
Deep Learning for Matching
in Search and Recommendation

Jun Xu
Chinese Academy

of Sciences

1

WWW 2018 Tutorial
April 23, 2018
Lyon, France

Xiangnan He
National University of

Singapore

Hang Li
Toutiao AI Lab

Outline of Tutorial

• Unified view of matching in search and recommendation
• Part 1: Traditional Approaches to Matching
• Part 2: Deep Learning Approaches to Matching
• Summary

2

Overview of Web Search Engine

3

User intent is explicitly reflected in query:
- Keywords, Question

Query

Relevant
webpages

Web Search
Engine Information and

knowledge base

Content is in
- Webpages, images, …

Key challenge: query-document semantic gap

Information pull: a user pulls information by making a specific request

Example of Query-Document Mismatch

Query Document Term
matching

Semantic
matching

seattle best hotel seattle best hotels no yes
pool schedule swimmingpool schedule no yes
natural logarithm
transformation

logarithm transformation partial yes

china kong china hong kong partial no
why are windows so
expensive

why are macs so expensive partial no

4

Same Search Intent Different Query Representations
Example: “Distance between Sun and Earth”

5

Same Search Intent Different Query Representations
Example: “Youtube”

6

7

Overview of Recommendation Engine

User Interest is implicitly reflected in:
- Interaction history
- Demographics
- Contexts

User, Contexts
(Query)

Items of Interest
(Documents)

Recommendation
Engine Item Corpus

Items can be:
- Products, News, Movies,

Videos, Friends …

Key challenge: user-item semantic gap
- Even severe than search, since user and item are two different
types of entities and are represented by different features

Information push: the system pushes information to a user by guessing the user interest

Example of User-Item Semantic Gap

8

Movie Recommendation

?
User Profile (query):
- User ID
- Rating history
- Age, Gender
- Income level
- Time of the day

…….

Item Profile (document):
- Item ID
- Description
- Category
- Price
- Image

…….

There may be no overlap between user features and item features
Matching cannot be done on the superficial feature level!

Information Providing Mechanisms of Search and
Recommendation (Hector et al., CACM’ 11)

Search Recommendation
Delivery model Pull Push or pull
Beneficiary User User and provider
Unexpected good? No Yes
Collective knowledge Maybe Maybe
Query available Yes Maybe
Context dependent Maybe Maybe

9

Unified View on Matching in Search and
Recommendation (Hector et al, CACM’11)

10

Information objects

User information Content: documents, items, products etc.

Search Mechanism Recommendation Mechanism

matching

Search results

Recommendations

query user history

user location

Information needs and context

. . .

Difference for search and recommendation: features used for matching!

Semantic Gap is Biggest Challenge in
both Search and Recommendation

Query-document Mismatch
• Same intent can be

represented by different
queries (representations)

• Search is still mainly based
on term level matching

• Query document mismatch
occurs, when searcher and
author use different
representations

User-item Semantic Gap
• Features are used to

represent a user and an item
may be totally different (e.g.,
ID feature)

• Even when they partially
overlap in features, it is
insensible to conduct direct
matching

11

Machine Learning for Matching

12

• Using relations in data for
learning the matching
function

• Training data
– Queries and documents (users

and items) represented with
feature vectors or ID’s

– Target can be binary or
numerical values

fM (q, d) or P (r|q, d)

{(qi, di, ri)}Ni=1

!"
!#

!$ %$

%"
%#

&"
&#
&$

' (

Learning
system

! %
?

' (

Model
*+ !, %

Matching
System

Training data

Test data

*+ !, %

Organization of the Tutorial

• Unified view of matching in search and recommendation (Jun Xu)
• Part 1: Traditional Approaches to Matching

– Traditional matching models for search (Jun Xu)
– Traditional matching models for recommendation (Xiangnan He)

• Part 2: Deep Learning Approaches to Matching
– Overview (Jun Xu)
– Deep matching models for search (Jun Xu)
– Deep matching models for recommendation (Xiangnan He)

• Summary (Xiangnan He)

13

Outline of Tutorial
• Unified view of matching in search and recommendation
• Part 1: Traditional Approaches to Matching

– Traditional matching models for search
– Traditional matching models for recommendation

• Part 2: Deep Learning Approaches to Matching
• Summary

14

QUERY-DOCUMENT MATCHING

15

Key Factors for Query-Document Matching

• Bridging the semantic gap between words

– Semantically similar words: famous ~ popular, Chinese ~ China

• Capturing order of words

– N-grams: “down the ages” ~ “down the ages”

– N-terms: “noodles and dumplings” ~ “dumplings and noodles”

……

16

Query:
Down the ages noodles and

dumplings were famous Chinese

food

Document:
... down the ages dumplings

and noodles were popular in

China …

Information from Choice of Words
and Order of Words (Ross, ’02)

• Assume:
– Size of vocabulary = 10,000
– Average sentence length = 20

• Rough contributions of information in bits
– From the selection of words: log2(100002)
– From the order of words: log2(20!)

• “Over 80% of the potential information in
language being in the choice of words
without regard to the order in which they
appear ”
– 80%: choice of words
– 20%: order of words

17

80%

20%

Choice of words Order of words

Traditional Approaches to
Query-Document Semantic Matching

• Matching by query formulation
• Matching with term dependency
• Matching with topic model
• Matching with translation model
• Matching in latent space model

18

Traditional Matching Models for Search

• Matching with
machine translation:
mapping document to
query space

• Matching in latent
space: mapping query
and document into a
latent space

19
Mapping

q

d

Lq

Ld

Query space

Document space

Latent space

Translation

q

d T

Document space

query space

MATCHING WITH TRANSLATION MODEL

20

Translation

q

d T

Document space

query space

Statistical Machine Translation (SMT)

• Given a sentence C in source language,
translates it into sentence E in target language

!∗ = argmax)* !|,
• Linear combination of features

* !|, = 1
. ,, ! exp2

3
43ℎ ,, !

!∗ = argmax)2
3
43ℎ ,, !

21

Word-based Model: IBM Model One
(Brown et al., 1993)

• Generating target sentence
– Choose length of target sentence I
– For each position !(! = 1, 2,⋯ , ()

• Choose position * in source sentence +
• Generate target word ,- according to . ,- /0

. 1|+ = 3
4 + 1 67-89

6
:

08;

<
. ,-|/0

22

C: <NULL> � �� � �

E: the house is very small
. small|�

i: 1 2 3 4 5

j: 0 1 2 3 4

Statistical Machine Translation for
Query-Document Matching

• Translating document d to query q
• Matching degree: translation probability P(q|d)
• Key difference from conventional translation model
– Translation within the same language (need to handle self-

translation)

23

Matching with Word-based Translation Models

• Basic model
! "|$ =&

'∈"
!)|$ =&

'∈"
*

+∈$
!)|, ! ,|-

• Smoothing to avoid zero translation probability (Berger &
Lafferty ‘99)

! "|$ =&
'∈"

.!)|/ + 1 − . *
+∈$

!)|, ! ,|-

• Adding self-translation (Gao et al., ‘10)
! "|$ =&

'∈"
.!)|/ + 1 − . 3!)|$ − 1 − 3 *

+∈$
!)|, ! ,|-

24

translation probability Document language model

background language model

unsmoothed document language model

Bridging the Semantic Gap between Words
• Translation matrix can bridge the semantic gap

between query words and document words

25From Berger & Lafferty, ‘99

Capturing the Proximity

• Word-based models cannot capture the proximity

! "|$ =&
'∈"

!)|$ =&
'∈"

*
+∈$

!)|, ! ,|-

• Phrase-based translation models can capture the
proximity (Gao et al., ‘10)

