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ABSTRACT
Clustering Web 2.0 items (i.e., web resources like videos, images)
into semantic groups benefits many applications, such as organiz-
ing items, generating meaningful tags and improving web search.
In this paper, we systematically investigate how user-generated com-
ments can be used to improve the clustering of Web 2.0 items.

In our preliminary study of Last.fm, we find that the two data
sources extracted from user comments – the textual comments and
the commenting users – provide complementary evidence to the
items’ intrinsic features. These sources have varying levels of qual-
ity, but we importantly we find that incorporating all three sources
improves clustering. To accommodate such quality imbalance, we
invoke multi-view clustering, in which each data source represents
a view, aiming to best leverage the utility of different views.

To combine multiple views under a principled framework, we
propose CoNMF (Co-regularized Non-negative Matrix Factoriza-
tion), which extends NMF for multi-view clustering by jointly fac-
torizing the multiple matrices through co-regularization. Under our
CoNMF framework, we devise two paradigms – pair-wise CoNMF
and cluster-wise CoNMF – and propose iterative algorithms for
their joint factorization. Experimental results on Last.fm and Yelp
datasets demonstrate the effectiveness of our solution. In Last.fm,
CoNMF betters k-means with a statistically significant F1 increase
of 14%, while achieving comparable performance with the state-of-
the-art multi-view clustering method CoSC [24]. On a Yelp dataset,
CoNMF outperforms the best baseline CoSC with a statistically
significant performance gain of 7%.
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1. INTRODUCTION
With the advent of Web 2.0, the Web has experienced an ex-

plosion of user-generated resources. It is reported that there are
over 1 million images1 uploaded to Flickr, and 360, 000 hours2 of
videos uploaded to YouTube per day. To index, retrieve, manage
and organize such a large number of web resources accurately and
automatically is a major challenge.

Clustering has been an effective method to address this informa-
tion overload, helping in several different contexts: in automati-
cally organizing web resources for content providers, and in diver-
sifying search results in web document ranking [8]. It has improved
retrieval effectiveness for text [41], images [22] and videos [17].
Improved clustering of web resources also helps to automatically
generate more meaningful tags [27].

In the context of Web 2.0 and user generated content, how can
we cluster such items more effectively? One key observation is
the ubiquitous feature of user comments: most Web 2.0 sites en-
able users to post comments to express their opinions. User com-
ments are a rich source of information, containing not only textual
content, but also the commenter’s username. Comments’ textual
content often describes the items in ways complementary to the
item metadata, while users themselves are typically interested in a
limited range of items matching their interests. As such, user com-
ments are well-suited as an auxiliary data source for tasks. In this
paper, we explore the central theme of how to best process user
comments and employ them to cluster Web 2.0 items. We believe
this research is timely, as recent work [14, 20] have shown that
comments do contain useful information in discriminating the cat-
egories of items.

As items themselves yield intrinsic features – such as textual
description for videos, and pixels for images – how to integrate
the two extrinsic data sources derived from comments (here, the
textual comments and the commenting users) is an important con-
sideration. A solution might simply build a unified feature space
comprising of the features from all three data sources, such that
any standard clustering algorithm can then be applied. However,
as the three data sources are generated heterogeneously and may
vary drastically in clustering quality, a simple combination method
may not achieve optimal performance. As such, the key challenge
in comment-based clustering is how to meaningfully combine the
evidence for clustering. This challenge can be addressed by multi-
view clustering, where each data source represents a view of possi-
bly different utility.

In this work, we propose extending the NMF (Non-negative Ma-
trix Factorization) for multi-view clustering. NMF [28] factorizes
the data matrix in an easily interpretable way and has shown su-

1
http://www.flickr.com/photos/franckmichel/6855169886

2
http://www.youtube.com/yt/press/statistics.html
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perior performance in document clustering [40]. While substantial
research has been conducted on NMF, studies where NMF is used
for multi-view clustering are limited. To address this gap, we pro-
pose a CoNMF (Co-regularized NMF) framework and offer two
instantiations – pair-wise CoNMF and cluster-wise CoNMF. We
further derive iterative algorithms for their joint factorization, and
apply the factorization results to multi-view clustering.

