct 
matching
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Machine Learning for Matching
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• Using relations in data for 
learning the matching 
function

• Training data 
– Queries and documents (users 

and items) represented with 
feature vectors or ID’s

– Target can be binary or 
numerical values

fM (q, d) or P (r|q, d)

{(qi, di, ri)}Ni=1
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Organization of the Tutorial

• Unified view of matching in search and recommendation (Jun Xu)
• Part 1: Traditional Approaches to Matching

– Traditional matching models for search (Jun Xu)
– Traditional matching models for recommendation (Xiangnan He)

• Part 2: Deep Learning Approaches to Matching
– Overview (Jun Xu)
– Deep matching models for search (Jun Xu)
– Deep matching models for recommendation (Xiangnan He)

• Summary (Xiangnan He)
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Outline of Tutorial
• Unified view of matching in search and recommendation
• Part 1: Traditional Approaches to Matching

– Traditional matching models for search 
– Traditional matching models for recommendation

• Part 2: Deep Learning Approaches to Matching
• Summary
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QUERY-DOCUMENT MATCHING
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Key Factors for Query-Document Matching

• Bridging the semantic gap between words

– Semantically similar words: famous ~  popular, Chinese ~ China

• Capturing order of words

– N-grams: “down the ages” ~ “down the ages”

– N-terms: “noodles and dumplings” ~ “dumplings and noodles”

……
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Query: 
Down the ages noodles and 

dumplings were famous Chinese 

food 

Document: 
... down the ages dumplings 

and noodles were popular in 

China … 



Information from Choice of Words 
and Order of Words (Ross, ’02)

• Assume: 
– Size of vocabulary = 10,000
– Average sentence length = 20

• Rough contributions of information in bits
– From the selection of words: log2(100002)
– From the order of words: log2(20!)

• “Over 80% of the potential information in 
language being in the choice of words 
without regard to the order in which they 
appear ”
– 80%: choice of words
– 20%: order of words
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80%

20%

Choice of words Order of words



Traditional Approaches to 
Query-Document Semantic Matching

• Matching by query formulation
• Matching with term dependency
• Matching with topic model
• Matching with translation model
• Matching in latent space model
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Traditional Matching Models for Search

• Matching with 
machine translation: 
mapping document to 
query space 

• Matching in latent 
space: mapping query 
and document into a 
latent space
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Mapping
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MATCHING WITH TRANSLATION MODEL
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Translation

q

d T

Document space

query space



Statistical Machine Translation (SMT)

• Given a sentence C in source language, 
translates it into sentence E in target language

!∗ = argmax)* !|,
• Linear combination of features

* !|, = 1
. ,, ! exp2

3
43ℎ ,, !

!∗ = argmax)2
3
43ℎ ,, !
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Word-based Model: IBM Model One
(Brown et al., 1993)

• Generating target sentence
– Choose length of target sentence I
– For each position !(! = 1, 2,⋯ , ()

• Choose position * in source sentence +
• Generate target word ,- according to . ,- /0

. 1|+ = 3
4 + 1 67-89

6
:

08;

<
. ,-|/0
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C: <NULL>  � �� � �

E: the house is very small
. small|�

i:      1         2        3      4          5

j:         0             1         2         3      4



Statistical Machine Translation for 
Query-Document Matching

• Translating document d to query q 
• Matching degree: translation probability P(q|d)
• Key difference from conventional translation model
– Translation within the same language (need to handle self-

translation) 
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Matching with Word-based Translation Models

• Basic model
! "|$ =&

'∈"
! )|$ =&

'∈"
*

+∈$
! )|, ! ,|-

• Smoothing to avoid zero translation probability (Berger & 
Lafferty ‘99)

! "|$ =&
'∈"

.! )|/ + 1 − . *
+∈$

! )|, ! ,|-

• Adding self-translation (Gao et al., ‘10)
! "|$ =&

'∈"
.! )|/ + 1 − . 3! )|$ − 1 − 3 *

+∈$
! )|, ! ,|-
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translation probability Document language model

background language model

unsmoothed document language model



Bridging the Semantic Gap between Words
• Translation matrix can bridge the semantic gap 

between query words and document words

25From Berger & Lafferty, ‘99



Capturing the Proximity 

• Word-based models cannot capture the proximity

! "|$ =&
'∈"

! )|$ =&
'∈"

*
+∈$

! )|, ! ,|-

• Phrase-based translation models can capture the 
proximity (Gao et al., ‘10)

26

bag of words



Learned Phrase Translation Probabilities
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Experimental Results

• Word-based translation model (WTM) outperformed the baseline 

– Translation probabilities bridge the semantic gap between query 

words and document words

– Self-translation is effective

• Phrase-based translation model (PTM) further improved the 

performances though capturing the proximity information
28

Models NDCG@1 NDCG@3 NDCG@10
BM25 (baseline) 0.3181 0.3413 0.4045

WTM (without self-translation) 0.3210 0.3512 0.4211

WTM (with self-translation) 0.3310 0.3566 0.4232

PTM 0.3355 0.3605 0.4254

Based on a large scale real world data set containing 12,071 English queries sampled 
from one-year query log files of a commercial search engine (Gao et al., 2010)



MATCHING IN LATENT SPACE
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Matching in Latent Space
• Assumption

– Queries/documents have similarities
– Click-through data represent “similarity” relations between 

queries and documents
• Approach

– Project queries and documents to latent space
– With some regularization or constraints
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Partial Least Square (PLS)