26

bag of words

Learned Phrase Translation Probabilities

27

Experimental Results

• Word-based translation model (WTM) outperformed the baseline

– Translation probabilities bridge the semantic gap between query

words and document words

– Self-translation is effective

• Phrase-based translation model (PTM) further improved the

performances though capturing the proximity information
28

Models NDCG@1 NDCG@3 NDCG@10
BM25 (baseline) 0.3181 0.3413 0.4045

WTM (without self-translation) 0.3210 0.3512 0.4211

WTM (with self-translation) 0.3310 0.3566 0.4232

PTM 0.3355 0.3605 0.4254

Based on a large scale real world data set containing 12,071 English queries sampled
from one-year query log files of a commercial search engine (Gao et al., 2010)

MATCHING IN LATENT SPACE

29

Mapping

q

d

Lq

Ld

Query space

Document space

Latent space

Matching in Latent Space
• Assumption

– Queries/documents have similarities
– Click-through data represent “similarity” relations between

queries and documents
• Approach

– Project queries and documents to latent space
– With some regularization or constraints

30

Partial Least Square (PLS)

• Two spaces: ! ⊂ ℝ$ and % ⊂ ℝ&

• Training data: '(, *(, +((,-
. , +(∈ +1,−1 or +(∈ ℝ

• Model
– Dot product as similarity:3 ', * = 56

7 ', 58
7* = '75658

7*

– 56 and 58 are two linear (and orthonormal) transformations
• Objective function

argmax>?,>@A
BC,D-

'(
756587*(−A

BC,E-
'(
756587*(

s. t. 56756 = IJ×J, 58758 = IJ×J

31

Regularized Mapping to Latent Space
(RMLS)

• Two spaces: ! ⊂ ℝ$ and % ⊂ ℝ&

• Training data: '(, *(, +((,-
. , +(∈ +1,−1 or +(∈ ℝ

• Model
– Dot product as similarity:3 ', * = 56

7 ', 58
7* = '75658

7*

– 56 and 58 are two linear (and orthonormal) transformations
with ℓ- and ℓ: regularizations (sparse transformations)

• Objective function
argmax@A,@BC

DE,F-
'(
75658

7*(−C
DE,G-

'(
75658

7*(

s. t. 56 ≤ L6, 58 ≤ L8, 56 ≤ M6, 56 ≤ M8

32

PLS v.s. RMLS

PLS RMLS
Transformation

Assumption
orthonormal and

regularization
Optimization

Method
singular value

decomposition
coordinate

ascent
Optimality global optimum local optimum
Efficiency low high
Scalability low high

33

Bridging the Semantic Gap
• Latent space models bridge semantic gap between

words through
– Reducing dimensionality of latent space (from term level

matching to semantic matching)
– Correlating semantically similar terms (matrices are not

diagonal)
• Automatically learning mapping functions from data

34
Mapping

q

d

Lq

Ld

Query space

Document space

Latent space

Capturing the Order Information

• Depends on the features for representing the
queries and documents
– Bag-of-words representations: order of words missed
– Bag of phrases or other proximity features: capture

the order of words

35

query representation Lq

Ld

Latent spacedocument representation

Experimental Results

• Latent space models work better than baseline (BM25)

• RMLS works equally well as PLS, with higher learning

efficiency and scalability

36

NDCG@1 NDCG@3 NDCG@5
BM25 0.637 0.690 0.690

SSI 0.538 0.621 0.629

BLTM 0.657 0.702 0.701

PLS 0.676 0.728 0.736
RMLS 0.686 0.732 0.729

Based on a web search data set containing 94,022 queries and 111,631 documents.
Click through associated with the queries and documents at a search engine is used.

References
• Adam Berger, Rich Caruana, David Cohn, Dayne Freitag, and Vibhu Mittal. Bridging the Lexical

Chasm: Statistical Approaches to Answer-Finding. In SIGIR 2000.
• Jianfeng Gao, Xiaodong He, and JianYun Nie. Click-through-based Translation Models for Web

Search: fromWord Models to Phrase Models. In CIKM 2010.
• Jianfeng Gao, Kristina Toutanova, and Wen-tau Yih. Clickthrough-based latent semantic models for

web search. In SIGIR 2011.
• Jianfeng Gao : Statistical Translation and Web Search Ranking. http://research.microsoft.com/en-

us/um/people/jfgao/paper/SMT4IR.res.pptx
• Dustin Hillard, Stefan Schroedl, and Eren Manavoglu, Hema Raghavan, and Chris Leggetter.

Imrpoved Ad Relevance in Sponsored Search. In WSDM 2010.
• Jian Huang, Jianfeng Gao, Jiangbo Miao, Xiaolong Li, Kuansan Wang, Fritz Behr, and C. Lee Giles.

Exploring web scale language models for search query processing. In WWW 2010.
• Ea-Ee Jan, Shih-Hsiang Lin, and Berlin Chen. Translation Retrieval Model for Cross Lingual

Information Retrieval. In AIRS 2010.
• Rong Jin, Alex G. Hauptmann, and Chengxiang Zhai. Title Language Model for Information Retrieval.

In SIGIR 2002.
• Maryan Karimzadehgan and Chengxiang Zhai. Estimation of Statistical Translation Models based on

Mutual Information for Ad Hoc Information Retrieval. In SIGIR 2010.
• David Mimno , Hanna M. Wallach , Jason Naradowsky , David A. Smith, Andrew McCallum.

Polylingual topic models. In EMNLP 2009.

37

References
• Adam Berger and John Lafferty. Information Retrieval as Statistical Translation. In SIGIR 1999.
• Jae-Hyun Park, W. Bruce Croft, and David A. Smith. Qusi-Synchronous Dependence Model for Information

Retrieval. In CIKM 2011.
• Stefan Riezler and Yi Liu. Query Rewritting Using Monolingual Statistical Machine Translation. In ACL

2010.
• Dolf Trieschnigg, Djoerd Hiemstra, Franciska de Jong, and Wessel Kraaij. A cross-lingual Framework for

Monolingual Biomedical Information Retrieval. In CIKM 2010.
• Elisabeth Wolf, Delphine Bernhard, and Iryan Gurevych. Combining Probabilistic and Translation-based

Models for Information Retrieval based on Word Sense Annotations. In CLEF Workshop 2009.
• D.R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: An overview with

application to learning methods. Neural Computation, 2004.
• Jianfeng Gao, Kristina Toutanova and Wen-tau Yih. Clickthrough-based latent semantic models for web search.

In Proc. of SIGIR, 2011.
• R. Rosipal and N. Krämer. Overview and recent advances in partial least squares. Subspace, Latent Structure

and Feature Selection, 2006.
• Wei Wu, Hang Li, and Jun Xu. Learning Query and Document Similarities from Click-through Bipartite

Graph with Metadata. Microsoft Research Technical Report, 2011.
• Jun Xu, Hang Li, Chaoliang Zhong, Relevance Ranking Using Kernels, In Proceedings of the 6th Asian

Information Retrieval Societies Symposium (AIRS'10), 1-12, 2010.
• Hector Garcia-Molina, Georgia Koutrika, Aditya Parameswaran, Information Seeking: Convergence of Search,

Recommendations, and Advertising Communications of the ACM, Vol. 54 No. 11, Pages 121-130.
• Brian H. Ross. Psychology of Learning and Motivation: Advances in Research and Theory. Elsevier. 2002.

38

Outline of Tutorial
• Unified view of matching in search and recommendation
• Part 1: Traditional Approaches to Matching

– Traditional matching models for search
– Traditional matching models for recommendation

• Collaborative Filtering Models
• Generic Feature-based Models

• Part 2: Deep Learning Approaches to Matching
• Summary

39

Collaborative Filtering

• Collaborative Filtering (CF) is the most well-known technique
for recommendation.

“CF makes predictions (filtering) about a user’s interest by collecting
preferences information from many users (collaborating)” ---Wikipedia

40

1. Memory-based CF:
Predict by memorizing similar
users’ (or items’) ratings

2. Model-based CF:
Predict by inferring from an
underlying model.

Rating Matrix
(Interaction Matrix)Input Tabular data

Memory-based CF
Problem: predict user u’s rating on item i.
• User-based CF leverages the ratings of u’s similar users

on the target item i.