The main contributions of this paper are in:
• Systematically investigating how to best utilize comments in

clustering Web 2.0 items, and formalizing comment-based
clustering as a multi-view clustering problem;
• Proposing the CoNMF framework, and two instantiations (pair-

wise CoNMF and cluster-wise CoNMF) that extend NMF for
multiple views; and
• Applying CoNMF to two real-world datasets, Last.fm and

Yelp, and demonstrating the effectiveness of these solutions
for comment-based clustering.

The remainder of the paper is organized as follows. After review-
ing related work in Section 2, we formalize our research problem
and study the problem in a preliminary study on Last.fm in Sec-
tion 3. In Section 4, we first introduce NMF before proceeding
to detail our proposed CoNMF. In Section 5, we evaluate our pro-
posed methods, and discuss some specific topics of comment-based
clustering in Section 6. The paper is concluded in Section 7.

2. RELATED WORK
We first review the literature on the general problem of comment-

based clustering. We then review work on multi-view clustering,
which represents a collection of methods of which our specific pro-
posal of CoNMF is an instance.

2.1 Comment-based Clustering
Comments have been shown to contain useful signals for catego-

rizing and clustering the commented items. Filippova and Hall [14]
examined YouTube video categorization. They find that although
comments are quite noisy, they do provide useful, complementary
and indispensable information for video classification, while the
intrinsic features of video title, description and tags are not always
indicative of the most relevant category. In a different domain, Li et
al. [29] cluster blogs, showing that incorporating evidence from the
textual content of a blog’s comments improves over using the con-
tent (i.e., title and body) of the blog alone. Later on, Hsu et al. [20]
addresses the text of comments, proposing a more comprehensive
processing pipeline to de-noise comments. They employ both term
normalization and key term extraction before clustering. In [21],
Hu et al. shows that comments help the summarization of web
blogs. While these works are both seminal in showing the efficacy
of comments, they only examine the textual content of comments,
and ignore the identity of the contributing users, which is a valuable
data source for clustering.

To the best of our knowledge, only Kuzar and Navrat’s work [25]
on Slovak blog clustering has used the identity of the commenting
users. They find that users typically comment on similar blogs,
and that such implicit relations produce clusterings that differ from
content-based clustering. Crucially they show that a combination
of both content- and comment-based analyses yields better overall
clustering. However, their combination method is heuristic: they
first cluster blogs using only blog content. They then identify the
decile of blogs with lowest clustering confidence, and refine their
clustering based on the commentator-based clustering.

From the above work, we have strong evidence that comments
are useful in clustering Web items. However, previous work has yet
to comprehensively utilize all parts of the user comments, focusing

primarily on the intrinsic content. To the best of our knowledge,
no work has yet to provide a comprehensive study of comment-
based clustering, nor provided an effective solution to combine the
commenting users’ identity, textual content from comments, and
item-intrinsic features for clustering.

2.2 Multi-View Clustering
Work on multi-view clustering can be grouped into three cate-

gories – early, intermediate and late integration – based on when
the information from the single views are integrated for clustering.

Early Integration. In these approaches, multiple views are first
integrated into a unified view, and then input to any standard clus-
tering algorithm. Representative work include [4, 9], which project
the multi-view data into a low-dimensional subspace through Canon-
ical Correlation Analysis (CCA).K-means or spectral clustering is
then applied to the projected subspace.

Late Integration. In these approaches, each view is clustered
individually, and then the results are merged to reach a consensus.
Bo et al. [33] assume that the optimal clustering should be close to
the clustering of all views as much as possible. Bruno et al. [7] treat
the optimal clustering as hidden factors to generate the clustering
of the different views, and then adopt PLSA [18] to solve the prob-
lem. Greene et al. [16] first concatenate the cluster membership of
different views to a unified matrix, and then perform NMF on the
unified matrix to obtain the final clustering.