• Two spaces: ! ⊂ ℝ$ and % ⊂ ℝ&

• Training data: '(, *(, +( (,-
. , +( ∈ +1,−1 or +( ∈ ℝ

• Model
– Dot product as similarity:3 ', * = 56

7 ', 58
7* = '75658

7*

– 56 and 58 are two linear (and orthonormal) transformations 
• Objective function

argmax>?,>@A
BC,D-

'(
756587*( −A

BC,E-
'(
756587*(

s. t. 56756 = IJ×J, 58758 = IJ×J
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Regularized Mapping to Latent Space 
(RMLS)

• Two spaces: ! ⊂ ℝ$ and % ⊂ ℝ&

• Training data: '(, *(, +( (,-
. , +( ∈ +1,−1 or +( ∈ ℝ

• Model
– Dot product as similarity:3 ', * = 56

7 ', 58
7* = '75658

7*

– 56 and 58 are two linear (and orthonormal) transformations 
with ℓ- and ℓ: regularizations (sparse transformations)

• Objective function
argmax@A,@BC

DE,F-
'(
75658

7*( −C
DE,G-

'(
75658

7*(

s. t. 56 ≤ L6, 58 ≤ L8, 56 ≤ M6, 56 ≤ M8
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PLS v.s. RMLS

PLS RMLS
Transformation 

Assumption
orthonormal and  

regularization
Optimization 

Method
singular value 

decomposition
coordinate 

ascent
Optimality global optimum local optimum
Efficiency low high
Scalability low high
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Bridging the Semantic Gap
• Latent space models bridge semantic gap between

words through 
– Reducing dimensionality of latent space (from term level 

matching to semantic matching)
– Correlating semantically similar terms (matrices are not 

diagonal)
• Automatically learning mapping functions from data

34
Mapping
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Capturing the Order Information

• Depends on the features for representing the 
queries and documents
– Bag-of-words representations: order of words missed
– Bag of phrases or other proximity features: capture 

the order of words

35

query representation Lq

Ld

Latent spacedocument  representation 



Experimental Results

• Latent space models work better than baseline (BM25)

• RMLS works equally well as PLS, with higher learning 

efficiency and scalability

36

NDCG@1 NDCG@3 NDCG@5
BM25 0.637 0.690 0.690

SSI 0.538 0.621 0.629

BLTM 0.657 0.702 0.701

PLS 0.676 0.728 0.736
RMLS 0.686 0.732 0.729

Based on a web search data set containing 94,022 queries and 111,631 documents. 
Click through associated with the queries and documents at a search engine is used.  
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Outline of Tutorial
• Unified view of matching in search and recommendation
• Part 1: Traditional Approaches to Matching

– Traditional matching models for search 
– Traditional matching models for recommendation

• Collaborative Filtering Models
• Generic Feature-based Models

• Part 2: Deep Learning Approaches to Matching
• Summary
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Collaborative Filtering

• Collaborative Filtering (CF) is the most well-known technique 
for recommendation. 

“CF makes predictions (filtering) about a user’s interest by collecting 
preferences information from many users (collaborating)”  ---Wikipedia

40

1. Memory-based CF: 
Predict by memorizing similar
users’ (or items’) ratings

2. Model-based CF: 
Predict by inferring from an
underlying model.

Rating Matrix
(Interaction Matrix)Input Tabular data



Memory-based CF
Problem: predict user u’s rating on item i.
• User-based CF leverages the ratings of u’s similar users 

on the target item i.

• Item-based CF leverages the ratings of u on other 
similar items of i.

• Many similarity measures can be used, e.g., Jaccard, 
Cosine, Pearson Correlation. Recent advance learns the 
similarity from data. 

41

Similar users of u
Rating of a similar user on i

Similar items of i
Rating of u on a similar item

Note: many normalization terms are discarded for clarity. 



Model-based CF
• Matrix Factorization (MF) is the most popular and effective 

model-based CF method.
• It represents a user and an item as a vector of latent factors.  
• The score is estimated as the inner product of user latent 

vector and item latent vector. 

• Optimizing a loss to minimize the prediction error on training 
data can get the latent vectors. 42

Item latent vector:

User latent vector: Prediction score:



Convergence of Recommendation and 
Search Methods

• MF is similar to “Matching in Latent Space” methods in Search!

1. Using one-hot encoding on the ID feature of user and item

2. Using a linear mapping function, i.e., 
3. Using inner product as the matching function in the latent space. 

43

Mapping

q

d

Lq

Ld

Query space
(user)

Document space
(item)

Latent space

User (u) Item (i)

vu = Lq u ,   vi = Ld i



Item-based CF in Latent Space 
(Kabbur et al., KDD’14)

• Instead of only using an ID to encode a user, we can make the 
encoding more meaningful by using the user’s rated items. 

• This can be interpreted as an item-based CF model.

– Known as the Factored Item Similarity Model (FISM) (Kabbur et al, KDD’14)
44

User multi-hot encoding
on rated items

Item one-hot encoding

* * *

+

Use all items as neighbors

Factorize item similarity in the latent space



Fusing User-based and Item-based CF in 
Latent Space (Koren, KDD’08)

• MF (user-based CF) represents a user as her ID.
– Directly projecting the ID into latent space

• FISM (item-based CF) represents a user as her interacted items.
– Projecting interacted items into latent space

• SVD++ fuses the two types of models in the latent space:

– This is the best single model for rating prediction in the Netflix challenge.

45

User representation in latent space

Note: the normalization terms are discarded for clarity. 