• Item-based CF leverages the ratings of u on other
similar items of i.

• Many similarity measures can be used, e.g., Jaccard,
Cosine, Pearson Correlation. Recent advance learns the
similarity from data.

41

Similar users of u
Rating of a similar user on i

Similar items of i
Rating of u on a similar item

Note: many normalization terms are discarded for clarity.

Model-based CF
• Matrix Factorization (MF) is the most popular and effective

model-based CF method.
• It represents a user and an item as a vector of latent factors.
• The score is estimated as the inner product of user latent

vector and item latent vector.

• Optimizing a loss to minimize the prediction error on training
data can get the latent vectors. 42

Item latent vector:

User latent vector: Prediction score:

Convergence of Recommendation and
Search Methods

• MF is similar to “Matching in Latent Space” methods in Search!

1. Using one-hot encoding on the ID feature of user and item

2. Using a linear mapping function, i.e.,
3. Using inner product as the matching function in the latent space.

43

Mapping

q

d

Lq

Ld

Query space
(user)

Document space
(item)

Latent space

User (u) Item (i)

vu = Lq u , vi = Ld i

Item-based CF in Latent Space
(Kabbur et al., KDD’14)

• Instead of only using an ID to encode a user, we can make the
encoding more meaningful by using the user’s rated items.

• This can be interpreted as an item-based CF model.

– Known as the Factored Item Similarity Model (FISM) (Kabbur et al, KDD’14)
44

User multi-hot encoding
on rated items

Item one-hot encoding

* * *

+

Use all items as neighbors

Factorize item similarity in the latent space

Fusing User-based and Item-based CF in
Latent Space (Koren, KDD’08)

• MF (user-based CF) represents a user as her ID.
– Directly projecting the ID into latent space

• FISM (item-based CF) represents a user as her interacted items.
– Projecting interacted items into latent space

• SVD++ fuses the two types of models in the latent space:

– This is the best single model for rating prediction in the Netflix challenge.

45

User representation in latent space

Note: the normalization terms are discarded for clarity.

Feature-based Recommendation
• CF utilizes only the interaction matrix only to build the

predictive model.
• How about other information like user/item attributes and

contexts?
• Example data used for building a RecSys:

E.g., user gender,
age, occupation
personality …

E.g., item category,
description, image …

rating data

context data

user
data

item data

E.g., location, time,
weather, mood …

Feature-based Recommendation

47

E.g., user gender,
age, occupation
personality …

E.g., item category,
description, image …

rating data

context data

user
data

item data

E.g., location, time,
weather, mood …

Sparse Predictive Model

One-hot encoding

Input Features:
1. Categorical features:

user/item ID, bag-of-words,
historical features…
2. Numerical features:

textual/visual embeddings,
converted features (e.g. TFIDF,
GBDT)…Each row

encodes all
info for a
rating

FM: Factorization Machine (Rendle, ICDM’10)

• FM is inspired from previous factorization models

• It represents each feature as a latent vector (embedding), and
models the second-order feature interactions:

– Note: self-interaction is not included: < vi , vi >.

• FM allows easy feature engineering for recommendation, and
can mimic many existing models (that are designed for a specific
task) by inputting different features.

– E.g., MF, SVD++, timeSVD (Koren, KDD’09), PIFT (Rendle, WSDM’10) etc.

48

First-order: Linear
Regression

Second-order: pair-wise
interactions between features

Matrix Factorization with FM
• Input: 2 variables <user (ID), item (ID)>.

49

With this input, FM is identical to MF with bias:

MF

Factored Item Similarity Model with FM

50

TI NH SW ST

Rated Movies

• Input: 2 variables <user (historical items ID), item (ID)>.

With this input, FM subsumes FISM with additional terms:

FISM

Further input user
ID into FM will
resume SVD++

Learning Recommender Models
• For ranking novel items for a user (i.e., top-K recommendation),

it is crucial to account for the missing data (negative signal)
3 common loss functions (for a user u):
» 1. Pointwise Regression Loss (explicit & implicit data):

» 2. Pointwise Classification Loss (implicit data):

» 3. Pairwise Classification loss (implicit data):

L2 regularizer must be tuned to prevent overfitting.
51

(Rendle et al., UAI’09)

(Bayer et al, WWW’17)

(He et al, WWW’17)

References
• https://en.wikipedia.org/wiki/Collaborative_filtering
• Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. Fast matrix factorization for

online recommendation with implicit feedback. In SIGIR 2016.
• Yehuda Koren, and Robert Bell. Advances in collaborative filtering. Recommender systems

handbook. Springer, Boston, MA, 2015. 77-118.
• Santosh Kabbur, Xia Ning, and George Karypis. Fism: factored item similarity models for top-n

recommender systems. In KDD 2013.
• Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering

model. In KDD 2018.
• Steffen Rendle. Factorization machines. In ICDM 2010.
• Yehuda Koren. Collaborative filtering with temporal dynamics. Communications of the ACM

53, no. 4 (2010): 89-97.
• Steffen Rendle, and Lars Schmidt-Thieme. Pairwise interaction tensor factorization for

personalized tag recommendation. In WSDM 2010.
• Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. A generic coordinate

descent framework for learning from implicit feedback. In WWW 2017.
• Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural

collaborative filtering. In WWW 2017.
• Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. BPR:

Bayesian personalized ranking from implicit feedback. In UAI 2009.
52

Outline of Tutorial
• Unified view of matching in search and recommendation
• Part 1: Traditional Approaches to Matching
• Part 2: Deep Learning Approaches to Matching

– Overview
– Deep matching models for search
– Deep matching models for recommendation

• Summary

53

Growing Interests in “Deep Matching”

• Success of deep learning in other fields
– Speech recognition, computer vision, and natural language processing

• Growing presence of deep learning in IR research
– SIGIR 2016 keynote, Tutorial, and Neu-IR workshop

• Adopted by industry
– ACM News: Google Turning its Lucrative Web Search Over to AI

Machines (Oct. 26, 2015)
– WIRED: AI is Transforming Google Search. The Rest of the Web is Next

(April 2, 2016)
• Chris Manning (Stanford)’s SIGIR keynote:

“I’m certain that deep learning will come to dominate SIGIR
over the next couple of years … just like speech, vision, and
NLP before it.”

54

“Deep” Semantic Matching

• Representation

– Word: one hot —> distributed

– Sentence: bag-of-words —> distributed representation

– Better representation ability, better generalization ability

• Matching function

– Inputs (features): handcrafted —> automatically learned

– Function: simple functions (e.g., cosine, dot product) —>

neural networks (e.g., MLP, neural tensor networks)

– Involving richer matching signals

– Considering soft matching patterns

55

Deep Learning Paradigms for Matching

• Methods of representation learning

• Methods of matching function learning

56

Query/user

Document
/item

Matching
signals Aggregation matching

score

Query/user

Document
/item

Neural
Network

Neural
Network

matching
score

Query/user representation

Document/item representation

Methods of Representation Learning
• Step 1: calculate representation !(#)
• Step 2: conduct matching % ! # , ! '

57

calculate
representation

conduct
matching

query

document

Neural
Network

Neural
Network

matching
score

Query representation

Document representation

Methods of Matching Function Learning

• Step 1: construct basic low-level matching signals
• Step 2: aggregate matching patterns

58

Basic matching
signals

Matching
function

query

document

Matching
signals Aggregation matching

score

Outline of Tutorial
• Unified view of matching in search and recommendation
• Part 1: Traditional Approaches to Matching
• Part 2: Deep Learning Approaches to Matching

– Overview
– Deep matching models for search
– Deep matching models for recommendation