Intermediate Integration. In these approaches, multiple views
are fused during the clustering process. Kumar et al. [24] propose a
co-regularization framework to extend spectral clustering for multi-
view clustering. Wang et al. [38] propose a mutual reinforcement
clustering approach for multi-view interrelated data objects. Their
basic idea is to iteratively propagate the clustering results of one
view to all its related views. Ramage et al. [36] propose Multi-
Multinomial LDA, which extends LDA [5] by assuming the latent
factors of each single view are generated by a shared distribution.
They show superior performance over k-means on clustering web-
pages from content words and social tags.

Our proposal directly extends NMF for multi-view clustering,
and is an instance of intermediate integration. It is most simi-
lar in spirit to [1, 32]. Akata and Thurau [1] propose to jointly
factorize multiple data matrices (views) through a shared coeffi-
cient matrix (the W matrix in Section 4.1). This is a hard con-
straint which may be too strict in some scenarios. Additionally,
their method is provably equivalent to early integration, where one
first concatenates all views into a unified matrix, and subsequently
applies NMF. Recently, Liu et al. [32] propose MultiNMF, which
regularizes the coefficient matrices learned from different views to-
wards a common consensus for clustering. In their work, a key
challenge to address is how to make the coefficient matrix of dif-
ferent views comparable. They employ the L1 norm on the whole
data matrix, and then enforce the same L1 norm constraint on the
coefficient matrix during factorization. We find two weaknesses of
their solution in practice. First, when the length of vectors varies
greatly across views, the resulting proposed L1 norm on the whole
matrix is biased towards longer vectors3. However, their solution
integrates the normalization constraint into the optimization frame-
work, making their technique specific to L1 norm and difficult to
extend to other normalization strategies. Second, when the cluster-
ing quality of the component views varies greatly, the learned con-
sensus can underperform a single good view, as the poor quality
views negatively affect the consensus. Though one can manually

3Vector length denotes the number of features derived from an
item. Section 3.3 and 5.4 demonstrates the impact of normaliza-
tion on clustering.
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tune weights to decrease the effect of noisy views, this parameter
tuning process of unsupervised learning is non-trivial.

We address both issues of MultiNMF in our method. We co-
regularize on each pair of views, which is more robust to the pres-
ence of noisy views. This addresses the second issue. For the first
issue, we embed the normalization into the optimization process,
which enables us to adopt any normalization strategy on the coeffi-
cient matrices, effectively offsetting the influence of vector length
in multi-view clustering.

3. PRELIMINARIES
Before describing CoNMF, we discuss some necessary prelim-

inaries. We first give a formal problem statement for comment-
based clustering, and then introduce the evaluation criteria. We
further conduct an initial study on Last.fm that motivates our ap-
proach and illustrates the challenges.

3.1 Problem Statement
We investigate how comment data is best used to assist clustering

items. We note two separate data sources that can be extracted from
comments4: the textual content of the comments and the identities
of the commenting users. Items also additionally have intrinsic
features that can be distilled from the items themselves. Formally,
the comment-based clustering problem is then:

Input: A set of items numbered 1, ..,m. Each item consists of
three views: a set of words extracted from the textual content
of comments, a set of commenting usernames, and intrinsic
features derived from themselves. A target number of clus-
ters K.

Output: A mapping from each item to a particular cluster k ∈
1, ...,K.

Our problem formulation results in a flat (non-hierarchical) and
hard (single-assignment) clustering problem. For soft clustering
algorithms, such as LDA and NMF, we take the most likely cluster
in the soft assignment to yield a hard assignment. We also note that
one can cluster the items based solely on the comments, which can
be cast as a two-view clustering problem, a simpler version of our
three-view problem. We consider three-view clustering to explore
how to best cluster Web 2.0 items with the help of user comments.