Feature-based Recommendation
• CF utilizes only the interaction matrix only to build the

predictive model.
• How about other information like user/item attributes and

contexts?
• Example data used for building a RecSys: 

E.g., user gender,
age, occupation
personality …

E.g., item category,
description, image …

rating data

context data

user
data

item data

E.g., location, time,
weather, mood …



Feature-based Recommendation
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E.g., user gender,
age, occupation
personality …

E.g., item category,
description, image …

rating data

context data

user
data

item data

E.g., location, time,
weather, mood …

Sparse Predictive Model

One-hot encoding 

Input Features:
1. Categorical features:

user/item ID, bag-of-words, 
historical features…
2. Numerical features:

textual/visual embeddings, 
converted features (e.g. TFIDF, 
GBDT)…Each row

encodes all
info for a
rating



FM: Factorization Machine (Rendle, ICDM’10)

• FM is inspired from previous factorization models

• It represents each feature as a latent vector (embedding), and 
models the second-order feature interactions:

– Note: self-interaction is not included:  < vi , vi >. 

• FM allows easy feature engineering for recommendation, and 
can mimic many existing models (that are designed for a specific 
task) by inputting different features. 

– E.g., MF, SVD++, timeSVD (Koren, KDD’09), PIFT (Rendle, WSDM’10) etc. 

48

First-order: Linear 
Regression

Second-order: pair-wise 
interactions between features



Matrix Factorization with FM
• Input: 2 variables <user (ID), item (ID)>. 

49

With this input, FM is identical to MF with bias:

MF



Factored Item Similarity Model with FM
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TI   NH   SW   ST  

Rated Movies

• Input: 2 variables <user (historical items ID), item (ID)>. 

With this input, FM subsumes FISM with additional terms:

FISM

Further input user 
ID into FM will 
resume SVD++



Learning Recommender Models
• For ranking novel items for a user (i.e., top-K recommendation), 

it is crucial to account for the missing data (negative signal)
3 common loss functions (for a user u):
» 1. Pointwise Regression Loss (explicit & implicit data):

» 2. Pointwise Classification Loss (implicit data):

» 3. Pairwise Classification loss (implicit data):

L2 regularizer must be tuned to prevent overfitting. 
51

(Rendle et al., UAI’09)

(Bayer et al, WWW’17)

(He et al, WWW’17)
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Growing Interests in “Deep Matching”

• Success of deep learning in other fields
– Speech recognition, computer vision, and natural language processing

• Growing presence of deep learning in IR research
– SIGIR 2016 keynote, Tutorial, and Neu-IR workshop

• Adopted by industry
– ACM News: Google Turning its Lucrative Web Search Over to AI 

Machines (Oct. 26, 2015)
– WIRED: AI is Transforming Google Search. The Rest of the Web is Next

(April 2, 2016)
• Chris Manning (Stanford)’s SIGIR keynote:

“I’m certain that deep learning will come to dominate SIGIR 
over the next couple of years … just like speech, vision, and 
NLP before it.”
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“Deep” Semantic Matching

• Representation

– Word: one hot —> distributed

– Sentence: bag-of-words —> distributed representation

– Better representation ability, better generalization ability

• Matching function

– Inputs (features): handcrafted —> automatically learned

– Function: simple functions (e.g., cosine, dot product) —> 

neural networks (e.g., MLP, neural tensor networks)

– Involving richer matching signals

– Considering soft matching patterns
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Deep Learning Paradigms for Matching

• Methods of representation learning

• Methods of matching function learning

56

Query/user

Document
/item

Matching 
signals Aggregation matching

score

Query/user

Document
/item

Neural 
Network

Neural 
Network

matching
score

Query/user representation

Document/item representation



Methods of Representation Learning
• Step 1: calculate representation !(#)
• Step 2: conduct matching % ! # , ! '
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Methods of Matching Function Learning

• Step 1: construct basic low-level matching signals
• Step 2: aggregate matching patterns

58

Basic matching 
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Matching 
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Outline of Tutorial
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• Part 2: Deep Learning Approaches to Matching
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METHODS OF REPRESENTATION 
LEARNING

60

query

document

Neural 
Network

Neural 
Network

matching
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Representation Learning for 
Query-Document Matching

• Step 1: calculate query and document representation 
Step 2: conduct query-document matching
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Typical Methods of Representation 
Learning for Matching 

• Based on DNN
– DSSM: Learning Deep Structured Semantic Models for Web 

Search using Click-through Data (Huang et al., CIKM’13)
• Based on CNN

– CDSSM: A latent semantic model with convolutional-pooling 
structure for information retrieval (Shen et al. CIKM’14)

– ARC I: Convolutional Neural Network Architectures for Matching 
Natural Language Sentences (Hu et al., NIPS’14)

– CNTN: Convolutional Neural Tensor Network Architecture for 
Community-Based Question Answering (Qiu and Huang, IJCAI’15)

• Based on RNN
– LSTM-RNN: Deep Sentence Embedding Using the Long Short 

Term Memory Network: Analysis and Application to Information 
Retrieval (Palangi et al., TASLP’2016)
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Deep Structured Semantic Model (DSSM)

• Bag-of-words representation 

– “candy store”: [0, 0, 1, 0, …, 1, 0, 0]

• Bag of letter-trigrams representation

– “#candy# #store#” --> #ca can and ndy dy# #st sto tor ore re#

– Representation: [0, 1, 0, 0, 1, 1, 0, …, 1]

• Advantages of using bag of letter-trigrams

– Reduce vocabulary: #words 50K à # letter-trigram: 30K

– Generalize to unseen words

– Robust to misspelling, inflection etc. 63

Bag of letter-

trigrams

Fully connected 
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query

document
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DSSM Matching Function

• Cosine similarity between semantic vectors

• Training
– A query q and a list of docs
– positive doc,                     negative docs to query
– Objective:  

64

S =
xT · y
|x| · |y|

D = {d+, d�1 , · · · , d
�
k }

d+ d�1 , · · · , d
�
k

P (d+|q) = exp(� cos(q, d+))P
d2D exp(� cos(q, d))