• Summary

59

METHODS OF REPRESENTATION
LEARNING

60

query

document

Neural
Network

Neural
Network

matching
score

Query representation

Document representation

Representation Learning for
Query-Document Matching

• Step 1: calculate query and document representation
Step 2: conduct query-document matching

61

calculate
representations

conduct
matching

query

document

Neural
Network

Neural
Network

matching
score

Query representation

Document representation

Typical Methods of Representation
Learning for Matching

• Based on DNN
– DSSM: Learning Deep Structured Semantic Models for Web

Search using Click-through Data (Huang et al., CIKM’13)
• Based on CNN

– CDSSM: A latent semantic model with convolutional-pooling
structure for information retrieval (Shen et al. CIKM’14)

– ARC I: Convolutional Neural Network Architectures for Matching
Natural Language Sentences (Hu et al., NIPS’14)

– CNTN: Convolutional Neural Tensor Network Architecture for
Community-Based Question Answering (Qiu and Huang, IJCAI’15)

• Based on RNN
– LSTM-RNN: Deep Sentence Embedding Using the Long Short

Term Memory Network: Analysis and Application to Information
Retrieval (Palangi et al., TASLP’2016)

62

Deep Structured Semantic Model (DSSM)

• Bag-of-words representation

– “candy store”: [0, 0, 1, 0, …, 1, 0, 0]

• Bag of letter-trigrams representation

– “#candy# #store#” --> #ca can and ndy dy# #st sto tor ore re#

– Representation: [0, 1, 0, 0, 1, 1, 0, …, 1]

• Advantages of using bag of letter-trigrams

– Reduce vocabulary: #words 50K à # letter-trigram: 30K

– Generalize to unseen words

– Robust to misspelling, inflection etc. 63

Bag of letter-

trigrams

Fully connected

layer
Cosine similarity

query

document

Neural

Network

Neural

Network

matching

score

DSSM Matching Function

• Cosine similarity between semantic vectors

• Training
– A query q and a list of docs
– positive doc, negative docs to query
– Objective:

64

S =
xT · y
|x| · |y|

D = {d+, d�1 , · · · , d
�
k }

d+ d�1 , · · · , d
�
k

P (d+|q) = exp(� cos(q, d+))P
d2D exp(� cos(q, d))

DSSM: Brief Summary
• Inputs: Bag of letter-trigrams as input for improving the scalability

and generalizability
• Representations: mapping sentences to vectors with DNN:

semantically similar sentences are close to each other
• Matching: cosine similarity as the matching function

• Problem: the order information of words is missing (bag of letter-
trigrams cannot keep the word order information)

65letter-trigrams Fully connected
layer Cosine similarity

query

document

Neural
Network

Neural
Network

matching
score

How to Capture Order Information?
• Input: word sequence instead of bag of letter-trigrams
• Model
– Convolution based methods can keep locally order
– Recurrent based methods can keep long dependence relations

66

Sequence of
words

Convolution or
recurrent NN

Cosine similarity

query

document

Neural
Network

Neural
Network

matching
score

CNN can Keep the Order Information
1-D convolution and pooling operations can keep the
word order information

67

the cat on thesat

the cat
cat sat

the cat sat

cat sat
sat on

cat sat on

sat on
on the

sat on the

on the
the mat

on the mat

mat

the cat
sat on

the cat sat

sat on
the mat

on the mat

Convolution

Pooling

Using CNN: ARC-I (Hu et al., 2014) and
CNTN (Qiu et al., 2015)

• Input: sequence of word embeddings trained on a large dataset
• Model: the convolutional operation in CNN compacts each

sequence of k words

68
the cat on thesat

the cat
cat sat

the cat sat

cat sat
sat on

cat sat on

sat on
on the

sat on the

on the
the mat

on the mat

mat

the cat
sat on

the cat sat

sat on
the mat

on the mat

Convolution

Pooling

. . .

Concatenation

word embedding

Using CNN: CDSSM (Shen et al., ’14)
The convolutional operation in CNN compacts each
sequence of k words

Convolution

bag of letter-trigram

max pooling

30k

the

30k

cat

30k

sat … ...

30k

mat

300 300 300

… ...

… ...

300

max max … ... max

128
max pooling

RNN can Keep the Order Information

• RNNs implement dynamical systems
• RNNs can approximate arbitrary dynamical systems with arbitrary

precision
• Two popular variations: long-short term memory (LSTM) and

gated recurrent unit (GRU)
70

query or
document

hidden output

hidden

output

……

Query or
document

the cat sat mat……

Using RNN: LSTM-RNN (Palangi et al., ’16)

• Input: sequence letter trigrams

• Model: Long-short term memory (LSTM)

– The last output as the sentence representation

71

��

Bag of letter-trigrams

�� ��

h1 h2 hm…outputs

Embedding vector for
the whole sentence

Matching Function

72

• Heuristic: cosine, dot product
• Learning: MLP, Neural tensor

networks

query

document

Neural
Network

Neural
Network

matching
score

Matching Functions (cont’)

• Given representations of query and document : q
and d

• Similarity between these two representations:
– Cosine Similarity (DSSM, CDSSM, RNN-LSTM)

– Dot Product

– Multi-Layer Perception (ARC-I)

73

s =
qT · d
|q| · |d|

s = qT · d

s = W2 · �
✓
W1 ·

q
d

�
+ b1

◆
+ b2

Matching Functions (cont’)

• Neural Tensor Networks (CNTN) (Qiu et al., ’15)

74

s = uT f

✓
qTM[1:r]d+ V

q
d

�
+ b

◆

query

document

f ++
u

M

V b

q

d

Extensions to Representation Learning Methods

• Problem: representations are too coarse to conduct text match
– Experience in IR: combining topic-level and word-level matching signals

usually achieve better performances

• Solution: add fine-grained signals, include MultGranCNN(Yin et
al., ACL 2015), U-RAE (Socher et al., NIPS 2011), MV-LSTM (Wan
et al., AAAI 2016)

75

Adding different levels
of query/document
representations

query

document

Query
representation

Document
representation

matching
score

Experimental Results

Model P@1 MRR
Traditional methods BM25 0.579 0.726

Representation

learning for matching

ARC-I 0.581 0.756

CNTN 0.626 0.781

LSTM-RNN 0.690 0.822

uRAE 0.398 0.652

MultiGranCNN 0.725 0.840

MV-LSTM 0.766 0.869

76

• Representation learning methods outperformed baselines

– Semantic representation is important

• LSTM-RNN performed better than ARC-I and CNTN

– Modeling the order information does help

• MultiGranCNN and MV-LSTM are the best performing methods

– Fine-grained matching signals are useful

Based on Yahoo! Answers dataset (60,564 question-answer pairs)

METHODS OF MATCHING
FUNCTION LEARNING

77

query

document

Matching
signals Aggregation matching

score

Matching Function Learning

• Step 1: construct basic low-level matching signals
• Step 2: aggregate matching patterns

78

Basic matching
signals

Matching
function

query

document

Matching
signals Aggregation matching

score

Typical Matching Function Learning Methods

• Matching with query-document matching matrix :
– ARC II (Hu et al., NIPS’14)
– MatchPyramid (Pang et al. AAAI’16
– Match-SRNN (Wan et al. IJCAI’16)
– K-NRM (Xiong et al., SIGIR 2017)
– Conv-KNRM (Dai et al., WSDM 2018)

• Matching with attention model (Parikh et al., EMNLP
2016)

79

ARC-II

• Let two sentences meet before their own high-level representations
mature

• Basic matching signals: phrase sum interaction matrix

• Interaction: CNN to capture the local interaction structure

• Aggregation Function: MLP

80

sequence of word
embeddings

6 word embeddings
from query and
document (N=3)

ARC-II (cont’)
• Keeping word order information
– Both the convolution and pooling are order preserving

• However, word level exact matching signals are lost
– 2-D matching matrix is constructed based on the

embedding of the words in two N-grams
81

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

(4, 1) (4, 2) (4, 3) (4, 4)