3.2 Clustering Evaluation Metrics
Measures for evaluating clustering can be split into intrinsic and

extrinsic criteria. Internally, good clusterings should result in high
intra-cluster similarity and low inter-cluster similarity. However, a
good score on an intrinsic criterion does not necessarily mean good
task effectiveness [34]. For this reason, we adopt extrinsic crite-
ria, which measure how well the clustering matches ground truth
(GT). The GT is ideally produced by human judges and with good
credibility. In this paper, we evaluate with the extrinsic metrics of
clustering accuracy [40] and F1 [34].

Accuracy measures the percentage of items that are assigned to
their correct categories, which is intuitive and one of the easiest
means to access clustering quality. The best mapping of clusters to
GT labels can be found by the Kuhn-Munkres algorithm [23].

Clustering F1 is similar to classification F1, where the only dif-
ference is that precision and recall are computed over pairs of items;
e.g., a true positive means that a pair of items attributed to the same
GT label are correctly assigned to the same cluster. We select F1

because it measures the quality of putting similar items together
4Comment timestamps can also be leveraged, but we leave this ex-
tension for future work.

while keeping dissimilar items apart, and is well-understood in the
information retrieval community. We also employed other metrics
– including normalized mutual information, purity and adjusted
random index – but as the results are consistent across metrics, we
present only accuracy and F1.

3.3 Preliminary Study
We execute an initial study with data drawn from Last.fm, a mu-

sic listening and sharing site. We choose Last.fm mainly based
on the availability of ground truth, as each item (artist) is tagged
with category labels (music genre). Other Web 2.0 sites, such as
YouTube, may be a better choice as the items are uploaded by
users. However, in these websites the ground truth (categorization
of items) may not be of high quality [14, 20], providing an inaccu-
rate evaluation of clustering. We find that the categories of Last.fm
artists do accurately reflect their music genre, and thus choose this
source for our study. We describe the Last.fm dataset in more com-
prehensive detail later in Section 5.1, as we use it again in our for-
mal experimentation later.

We utilize the k-means clustering algorithm [35] for our study.
K-means is a widely used, intuitive and efficient clustering algo-
rithm based on the vector space model (VSM).

We want to answer the following questions with our study:
Q1. How do the three views differ in their ability to discriminate

different categories of items? Do the views based on user
comments help?

Q2. How should we preprocess comments to reduce noise and im-
prove clustering efficiency?

Q3. In the VSM, how should each vector be normalized? How
should the individual features for each view be weighted?

Q4. How should we combine the three views optimally? Will the
resultant combined view yield better clustering?

We run k-means 20 times with random initialization and report
the average performance in Table 1 when run with different settings
described next. The column names “Des.”, “Com.” and “Usr.” rep-
resent the item-intrinsic description view, and the two comment-
based views (comment words view and users view), respectively.
In answering the above questions, we work our way from the basic
k-means to answering the issues of noise filtering, normalization,
term weighting and view combination, to yield a worthy baseline
for comparison.

Basic Feature Space (Row 1). To get a base result, we first
build a plain VSM for each view: each item is represented as a
row vector. The raw counts of the words or usernames are used as
the vector elements. Then, we run k-means on each view’s feature
space, yielding the performance reported in Row 1. The cluster-
ing quality is poor, bettering random assignment (accuracy / F1 of
about 6.6% / 5.0%) by a small margin.

Filtering Noisy Features (Row 2). As our textual features are
known to be noisy, and the feature space is large, we consider how
to filter noise to improve performance. For the two text-based views
(the comment words and description views), we first retain only
English words, then remove common stop words and conflate the
words to stemmed form, using the NLTK toolkit [3]. For the users
view, we retain users who had commented on more than 2 items, as
users that only comment on few items may not be strong signals for
clustering. Table 2 shows the dimensionality of the original and re-
duced feature spaces, where we see a drastic reduction, which aids
clustering efficiency. This filtered space’s yields improved perfor-
mance on the description view, while perfomance on the users and
comment words views are unchanged. As such, we take the filtered
features as the basis for the remainder of this initial study.
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Table 1: K-means performance with different settings.
Metric Accuracy (%) F1 (%)
View Des. Com. Usr. Des. Com. Usr.
1. Basic 11.8 9.3 8.4 7.5 10.1 9.8
2. Filtered 15.3 9.4 8.6 10.9 10.3 9.8
3. L1 15.2 19.0 7.9 11.0 13.9 9.9
4. L1-whole 14.5 9.7 8.5 10.8 10.4 9.8
5. L2 (count) 15.9 26.9 34.5 10.7 17.6 15.2
6. L2 (tf) 16.8 25.9 34.7 10.6 17.1 15.3
7. L2 (tf×idf) 23.5 30.1 34.5 14.5 16.8 14.7
8. Combined 40.1 24.2