DSSM: Brief Summary
• Inputs: Bag of letter-trigrams as input for improving the scalability 

and generalizability
• Representations: mapping sentences to vectors with DNN:  

semantically similar sentences are close to each other
• Matching: cosine similarity as the matching function

• Problem: the order information of words is missing (bag of letter-
trigrams cannot keep the word order information)

65letter-trigrams Fully connected 
layer Cosine similarity

query

document
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How to Capture Order Information?
• Input: word sequence instead of bag of letter-trigrams
• Model
– Convolution based methods can keep locally order
– Recurrent based methods can keep long dependence relations
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CNN can Keep the Order Information
1-D convolution and pooling operations can keep the 
word order information
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Using CNN: ARC-I (Hu et al., 2014) and 
CNTN (Qiu et al., 2015)

• Input: sequence of word embeddings trained on a large dataset
• Model: the convolutional operation in CNN compacts each 

sequence of k words
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Using CNN: CDSSM (Shen et al., ’14)
The convolutional operation in CNN compacts each 
sequence of k words

Convolution

bag of letter-trigram

max pooling

30k

the

30k

cat

30k

sat … ...

30k

mat

300 300 300

… ...

… ...

300

max max … ... max
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max pooling



RNN can Keep the Order Information

• RNNs implement dynamical systems
• RNNs can approximate arbitrary dynamical systems with arbitrary 

precision
• Two popular variations: long-short term memory (LSTM) and 

gated recurrent unit (GRU)
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Using RNN: LSTM-RNN (Palangi et al., ’16)

• Input: sequence letter trigrams

• Model: Long-short term memory (LSTM)

– The last output as the sentence representation
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Matching Function
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• Heuristic: cosine, dot product
• Learning: MLP, Neural tensor

networks
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Matching Functions (cont’)

• Given representations of query and document : q
and d

• Similarity between these two representations:
– Cosine Similarity (DSSM, CDSSM, RNN-LSTM)

– Dot Product

– Multi-Layer Perception (ARC-I)
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Matching Functions (cont’)

• Neural Tensor Networks (CNTN) (Qiu et al., ’15)
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Extensions to Representation Learning Methods

• Problem: representations are too coarse to conduct text match
– Experience in IR: combining topic-level and word-level matching signals 

usually achieve better performances

• Solution: add fine-grained signals, include MultGranCNN(Yin et 
al., ACL 2015), U-RAE (Socher et al., NIPS 2011), MV-LSTM (Wan 
et al., AAAI 2016)
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Experimental Results 

Model P@1 MRR
Traditional methods BM25 0.579 0.726

Representation 

learning for matching

ARC-I 0.581 0.756

CNTN 0.626 0.781

LSTM-RNN 0.690 0.822

uRAE 0.398 0.652

MultiGranCNN 0.725 0.840

MV-LSTM 0.766 0.869
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• Representation learning methods outperformed baselines

– Semantic representation is important

• LSTM-RNN performed better than ARC-I and CNTN

– Modeling the order information does help

• MultiGranCNN and MV-LSTM are the best performing methods

– Fine-grained matching signals are useful

Based on Yahoo! Answers dataset (60,564 question-answer pairs)



METHODS OF MATCHING 
FUNCTION LEARNING
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Matching Function Learning

• Step 1: construct basic low-level matching signals
• Step 2: aggregate matching patterns
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Typical Matching Function Learning Methods

• Matching with query-document matching matrix : 
– ARC II (Hu et al., NIPS’14)
– MatchPyramid (Pang et al. AAAI’16
– Match-SRNN (Wan et al. IJCAI’16)
– K-NRM (Xiong et al., SIGIR 2017) 
– Conv-KNRM (Dai et al., WSDM 2018)

• Matching with attention model (Parikh et al., EMNLP 
2016)
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ARC-II

• Let two sentences meet before their own high-level representations 
mature

• Basic matching signals: phrase sum interaction matrix

• Interaction: CNN to capture the local interaction structure

• Aggregation Function: MLP
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ARC-II (cont’)
• Keeping word order information
– Both the convolution and pooling are order preserving

• However, word level exact matching signals are lost
– 2-D matching matrix is constructed based on the 

embedding of the words in two N-grams
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MatchPyramid
• Inspired by image recognition
• Basic matching signals: word-level matching 

matrix
• Matching function: 2D convolution + MDP
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Word matching matrix 2D convolution pooling



Matching Matrix: Basic Matching Signals

• Each entry calculated based on
– Word-level exact matching (0 or 1)
– Semantic similarity based on embeddings of words

• Positions information of words is kept
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Exact match Cosine similarity



Matching Function: 2D Convolution

• Discovering the matching patterns with CNN, stored 
in the kernels
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Discovered Matching Patterns
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Match-SRNN (Wan et al., 16)

• Based on spatial recurrent neural network (SRNN)
• Basic matching signals: word-level matching matrix
• Matching function: Spatial RNN + MLP
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Matching matrix Spatial RNN



Match-SRNN: Recursive Matching Structure

• Calculated recursively (from top left to 

bottom right)

• All matching signals between the 

prefixes been utilized

– Current position: sat <—> balls

– Substrings: 

• the cat <—> the dog play

• the cat <—> the dog play balls

• the cat sat <—> the dog play 87
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K-NRM: Kernel Pooling as Matching Function 
(Xiong et al., SIGIR 2017)

• Basic matching signals: cosine similarity of word embeddings
• Ranking function: kernel pooling + nonlinear feature combination
• Semantic gap: embedding and soft-TF bridge the semantic gap
• Proximity: kernel pooling and sum operations lost word order information 
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Conv-KNRM (Dai et al., WSDM 2018)
• Based on KNRM
• N-gram cross-matching to capture the word order information