(1, 1) (1, 4)

(3, 3)(4, 2)

2D pooling

MatchPyramid
• Inspired by image recognition
• Basic matching signals: word-level matching

matrix
• Matching function: 2D convolution + MDP

82

Word matching matrix 2D convolution pooling

Matching Matrix: Basic Matching Signals

• Each entry calculated based on
– Word-level exact matching (0 or 1)
– Semantic similarity based on embeddings of words

• Positions information of words is kept
83

Exact match Cosine similarity

Matching Function: 2D Convolution

• Discovering the matching patterns with CNN, stored
in the kernels

84

Discovered Matching Patterns

85

Match-SRNN (Wan et al., 16)

• Based on spatial recurrent neural network (SRNN)
• Basic matching signals: word-level matching matrix
• Matching function: Spatial RNN + MLP

86

Matching matrix Spatial RNN

Match-SRNN: Recursive Matching Structure

• Calculated recursively (from top left to

bottom right)

• All matching signals between the

prefixes been utilized

– Current position: sat <—> balls

– Substrings:

• the cat <—> the dog play

• the cat <—> the dog play balls

• the cat sat <—> the dog play 87

the cat sat

on the …

the dog play

balls on …

the

cat

sat

on

the

the dog play balls on

the

cat

sat

on

the

the dog play balls on …

the cat sat on the …

K-NRM: Kernel Pooling as Matching Function
(Xiong et al., SIGIR 2017)

• Basic matching signals: cosine similarity of word embeddings
• Ranking function: kernel pooling + nonlinear feature combination
• Semantic gap: embedding and soft-TF bridge the semantic gap
• Proximity: kernel pooling and sum operations lost word order information

88

the cat sat
on the mat…

the dog play
balls on …

M"#

the dog play balls on

the

cat

sat

on

the

mat

Matching matrix Soft-TF
(k-dimensional vectors)

Kernel
pooling

.

.

.

Kernel
pooling

$

features %

matching
score

tanh *% + ,

Kernel
pooling

$
#
exp − 1"# − 23

4

2634

Conv-KNRM (Dai et al., WSDM 2018)
• Based on KNRM
• N-gram cross-matching to capture the word order information

89

Query

Document

…

…

convolution

…

…

unigrams

bigrams

query unigram-doc
unigram match

Cross-match

Kernel pooling
and sum

Kernel pooling
and sum

Kernel pooling
and sum

Kernel pooling
and sum

matching
score

tanh %& + (

soft-TF features &

Decomposable Attention Model for Matching
(Parikh et al., EMNLP 2016)

• Based on decomposable attention model
• Three steps: attend-compare-aggregate

– Attend: soft-align words of query and document
– Compare: separately compare word-aligned subphrase, get matching signals
– Aggregate: aggregate the matching signals for produce final matching score

the cat sat
on the mat…

the dog play
balls on …

the dog play balls on

the

cat

sat

on

the

mat

decomposable attention weight
!‘ the, balls = ! the !(ball)

.

matching
score

H

.

query word-aligned doc
subphrase matching signals,
generated by an NN G

document word-aligned query
subphrase matching signals

Experimental Evaluation
Method P@1 MRR

Traditional IR BM25 0.579 0.457

Representation
Learning methods

ARC-I 0.581 0.756

CNTN 0.626 0.781

LSTM-RNN 0.690 0.822

uRAE 0.398 0.652

MultiGranCNN 0.725 0.840

MV-LSTM 0.766 0.869

Matching Function
Learning

ARC-II 0.591 0.765

MatchPyramid 0.764 0.867

Match-SRNN 0.790 0.882

91

• Matching function learning based methods outperformed the representation
learning ones

Based on Yahoo! Answers dataset (60,564 question-answer pairs)

Summary of Deep Matching Models in Search

• Representation learning:
representing queries and
document in
semantic space

• Matching function learning:
discovering and aggregating
the query-document
matching patterns

92

query

document

Matching
signals Aggregation matching

score

query

document

Neural
Network

Neural
Network

matching
score

References
• Clark J. Google turning its lucrative web search over to ai machines[J]. Bloomberg Technology.

Publicado em, 2015, 26.
• Metz C. AI is transforming Google search[J]. The rest of the web is next. WIRED Magazine, 2016.
• Huang P S, He X, Gao J, et al. Learning deep structured semantic models for web search using

clickthrough data[C]//Proceedings of the 22nd ACM international conference on Conference on
information & knowledge management. ACM, 2013: 2333-2338.

• Hu B, LuShen Y, He X, Gao J, et al. A latent semantic model with convolutional-pooling structure for
information retrieval[C]//Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management. ACM, 2014: 101-110.

• Z, Li H, et al. Convolutional neural network architectures for matching natural language
sentences[C]//Advances in neural information processing systems. 2014: 2042-2050.

• Qiu X, Huang X. Convolutional Neural Tensor Network Architecture for Community-Based Question
Answering[C]//IJCAI. 2015: 1305-1311.

• Palangi H, Deng L, Shen Y, et al. Deep sentence embedding using long short-term memory networks:
Analysis and application to information retrieval[J]. IEEE/ACM Transactions on Audio, Speech and
Language Processing (TASLP), 2016, 24(4): 694-707.

• Yin W, Schütze H. Multigrancnn: An architecture for general matching of text chunks on multiple
levels of granularity[C]//Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers). 2015, 1: 63-73.

93

References
• Socher R, Huang E H, Pennin J, et al. Dynamic pooling and unfolding recursive autoencoders for

paraphrase detection[C]//Advances in neural information processing systems. 2011: 801-809.
• Wan S, Lan Y, Guo J, et al. A Deep Architecture for Semantic Matching with Multiple Positional

Sentence Representations[C]//AAAI. 2016, 16: 2835-2841.
• Pang L, Lan Y, Guo J, et al. Text Matching as Image Recognition[C]//AAAI. 2016: 2793-2799.
• Shengxian Wan, Yanyan Lan, Jun Xu, Jiafeng Guo, Liang Pang, and Xueqi Cheng. 2016. Match-

SRNN: modeling the recursive matching structure with spatial RNN. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence (IJCAI'16), 2922-2928.

• Ankur P. Parikh, Oscar Tackstrom, Dipanjan Das, and Jakob Uszkoreit. A Decomposable Attention
Model for Natural Language Inference. In Proceedings of EMNLP, 2016.

• Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. Convolutional Neural Networks for
Soft-Matching N-Grams in Ad-hoc Search. In Proceedings of WSDM 2018.

• Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, Russell Power. End-to-End Neural Ad-hoc
Ranking with Kernel Pooling. In Proceedings of SIGIR 2017.

94

Outline of Tutorial
• Unified view of matching in search and recommendation
• Part 1: Traditional Approaches to Matching
• Part 2: Deep Learning Approaches to Matching

– Deep matching models for search
– Deep matching models for recommendation

• Summary

95

Modern RecSys Architecture
(Covington et al, Recsys’16)

96

Candidate
Generation

Ranking

Phase 1 Phase 2

Hundreds Tens

Models: Collaborative
Filtering Models

Feature-based
Recommender Models

All
Products

Millions

user interaction history all other side infoData Sources:

Deep Matching Models for
Recommendation

97

• Methods of representation learning

• Methods of matching function learning

97

user

Item

Neural
Network

matching
score

user

Item

Neural
Network

Neural
Network

matching
score

User representation

Item representation

Methods of Representation Learning

98

1. Pure CF models:
Only ID or interaction history is used as input.
- DeepMF: Deep Matrix Factorization (Xue et al, IJCAI’17)
- AutoRec: Autoencoders Meeting CF (Sedhain et al, WWW’15)
- CDAE: Collaborative Denoising Autoencoder (Wu et al, WSDM’16)

2. CF with side information:
Any available data can be used as input.
- DCF: Deep Collaborative Filtering via Marginalized DAE (Li et al, CIKM’15)
- DUIF: Deep User-Image Feature (Geng et al, ICCV’15)
- ACF: Attentive Collaborative Filtering (Chen et al, SIGIR’17)
- CKB: Collaborative Knowledge Base Embeddings (Zhang et al, KDD’16)

Matrix Factorization as a Neural Network
(Wang et al, SIGIR’17)

• Input: user -> ID (one-hot), item -> ID (one-hot).
• Representation Function: linear embedding layer.
• Matching Function: inner product.