89

Query

Document

…

…

convolution

…

…

unigrams

bigrams

query unigram-doc 
unigram match

Cross-match

Kernel pooling 
and sum

Kernel pooling 
and sum

Kernel pooling 
and sum

Kernel pooling 
and sum

matching
score

tanh %& + (

soft-TF features &



Decomposable Attention Model for Matching 
(Parikh et al., EMNLP 2016)

• Based on decomposable attention model
• Three steps: attend-compare-aggregate

– Attend: soft-align words of query and document
– Compare: separately compare word-aligned subphrase, get matching signals
– Aggregate: aggregate the matching signals for produce final matching score
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Experimental Evaluation
Method P@1 MRR

Traditional IR BM25 0.579 0.457

Representation 
Learning methods

ARC-I 0.581 0.756

CNTN 0.626 0.781

LSTM-RNN 0.690 0.822

uRAE 0.398 0.652

MultiGranCNN 0.725 0.840

MV-LSTM 0.766 0.869

Matching Function 
Learning 

ARC-II 0.591 0.765

MatchPyramid 0.764 0.867

Match-SRNN 0.790 0.882
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• Matching function learning based methods outperformed the representation 
learning ones

Based on Yahoo! Answers dataset (60,564 question-answer pairs)



Summary of Deep Matching Models in Search

• Representation learning: 
representing queries and 
document in 
semantic space

• Matching function learning: 
discovering and aggregating 
the query-document 
matching patterns
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Outline of Tutorial
• Unified view of matching in search and recommendation
• Part 1: Traditional Approaches to Matching
• Part 2: Deep Learning Approaches to Matching

– Deep matching models for search
– Deep matching models for recommendation

• Summary
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Modern RecSys Architecture
(Covington et al, Recsys’16)
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Deep Matching Models for 
Recommendation

97

• Methods of representation learning

• Methods of matching function learning
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Methods of Representation Learning
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1. Pure CF models: 
Only ID or interaction history is used as input. 
- DeepMF: Deep Matrix Factorization (Xue et al, IJCAI’17)
- AutoRec: Autoencoders Meeting CF (Sedhain et al, WWW’15) 
- CDAE: Collaborative Denoising Autoencoder (Wu et al, WSDM’16)

2.  CF with side information: 
Any available data can be used as input. 
- DCF: Deep Collaborative Filtering via Marginalized DAE (Li et al, CIKM’15)
- DUIF: Deep User-Image Feature (Geng et al, ICCV’15)
- ACF: Attentive Collaborative Filtering (Chen et al, SIGIR’17)
- CKB: Collaborative Knowledge Base Embeddings (Zhang et al, KDD’16)



Matrix Factorization as a Neural Network 
(Wang et al, SIGIR’17)

• Input: user -> ID (one-hot), item -> ID (one-hot).
• Representation Function: linear embedding layer. 
• Matching Function: inner product.
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Deep Matrix Factorization (Xue et al, IJCAI’17)

100

• Input:
user -> historically rated items (multi-hot), i.e., row vector of Y

indicates the user’s global preference 

item -> users who have rated it (multi-hot), i.e., column vector of Y
indicates the item’s rating profile. 



Deep Matrix Factorization (Xue et al, IJCAI’17)
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• Representation Function:
– Multi-Layer Perceptron (same as DSSM).

Matching Function: cosine similarity



AutoRec (Sedhain et al, WWW’15)
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• Input: (similar to DeepMF)
user -> historically rated items -> user-based autoencoder.
item -> users who have rated it -> item-based autoencoder.

• Representation Function: Multi-Layer Perceptron 
• Matching Function: inner product

Input reconstruction: 

user-based autoencoder

Hidden neurons denote user representation

Output weights denote item representation  



Collaborative Denoising Auto-Encoder 
(Wu et al, WSDM’16)
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• Input:
user -> ID & historically rated items (similar to SVD++)
item -> ID

• Representation: Multi-Layer Perceptron

W

V

Hidden neurons are user representation:

Weights of output layer are item representation



Short Summary

• Either ID or history is used as the profile of user/item
• Models with history as input are more expressive, but are also 

more expensive to train. 

• The Auto-Encoder architecture is essentially identical to 
MLP (representation learning) + MF (matching function). 
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Nonlinear Linear



Methods of Representation Learning
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1. Pure CF models: 
Only ID or interaction history is used as input. 
- DeepMF: Deep Matrix Factorization (Xue et al, IJCAI’17)
- AutoRec: Autoencoders Meeting CF (Sedhain et al, WWW’15) 
- CDAE: Collaborative Denoising Autoencoder (Wu et al, WSDM’16)

2.  CF with side information: 
Any available data can be used as input. 
- DCF: Deep Collaborative Filtering via Marginalized DAE (Li et al, CIKM’15)
- DUIF: Deep User-Image Feature (Geng et al, ICCV’15)
- ACF: Attentive Collaborative Filtering (Chen et al, SIGIR’17)
- CKB: Collaborative Knowledge Base Embeddings (Zhang et al, KDD’16)



Deep Collaborative Filtering via 
Marginalized DAE (Li et al, CIKM’15)
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• Denoising Auto-Encoder is used to learn features (hidden 
layers) of user and item from side information. 

• The predictive model is MF. 

genres, 
title, texts

age, gender, 
city, occupation, 
locations … 

User features
reconstruction

Item features
reconstruction

Matrix Factorization Kernel



DUIF: Deep User and Image Feature Learning 
(Geng et al, ICCV’15)
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• Task: collaborative image recommendation

• Deep CNN (AlexNet) is used to extract features 
for images 

• The deep image features (dim=4096) are 
projected to user latent space (dim=300) by 
using linear projection. 

• The predictive model is MF: 

• The overall model (MF+W+CNN) is trained end-
to-end. 

Image raw featureLinear Projection



ACF: Attentive Collaborative Filtering
(Chen et al, SIGIR’17)

108

• Input:
user -> ID & historical interacted items.
Item -> ID & visual features.

• Item Representation:
Component-level attention -> not all components contribute equally to

an item’s representation

A user’s preference on 
different components of the 
item is unknown & not equal!



ACF: Attentive Collaborative Filtering
(Chen et al, SIGIR’17)
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• Input:
user -> ID & historical interacted items.
item -> ID & visual features.

• User Presentation:
– Item-level attention -> not all historical items contribute equally to a

user’s representation

A user’s preference on 
historical items is unknown & 
not equal!

Attention weights learned by a neural net
ó Attentive SVD++ model.



CKE: Collaborative Knowledge Base 
Embedding (Zhang et al, KDD’16)

110

• Input:
user -> ID
item -> ID + Information in KB (structural, textual, visual)

Matching Function: inner product



CKE: Collaborative Knowledge Base 
Embedding (Zhang et al, KDD’16)
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• Representation:
– Structural embedding: TransR, TransE, … 

– Textual embedding: stacked denoising auto-encoders (S-DAE)

– Visual embedding: stacked convolutional auto-encoders (SCAE)



Short Summary
• A General framework to summarize the above works:

• Depending on the available data to describe a user/item, we 
can choose appropriate DNN to learn representation. 
E.g., Textual Attributes -> AutoRec, Image -> CNN, Video -> RNN etc.

112

Matching function is a simple inner 
product or cosine similarity



Next: Methods of Matching Function Learning
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1. Pure CF models: 
- Based on Neural Collaborative Filtering (NCF) framework:

NeuMF: Neural Matrix Factorization (He et al, WWW’17)
NNCF: Neighbor-based NCF (Bai et al, CIKM’17)
ConvNCF: Outer Product-based NCF (He et al, IJCAI’18)

- Based on Translation framework:
TransRec: Translation-based Recommendation (He et al, Recsys’17)
LRML: Latent Relational Metric Learning (Tay et al, WWW’18)

2. Feature-based models:
- Based on Multi-Layer Perceptron: 

Wide&Deep (Cheng et al, DLRS’16), Deep Crossing (Shan et al, KDD’16)
- Based on Factorization Machines (FM):

Neural FM (He and Chua, SIGIR’17), Attentional FM (Xiao et al, IJCAI’17), 
- Based on Trees:

GB-CENT: Categorical Embedding and Numerical Trees (Zhao et al, WWW’18)
DEF: Deep Embedding Forest (Zhu et al, KDD’17)
TEM: Tree-enhanced Embedding Model (Wang et al, WWW’18)



Why Using Neural Networks to Learn the 
Matching Function?

• The simple choice of inner product can limit the expressiveness
of an embedding-based matching model. 

• Example: 
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(E.g., assuming a unit length)

sim(u1, u2) = 0.5

sim(u3, u1) = 0.4
sim(u3, u2) = 0.66

Jaccard Similarity:

u1

u2

u3
sim(u4, u1) = 0.6   *****
sim(u4, u2) = 0.2       *
sim(u4, u3) = 0.4     ***

S42 > S43 (X)

S42 > S43 (X)

(He et al, WWW’17)



Neural Collaborative Filtering Framework
(He et al, WWW’17)
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• NCF is a general framework that replaces the inner product with a 
neural network to learn the matching function. 

Matching function: 
design whatever 
layers as you like. 

Input: design 
whatever features 
as you want. 

Matching function based on NN



Multi-Layer Perceptron for CF
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• The most intuitive idea is to use a Multi-Layer Perceptron as 
the matching function. 

Unfortunately, MLP doesn’t perform 
well and underperforms MF.

Why? 

(He et al, WWW’17)



MLP is Weak in Capturing Low-Rank Relation 

(Beutel et al, WSDM’18)
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MLP can learn to approximate the low-rank 
relation, but is inefficient in doing so.

Setting: Generating low-rank data, and using one-layer MLP to fit it. 

r: rank size; m: data dimension (2 -> matrix; 3 -> 3D tensor). 

We have to design 

more effective models 

to make DNN work for 

CF!



NeuMF: Neural Matrix Factorization 

(He et al, WWW’17)

• NeuMF unifies the strengths of MF and MLP in learning the 

matching function:

– MF uses inner product to capture the low-rank relation

– MLP is more flexible in using DNN to learn the matching function. 
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NNCF: Neighbor-based NCF 
(Bai et al, CIKM’17)

• Feeding user and item neighbors into the NCF framework
– Direct neighbors or community neighbors are considered. 
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Experiment Evidence
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Performance Comparison on Item Recommendation (%)

Datasets Delicious MovieLens
Models HR@5 NDCG@5 HR@5 NDCG@5

ItemPop 5.41 3.22 31.49 20.18

ItemKNN 59.69 55.90 45.01 30.14

MF-BPR 73.77 74.11 51.03 36.21

NeuMF 85.53 80.68 56.55 38.30

NNCF 87.31 84.58 62.00 42.21
Deep NCF models are
better than shallow MF
models by a large margin.

CF method is better than 
non-personalized method

Model-based CF is better 
than memory-based CF

(Bai et al, CIKM’17)



Convolutional NCF (He et al, IJCAI’18)
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• Although fully connected layers are popular in learning the 
matching function, they have too many parameters. 

• Recently, we propose to use the locally connected CNN to build 
deeper NCF models. 

Outer product to get 
a 2D interaction map 
like an “image”!