99

Deep Matrix Factorization (Xue et al, IJCAI’17)

100

• Input:
user -> historically rated items (multi-hot), i.e., row vector of Y

indicates the user’s global preference

item -> users who have rated it (multi-hot), i.e., column vector of Y
indicates the item’s rating profile.

Deep Matrix Factorization (Xue et al, IJCAI’17)

101

• Representation Function:
– Multi-Layer Perceptron (same as DSSM).

Matching Function: cosine similarity

AutoRec (Sedhain et al, WWW’15)

102

• Input: (similar to DeepMF)
user -> historically rated items -> user-based autoencoder.
item -> users who have rated it -> item-based autoencoder.

• Representation Function: Multi-Layer Perceptron
• Matching Function: inner product

Input reconstruction:

user-based autoencoder

Hidden neurons denote user representation

Output weights denote item representation

Collaborative Denoising Auto-Encoder
(Wu et al, WSDM’16)

103

• Input:
user -> ID & historically rated items (similar to SVD++)
item -> ID

• Representation: Multi-Layer Perceptron

W

V

Hidden neurons are user representation:

Weights of output layer are item representation

Short Summary

• Either ID or history is used as the profile of user/item
• Models with history as input are more expressive, but are also

more expensive to train.

• The Auto-Encoder architecture is essentially identical to
MLP (representation learning) + MF (matching function).

104

Nonlinear Linear

Methods of Representation Learning

105

1. Pure CF models:
Only ID or interaction history is used as input.
- DeepMF: Deep Matrix Factorization (Xue et al, IJCAI’17)
- AutoRec: Autoencoders Meeting CF (Sedhain et al, WWW’15)
- CDAE: Collaborative Denoising Autoencoder (Wu et al, WSDM’16)

2. CF with side information:
Any available data can be used as input.
- DCF: Deep Collaborative Filtering via Marginalized DAE (Li et al, CIKM’15)
- DUIF: Deep User-Image Feature (Geng et al, ICCV’15)
- ACF: Attentive Collaborative Filtering (Chen et al, SIGIR’17)
- CKB: Collaborative Knowledge Base Embeddings (Zhang et al, KDD’16)

Deep Collaborative Filtering via
Marginalized DAE (Li et al, CIKM’15)

106

• Denoising Auto-Encoder is used to learn features (hidden
layers) of user and item from side information.

• The predictive model is MF.

genres,
title, texts

age, gender,
city, occupation,
locations …

User features
reconstruction

Item features
reconstruction

Matrix Factorization Kernel

DUIF: Deep User and Image Feature Learning
(Geng et al, ICCV’15)

107

• Task: collaborative image recommendation

• Deep CNN (AlexNet) is used to extract features
for images

• The deep image features (dim=4096) are
projected to user latent space (dim=300) by
using linear projection.

• The predictive model is MF:

• The overall model (MF+W+CNN) is trained end-
to-end.

Image raw featureLinear Projection

ACF: Attentive Collaborative Filtering
(Chen et al, SIGIR’17)

108

• Input:
user -> ID & historical interacted items.
Item -> ID & visual features.

• Item Representation:
Component-level attention -> not all components contribute equally to

an item’s representation

A user’s preference on
different components of the
item is unknown & not equal!

ACF: Attentive Collaborative Filtering
(Chen et al, SIGIR’17)

109

• Input:
user -> ID & historical interacted items.
item -> ID & visual features.

• User Presentation:
– Item-level attention -> not all historical items contribute equally to a

user’s representation

A user’s preference on
historical items is unknown &
not equal!

Attention weights learned by a neural net
ó Attentive SVD++ model.

CKE: Collaborative Knowledge Base
Embedding (Zhang et al, KDD’16)

110

• Input:
user -> ID
item -> ID + Information in KB (structural, textual, visual)

Matching Function: inner product

CKE: Collaborative Knowledge Base
Embedding (Zhang et al, KDD’16)

111

• Representation:
– Structural embedding: TransR, TransE, …

– Textual embedding: stacked denoising auto-encoders (S-DAE)

– Visual embedding: stacked convolutional auto-encoders (SCAE)

Short Summary
• A General framework to summarize the above works:

• Depending on the available data to describe a user/item, we
can choose appropriate DNN to learn representation.
E.g., Textual Attributes -> AutoRec, Image -> CNN, Video -> RNN etc.

112

Matching function is a simple inner
product or cosine similarity

Next: Methods of Matching Function Learning

113

1. Pure CF models:
- Based on Neural Collaborative Filtering (NCF) framework:

NeuMF: Neural Matrix Factorization (He et al, WWW’17)
NNCF: Neighbor-based NCF (Bai et al, CIKM’17)
ConvNCF: Outer Product-based NCF (He et al, IJCAI’18)

- Based on Translation framework:
TransRec: Translation-based Recommendation (He et al, Recsys’17)
LRML: Latent Relational Metric Learning (Tay et al, WWW’18)

2. Feature-based models:
- Based on Multi-Layer Perceptron:

Wide&Deep (Cheng et al, DLRS’16), Deep Crossing (Shan et al, KDD’16)
- Based on Factorization Machines (FM):

Neural FM (He and Chua, SIGIR’17), Attentional FM (Xiao et al, IJCAI’17),
- Based on Trees:

GB-CENT: Categorical Embedding and Numerical Trees (Zhao et al, WWW’18)
DEF: Deep Embedding Forest (Zhu et al, KDD’17)
TEM: Tree-enhanced Embedding Model (Wang et al, WWW’18)

Why Using Neural Networks to Learn the
Matching Function?

• The simple choice of inner product can limit the expressiveness
of an embedding-based matching model.

• Example:

114

(E.g., assuming a unit length)

sim(u1, u2) = 0.5

sim(u3, u1) = 0.4
sim(u3, u2) = 0.66

Jaccard Similarity:

u1

u2

u3
sim(u4, u1) = 0.6 *****
sim(u4, u2) = 0.2 *
sim(u4, u3) = 0.4 ***

S42 > S43 (X)

S42 > S43 (X)

(He et al, WWW’17)

Neural Collaborative Filtering Framework
(He et al, WWW’17)

115

• NCF is a general framework that replaces the inner product with a
neural network to learn the matching function.

Matching function:
design whatever
layers as you like.

Input: design
whatever features
as you want.

Matching function based on NN

Multi-Layer Perceptron for CF

116

• The most intuitive idea is to use a Multi-Layer Perceptron as
the matching function.

Unfortunately, MLP doesn’t perform
well and underperforms MF.

Why?

(He et al, WWW’17)

MLP is Weak in Capturing Low-Rank Relation

(Beutel et al, WSDM’18)

117

MLP can learn to approximate the low-rank
relation, but is inefficient in doing so.

Setting: Generating low-rank data, and using one-layer MLP to fit it.

r: rank size; m: data dimension (2 -> matrix; 3 -> 3D tensor).

We have to design

more effective models

to make DNN work for

CF!

NeuMF: Neural Matrix Factorization

(He et al, WWW’17)

• NeuMF unifies the strengths of MF and MLP in learning the

matching function:

– MF uses inner product to capture the low-rank relation

– MLP is more flexible in using DNN to learn the matching function.

118

NNCF: Neighbor-based NCF
(Bai et al, CIKM’17)

• Feeding user and item neighbors into the NCF framework
– Direct neighbors or community neighbors are considered.