CNN

§ 2 Fully Connected Layers: > 10M parameters
§ 6 Convolutional Layers: 20K parameters, but achieve 

better performance! 



Experiment Evidence
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Datasets Gowalla Yelp
Models HR@5 NDCG@5 HR@5 NDCG@5

ItemPop 20.03 10.99 7.10 3.65

MF-BPR 62.84 48.25 17.52 11.04

MLP 63.59 48.02 17.66 11.03

IRGAN 63.89 49.58 18.61 11.98

NeuMF 67.44 53.19 18.81 11.89

ConvNCF 69.14 54.94 19.06 12.09

ConvNCF are better
than NeuMF and MLP 
with much fewer 
parameters.

(He et al, IJCAI’18)



Overview of Translation-based 
Recommendation (Tay et al, WWW’18)
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(b) Matrix Factorization-based(a) Translation-based 

Head + Relation ≈ Tail



TransRec (He et al, Recsys’17)

• Focused on next-item recommendation
– Third-order relationship between <user, current item, next item>
– Current item is the “Relation”: 
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Predictive Model:

Item bias Translation 
distance

Head + Relation ≈ Tail



Latent Relational Metric Learning 

(Tay et al, WWW’18)

• Distance-based predictive model: 

where r is the latent relation vector, formed by an attentive 

sum over memory vectors: 
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Memory vector, which can 

encode user attributes/interest.

Attention weight, with inner product

as input. 
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Overview of the LRML’s 
predictive model:



Methods of Matching Function Learning
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1. Pure CF models: 

- Based on Neural Collaborative Filtering (NCF) framework:

NeuMF: Neural Matrix Factorization (He et al, WWW’17)

NNCF: Neighbor-based NCF (Bai et al, CIKM’17)

ConvNCF: Outer Product-based NCF (He et al, IJCAI’18)

- Based on Translation framework:

TransRec: Translation-based Recommendation (He et al, Recsys’17)

LRML: Latent Relational Metric Learning (Tay et al, WWW’18)

2. Feature-based models:

- Based on Multi-Layer Perceptron: 

Wide&Deep (Cheng et al, DLRS’16), Deep Crossing (Shan et al, KDD’16)

- Based on Factorization Machines (FM):

Neural FM (He and Chua, SIGIR’17), Attentional FM (Xiao et al, IJCAI’17), 

- Based on Trees:

GB-CENT: Categorical Embedding and Numerical Trees (Zhao et al, WWW’18)

DEF: Deep Embedding Forest (Zhu et al, KDD’17)

TEM: Tree-enhanced Embedding Model (Wang et al, WWW’18)



Recall: Input to Feature-based Models
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Raw features:
1. Categorical features

One-hot encoding on ID features
2. Continuous features 

E.g., time, frequency.
Need feature normalization

Transformed features:
1. Categorical features

Cross features are important
2. Continuous features 

E.g., outputs of other models like 
visual embeddings. 



Wide&Deep (Cheng et al, Recsys’16)
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Concatenation 

- The wide part is linear regression for memorizing seen feature interactions, 
which requires careful engineering on cross features.
E.g., AND(gender=female, language=en) is 1 iff both single features are 1

- The deep part is for generalizing to unseen feature interactions.



Wide&Deep for App Recommendation 
(Cheng et al, Recsys’16)
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Crucial to overall 
performance



Deep Crossing (Shan et al, KDD’16)
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- The deep part can learn feature interactions in an implicit way.
- The use of residual layers makes the network be deep. 

Microsoft’s Sponsor Search Solution in 2016: 

Concatenation 

Residual Fully-Connected Layers



Empirical Evidence
• However, when only raw categorical features are used, both 

DL models underperform the shallow FM in learning unseen 
feature interactions. 

Solid line: testing loss; Dashed line: training loss
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(He and Chua, SIGIR’17)



Why MLP is Ineffective?
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Besides optimization difficulties, one reason might be the model design:

1. Embedding concatenation carries little information about feature 

interactions in the low level!

2. The structure of Concat+MLP is ineffective to learn the multiplicative 

relation (Beutel et al, WSDM’18). 



NFM: Neural Factorization Machine 
(He and Chua, SIGIR’18)

• Inspired by FM, NFM models pairwise interactions between 
feature embeddings with multiplication. 
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“Deep layers” learn higher-order feature 
interactions only, being much easier to train. 

Bilinear Interaction Pooling: 



Experiment Evidence

135

FM 1.38M 0.3385 23.24M 0.4735
Logistic Regression 5.38K 0.5835 0.09M 0.5991

High-order FM 2.76M 0.3331 46.40M 0.4636

Frappe MovieLens

Method Param# RMSE Param# RMSE

Wide&Deep (3 layers) 4.66M 0.3246 24.69M 0.4512

DeepCross (10 layers) 8.93M 0.3548 25.42M 0.5130
11Neural FM (1 layer) 1.45M 0.3095 23.31M 0.4443

Table: Parameter # and testing RMSE at embedding size 128

1. Shallow embedding methods 
learn interactions, better than 
simple linear models

2. Deep embedding methods:
Wide&Deep = Concat+3 layers
DeepCross = Concat+10 layers

3. Our methods:
Neural FM = BI pooling + 1 layer

Shallower but outperforming 
existing deeper methods with 
less parameters. 

Codes: github.com/hexiangnan/neural_factorization_machine

Task #1: Context-aware App Usage Prediction
- Frappe data: instance #: 288,609, feature #: 5,382

Task #2: Personalized Tag Recommendation
- MovieLens data: Inst #: 2,006,859, Feat #: 90,445

github.com%5Chexiangnan%5Cneural_factorization_machine


AFM: Attentional Factorization Machine 
(Xiao et al, IJCAI’18)
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• Neural FM treats all second-order feature interactions as
contributing equally.

• Attentional FM uses an attention network to learn the weight of a 
feature interaction. 



Explaining Recommendation with AFM
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second-order interactions

Example: explainable

recommendation with

second-order cross features:

<Female, Age 20>

<Age 20, iPhone>

<Female, Color Pink>

……

The attention scores can be used to select the most predictive second-

order feature interactions as explanations.



Experiment Evidence
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FM 1.38M 0.3385 23.24M 0.4735
Logistic Regression 5.38K 0.5835 0.09M 0.5991

High-order FM 2.76M 0.3331 46.40M 0.4636

Frappe MovieLens
Method Param# RMSE Param# RMSE

Wide&Deep (3 layers) 4.66M 0.3246 24.69M 0.4512

DeepCross (10 layers) 8.93M 0.3548 25.42M 0.5130
11Neural FM (1 layer) 1.45M 0.3095 23.31M 0.4443

Table: Parameter # and testing RMSE at embedding size 128

Codes: github.com/hexiangnan/attentional_factorization_machine

Attentional FM (0 layer) 1.45M 0.3102 23.26M 0.4325

AFM without hidden layers
can be better than NFM
with 1 hidden layer.

Task #1: Context-aware App Usage Prediction
- Frappe data: instance #: 288,609, feature #: 5,382

Task #2: Personalized Tag Recommendation
- MovieLens data: Inst #: 2,006,859, Feat #: 90,445

github.com%5Chexiangnan%5Cattentional_factorization_machine


Tree-based Model
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Working mechanism of tree-based models:
- Each node splits a feature into two decision 

edges according to a value. 
- Given a feature vector, there exists a path from 

the root to a leaf, which forms a decision rule 
(like a cross feature). 

- The leaf node corresponds to the prediction 
value. 

E.g., meaning of a path: 

- Since a single tree may not be expressive enough, a typical way 
is to  build a forest, i.e., an ensemble of multiple trees:

# of trees

Prediction of the s-th tree
(Wang et al, WWW’18)



Tree-based vs. Embedding-based Model
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Tree-based Model
(e.g., GBDT)

Embedding-based Model 
(e.g., DNN, FM)

+ Strong at continuous features + Strong at categorical features

+ Explainable - Blackbox
+ Low serving cost - High serving cost
- Weak generalization ability to 
unseen feature combinations. 

+ Strong generalization ability to 
unseen feature combinations. 

Why not combining the strengths of the two types of models?

In the next: 
- Gradient Boosted Categorical Embedding and Numerical Trees (Zhao et al, WWW’17)
- Deep Embedding Forest (Zhu et al, KDD’17)
- Tree-enhanced Embedding Model (Wang et al, WWW’18)



GB-CENT: Gradient Boosted Categorical Embedding and 
Numerical Trees (Zhao et al, WWW’17)

• GB-CENT unifies the strengths of embeddings in 
categorical feature learning and trees in continuous 
feature learning. 
– SVDFeature is applied on categorical features. 
– GBDT is applied on continuous features. 

– Each categorical feature corresponds to a tree 
(i.e., # of categorical features = # of trees)
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bias SVDFeature GBDT



Deep Embedding Forest 
(Zhao et al, KDD’17)

• DEF uses forest (e.g., LightGBM or XGBoost) as the hidden 
layers to reduce the online serving time of embedding-based 
models. 
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Deep Crossing (Shan et al, KDD’16)

Using Forest Layer instead.
- Two step training
- Initialize DEF using Deep Crossing

Experiment evidence
Methods Relative Log Loss Time(ms)

Deep Crossing 100 2.272

DEF (XGBoost) 99.96 0.168

DEF (LightGBM) 99.94 0.204



Tree-enhanced Embedding Model
(Wang et al, WWW’18)

• TEM explicitly learns which cross features are more important 
for a <user, item> prediction. 
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Experiment Evidence
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Table: Logloss of predictive models (the lower, the better)



Short Summary

• Feature interaction learning (i.e., cross feature effect) is
crucial for matching function learning in recommendation.

• Many models have been explored, e.g., DNN, FM, Tree-based,
Attention Net etc.

• One insight is that doing early cross on raw features (or
feature embeddings) is important to performance. E.g.,
– Wide&Deep do manual cross on raw features
– FM-based methods do second-order cross on feature embeddings
– Tree-based methods do trainable cross on raw features.

• It remains challenging to build explainable matching function
with strong generalization ability.
– I.e., explainable high-order interaction learning.
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Outline of Tutorial

• Unified view of matching in search and recommendation
• Part 1: Traditional Approaches to Matching
• Part 2: Deep Learning Approaches to Matching
• Summary
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Summary
• Search and Recommendation are two sides of the same coin

Search -> Information Pull with explicit info request (query) 
Recommendation -> Information Push with implicit info request (user 
profile, contexts) 

• Technically, they can be unified under the same matching view
– Though they are studied by different communities: SIGIR vs. RecSys

• Deep learning-based matching methods
– Representation learning-focused
– Matching function learning-focused

• Matching is a generic problem for a wide range of applications
E.g., online advertising, question answering, image annotation, drug design
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Challenges

• Data: building better benchmarks
– Large-scale text matching data
– Large-scale user-item matching data with rich attributes. 

• Model: data-driven + knowledge-driven
– Most current methods are purely data-driven
– Prior information (e.g., domain knowledge, large-scale knowledge 

based) is helpful and should be integrated into data-driven learning in 
a principled way. 

• Task: multiple criteria
– Existing work have primarily focused on similarity
– Different application scenarios should have different matching goals 
– Other criteria such as novelty, diversity, and explainability should be 

taken into consideration
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Thanks! 
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