119

Experiment Evidence

120

Performance Comparison on Item Recommendation (%)

Datasets Delicious MovieLens
Models HR@5 NDCG@5 HR@5 NDCG@5

ItemPop 5.41 3.22 31.49 20.18

ItemKNN 59.69 55.90 45.01 30.14

MF-BPR 73.77 74.11 51.03 36.21

NeuMF 85.53 80.68 56.55 38.30

NNCF 87.31 84.58 62.00 42.21
Deep NCF models are
better than shallow MF
models by a large margin.

CF method is better than
non-personalized method

Model-based CF is better
than memory-based CF

(Bai et al, CIKM’17)

Convolutional NCF (He et al, IJCAI’18)

121

• Although fully connected layers are popular in learning the
matching function, they have too many parameters.

• Recently, we propose to use the locally connected CNN to build
deeper NCF models.

Outer product to get
a 2D interaction map
like an “image”!

CNN

§ 2 Fully Connected Layers: > 10M parameters
§ 6 Convolutional Layers: 20K parameters, but achieve

better performance!

Experiment Evidence

122

Datasets Gowalla Yelp
Models HR@5 NDCG@5 HR@5 NDCG@5

ItemPop 20.03 10.99 7.10 3.65

MF-BPR 62.84 48.25 17.52 11.04

MLP 63.59 48.02 17.66 11.03

IRGAN 63.89 49.58 18.61 11.98

NeuMF 67.44 53.19 18.81 11.89

ConvNCF 69.14 54.94 19.06 12.09

ConvNCF are better
than NeuMF and MLP
with much fewer
parameters.

(He et al, IJCAI’18)

Overview of Translation-based
Recommendation (Tay et al, WWW’18)

123

(b) Matrix Factorization-based(a) Translation-based

Head + Relation ≈ Tail

TransRec (He et al, Recsys’17)

• Focused on next-item recommendation
– Third-order relationship between <user, current item, next item>
– Current item is the “Relation”:

124

Predictive Model:

Item bias Translation
distance

Head + Relation ≈ Tail

Latent Relational Metric Learning

(Tay et al, WWW’18)

• Distance-based predictive model:

where r is the latent relation vector, formed by an attentive

sum over memory vectors:

125

Memory vector, which can

encode user attributes/interest.

Attention weight, with inner product

as input.

126

Overview of the LRML’s
predictive model:

Methods of Matching Function Learning

127

1. Pure CF models:

- Based on Neural Collaborative Filtering (NCF) framework:

NeuMF: Neural Matrix Factorization (He et al, WWW’17)

NNCF: Neighbor-based NCF (Bai et al, CIKM’17)

ConvNCF: Outer Product-based NCF (He et al, IJCAI’18)

- Based on Translation framework:

TransRec: Translation-based Recommendation (He et al, Recsys’17)

LRML: Latent Relational Metric Learning (Tay et al, WWW’18)

2. Feature-based models:

- Based on Multi-Layer Perceptron:

Wide&Deep (Cheng et al, DLRS’16), Deep Crossing (Shan et al, KDD’16)

- Based on Factorization Machines (FM):

Neural FM (He and Chua, SIGIR’17), Attentional FM (Xiao et al, IJCAI’17),

- Based on Trees:

GB-CENT: Categorical Embedding and Numerical Trees (Zhao et al, WWW’18)

DEF: Deep Embedding Forest (Zhu et al, KDD’17)

TEM: Tree-enhanced Embedding Model (Wang et al, WWW’18)

Recall: Input to Feature-based Models

128

Raw features:
1. Categorical features

One-hot encoding on ID features
2. Continuous features

E.g., time, frequency.
Need feature normalization

Transformed features:
1. Categorical features

Cross features are important
2. Continuous features

E.g., outputs of other models like
visual embeddings.

Wide&Deep (Cheng et al, Recsys’16)

129

Concatenation

- The wide part is linear regression for memorizing seen feature interactions,
which requires careful engineering on cross features.
E.g., AND(gender=female, language=en) is 1 iff both single features are 1

- The deep part is for generalizing to unseen feature interactions.

Wide&Deep for App Recommendation
(Cheng et al, Recsys’16)

130

Crucial to overall
performance

Deep Crossing (Shan et al, KDD’16)

131

- The deep part can learn feature interactions in an implicit way.
- The use of residual layers makes the network be deep.

Microsoft’s Sponsor Search Solution in 2016:

Concatenation

Residual Fully-Connected Layers

Empirical Evidence
• However, when only raw categorical features are used, both

DL models underperform the shallow FM in learning unseen
feature interactions.

Solid line: testing loss; Dashed line: training loss

132
(He and Chua, SIGIR’17)

Why MLP is Ineffective?

133

Besides optimization difficulties, one reason might be the model design:

1. Embedding concatenation carries little information about feature

interactions in the low level!

2. The structure of Concat+MLP is ineffective to learn the multiplicative

relation (Beutel et al, WSDM’18).

NFM: Neural Factorization Machine
(He and Chua, SIGIR’18)

• Inspired by FM, NFM models pairwise interactions between
feature embeddings with multiplication.

134

“Deep layers” learn higher-order feature
interactions only, being much easier to train.

Bilinear Interaction Pooling:

Experiment Evidence

135

FM 1.38M 0.3385 23.24M 0.4735
Logistic Regression 5.38K 0.5835 0.09M 0.5991

High-order FM 2.76M 0.3331 46.40M 0.4636

Frappe MovieLens

Method Param# RMSE Param# RMSE

Wide&Deep (3 layers) 4.66M 0.3246 24.69M 0.4512

DeepCross (10 layers) 8.93M 0.3548 25.42M 0.5130
11Neural FM (1 layer) 1.45M 0.3095 23.31M 0.4443

Table: Parameter # and testing RMSE at embedding size 128

1. Shallow embedding methods
learn interactions, better than
simple linear models

2. Deep embedding methods:
Wide&Deep = Concat+3 layers
DeepCross = Concat+10 layers

3. Our methods:
Neural FM = BI pooling + 1 layer

Shallower but outperforming
existing deeper methods with
less parameters.

Codes: github.com/hexiangnan/neural_factorization_machine

Task #1: Context-aware App Usage Prediction
- Frappe data: instance #: 288,609, feature #: 5,382

Task #2: Personalized Tag Recommendation
- MovieLens data: Inst #: 2,006,859, Feat #: 90,445

github.com%5Chexiangnan%5Cneural_factorization_machine

AFM: Attentional Factorization Machine
(Xiao et al, IJCAI’18)

136

• Neural FM treats all second-order feature interactions as
contributing equally.

• Attentional FM uses an attention network to learn the weight of a
feature interaction.

Explaining Recommendation with AFM

137

second-order interactions

Example: explainable

recommendation with

second-order cross features:

<Female, Age 20>

<Age 20, iPhone>

<Female, Color Pink>

……

The attention scores can be used to select the most predictive second-

order feature interactions as explanations.

Experiment Evidence

138

FM 1.38M 0.3385 23.24M 0.4735
Logistic Regression 5.38K 0.5835 0.09M 0.5991

High-order FM 2.76M 0.3331 46.40M 0.4636

Frappe MovieLens
Method Param# RMSE Param# RMSE

Wide&Deep (3 layers) 4.66M 0.3246 24.69M 0.4512

DeepCross (10 layers) 8.93M 0.3548 25.42M 0.5130
11Neural FM (1 layer) 1.45M 0.3095 23.31M 0.4443

Table: Parameter # and testing RMSE at embedding size 128

Codes: github.com/hexiangnan/attentional_factorization_machine

Attentional FM (0 layer) 1.45M 0.3102 23.26M 0.4325

AFM without hidden layers
can be better than NFM
with 1 hidden layer.

Task #1: Context-aware App Usage Prediction
- Frappe data: instance #: 288,609, feature #: 5,382

Task #2: Personalized Tag Recommendation
- MovieLens data: Inst #: 2,006,859, Feat #: 90,445

github.com%5Chexiangnan%5Cattentional_factorization_machine

Tree-based Model

139

Working mechanism of tree-based models:
- Each node splits a feature into two decision

edges according to a value.
- Given a feature vector, there exists a path from

the root to a leaf, which forms a decision rule
(like a cross feature).

- The leaf node corresponds to the prediction
value.

E.g., meaning of a path:

- Since a single tree may not be expressive enough, a typical way
is to build a forest, i.e., an ensemble of multiple trees:

of trees

Prediction of the s-th tree
(Wang et al, WWW’18)

Tree-based vs. Embedding-based Model

140

Tree-based Model
(e.g., GBDT)

Embedding-based Model
(e.g., DNN, FM)

+ Strong at continuous features + Strong at categorical features

+ Explainable - Blackbox
+ Low serving cost - High serving cost
- Weak generalization ability to
unseen feature combinations.

+ Strong generalization ability to
unseen feature combinations.

Why not combining the strengths of the two types of models?

In the next:
- Gradient Boosted Categorical Embedding and Numerical Trees (Zhao et al, WWW’17)
- Deep Embedding Forest (Zhu et al, KDD’17)
- Tree-enhanced Embedding Model (Wang et al, WWW’18)

GB-CENT: Gradient Boosted Categorical Embedding and
Numerical Trees (Zhao et al, WWW’17)

• GB-CENT unifies the strengths of embeddings in
categorical feature learning and trees in continuous
feature learning.
– SVDFeature is applied on categorical features.
– GBDT is applied on continuous features.

– Each categorical feature corresponds to a tree
(i.e., # of categorical features = # of trees)

141

bias SVDFeature GBDT

Deep Embedding Forest
(Zhao et al, KDD’17)

• DEF uses forest (e.g., LightGBM or XGBoost) as the hidden
layers to reduce the online serving time of embedding-based
models.

142

Deep Crossing (Shan et al, KDD’16)

Using Forest Layer instead.
- Two step training
- Initialize DEF using Deep Crossing

Experiment evidence
Methods Relative Log Loss Time(ms)

Deep Crossing 100 2.272

DEF (XGBoost) 99.96 0.168

DEF (LightGBM) 99.94 0.204

Tree-enhanced Embedding Model
(Wang et al, WWW’18)

• TEM explicitly learns which cross features are more important
for a <user, item> prediction.

143

	��,�����",�������������,����,��,�����.�
• �,����������,��������,����������,����,��,�������

��
��� �
• ����:��,���,������,���,���,�������,���������

�,����,����������������,����,�:,���� �

���,��������",�
• ���,�������,�,��,����.�������,�������,�

�,�������#,��!,�.��������������,����,�

���,����.���",��
• �,��������,�����������������,����,����,�,��,��,� �

Experiment Evidence

144

• &�D�C�DC	 �(!A
�,!C&(!%)&%�&%� ��-
�&(" �!D.� � /!%��A&(�	
• -(&�!#� &� �C�(C
• -E�#!� &�C�(!AD!&% &� -,(C�.�CD�E(�%DC
• �C�(�-,(�.�CD�E(�%D (%D�(��D!&%C

���&EDA�(�&($C AE(��
�$����!%����C���$�D:&�C�
����%�(�D�C A�(C&%�#!I��
(��C&%C �(&CC����DE(�C���&(�
��(��&$$�%��D!&%�

Table: Logloss of predictive models (the lower, the better)

Short Summary

• Feature interaction learning (i.e., cross feature effect) is
crucial for matching function learning in recommendation.

• Many models have been explored, e.g., DNN, FM, Tree-based,
Attention Net etc.

• One insight is that doing early cross on raw features (or
feature embeddings) is important to performance. E.g.,
– Wide&Deep do manual cross on raw features
– FM-based methods do second-order cross on feature embeddings
– Tree-based methods do trainable cross on raw features.

• It remains challenging to build explainable matching function
with strong generalization ability.
– I.e., explainable high-order interaction learning.

145

References

• Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations.
In Recsys 2016.

• Xiang Wang, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. Item silk road: Recommending items
from information domains to social users. In SIGIR 2017.

• Hong-Jian Xue, Xin-Yu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen. Deep matrix
factorization models for recommender systems. IJCAI 2017.

• Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Autorec: Autoencoders meet
collaborative filtering. In WWW 2015.

• Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. Collaborative denoising auto-
encoders for top-n recommender systems. In WSDM 2016.

• Sheng Li, Jaya Kawale, and Yun Fu. Deep collaborative filtering via marginalized denoising auto-
encoder. In CIKM 2015.

• Xue Geng, Hanwang Zhang, Jingwen Bian, and Tat-Seng Chua. Learning image and user features for
recommendation in social networks. In ICCV 2015.

• Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-Seng Chua. Attentive
collaborative filtering: Multimedia recommendation with item-and component-level attention. In
SIGIR 2017.

• Fuzheng, Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma. Collaborative knowledge
base embedding for recommender systems. In KDD 2016.

• Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural collaborative
filtering. In WWW 2017.

• Ting Bai, Ji-Rong Wen, Jun Zhang, and Wayne Xin Zhao. A Neural Collaborative Filtering Model with
Interaction-based Neighborhood. CIKM 2017. 146

References
• Xiangnan He, Xiaoyu Du, Xiang Wang, Feng Tian, Jinhui Tang, and Tat-Seng Chua. Out Product-

based Neural Collaborative Filtering. In IJCAI 2018.
• Ruining He, Wang-Cheng Kang, and Julian McAuley. Translation-based Recommendation. In Recsys

2017.
• Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. Latent Relational Metric Learning via Memory-based

Attention for Collaborative Ranking. In WWW 2018.
• Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen

Anderson et al. Wide & deep learning for recommender systems. In DLRS 2016.
• Ying Shan, T. Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and J. C. Mao. Deep crossing: Web-scale

modeling without manually crafted combinatorial features. In KDD 2016.
• Xiangnan He, and Tat-Seng Chua. Neural factorization machines for sparse predictive analytics. In

SIGIR 2017.
• Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua. Attentional

factorization machines: Learning the weight of feature interactions via attention networks. IJCAI
2017.

• Qian Zhao, Yue Shi, and Liangjie Hong. GB-CENT: Gradient Boosted Categorical Embedding and
Numerical Trees. In WWW 2017.

• Jie Zhu, Ying Shan, J. C. Mao, Dong Yu, Holakou Rahmanian, and Yi Zhang. Deep embedding forest:
Forest-based serving with deep embedding features. In KDD 2017.

• Xiang Wang, Xiangnan He, Fuli Feng, Liqiang Nie, and Tat-Seng Chua. TEM: Tree-enhanced
Embedding Model for Explainable Recommendation. WWW 2018.

147

Outline of Tutorial

• Unified view of matching in search and recommendation
• Part 1: Traditional Approaches to Matching
• Part 2: Deep Learning Approaches to Matching
• Summary

148

Summary
• Search and Recommendation are two sides of the same coin

Search -> Information Pull with explicit info request (query)
Recommendation -> Information Push with implicit info request (user
profile, contexts)

• Technically, they can be unified under the same matching view
– Though they are studied by different communities: SIGIR vs. RecSys

• Deep learning-based matching methods
– Representation learning-focused
– Matching function learning-focused

• Matching is a generic problem for a wide range of applications
E.g., online advertising, question answering, image annotation, drug design

149

Challenges

• Data: building better benchmarks
– Large-scale text matching data
– Large-scale user-item matching data with rich attributes.

• Model: data-driven + knowledge-driven
– Most current methods are purely data-driven
– Prior information (e.g., domain knowledge, large-scale knowledge

based) is helpful and should be integrated into data-driven learning in
a principled way.

• Task: multiple criteria
– Existing work have primarily focused on similarity
– Different application scenarios should have different matching goals
– Other criteria such as novelty, diversity, and explainability should be

taken into consideration
150

Thanks!

151