Table 2: Dimensionality of each view, for the original and re-
duced feature space.

View Des. Com. Usr.
Original 99, 405 2, 244, 330 455, 457
Reduced 14, 076(−85%) 31, 172(−98%) 131, 353(−71%)

Normalization (Rows 3–5). As normalization influences clus-
tering performance, we assess the impact of different normalization
strategies. Item-based L2 norm, where each item vector is scaled
to a unit length, is a widely used scheme for k-means, resulting
in Spherical k-means [11]. The item-based L1 norm yields a unit
sum for each vector, which has a probabilistic explanation where
feature values represent its probability of occurring in the item, is
also often used. In [32], the authors propose using L1 norm on the
whole data matrix (which we denote as L1-whole), meaning that
each entry in the matrix is divided by the sum of all entries. This
results in the elements in the entire data matrix summing to unity,
which has the probabilistic explanation where each entry denotes
the joint probability of the feature and item.

Rows 3–5 show the results of applying these three normalization
strategies. While the results for the description view remain largely
unchanged, the comment words and users view are improved, with
the L2 norm outperforming both L1 and L1-whole significantly.
For the description view, we find that the item’s description is con-
tributed by Last.fm’s editorial staff and is of a controlled length. As
such, the vector length does not vary much across items and nor-
malization has little effect. In contrast, the vector length for the two
comment-based views depends on the number of comments on the
item, which varies greatly. As shown in Figure 1, although most
items (∼ 95%) receive less than 512 comments, these items are
almost evenly distributed in different intervals. In such a case, nor-
malizing byL1-whole will still bias towards frequently commented
items, while an item-based L2 norm is more effective in offsetting
the influence of vector length for clustering. In the following, we
use the item-based L2 norm. In other experiments where we sub-
stituted NMF for k-means, we reach the same conclusion.

Term weighting (Rows 5–7). Feature weighting also influences
the clustering process. In information retrieval, weighting based on
term frequency and inverse document frequency (tf×idf) are com-
mon. We follow the standards in [2] to implement three common
weighting schemes, whose results are shown in Rows 5–7: raw
term count (count), term frequency (tf, log of raw term count) and
tf×idf. Note that we first weigh the features, before normalizing
the vectors with the L2 norm.

For the two text-based views (description and comment words
view), tf×idf performs significantly better than tf and count, while
for the users view, all three weighting schemes perform compara-
bly. In the following, we thus use tf×idf for the two text-based
views, while using raw term counts for the users view.

Figure 1: Distribution of items in the Last.fm dataset by num-
ber of comments.

Combined view (Row 8). Having benchmarked the clustering
performance using the views individually, we assess whether there
is benefit in combining the views together using a simple early inte-
gration approach. We first normalize each view, and then concate-
nate all views using the same weight. Formally, let the row vector
of an item be vd, vc and vu for the three views respectively. Then

the combined vector is v = [
√

1
3

vd,
√

1
3

vc,
√

1
3

vu].
Row 8 shows that such a simple integration performs well, sig-

nificantly outperforms all of the individual views on both metrics (p-
value < 0.01). This results indicates that combining the views is
advantageous. Further experiments where we tried different linear
weightings of the three views did not further improve performance.

Our preliminary study has benchmarked k-means performance on
the clustering of Last.fm artists (items) into genres (categories). We
saw that with proper filtering, normalization and feature weighting,
the individual views can generate useful clusters and start to an-
swer the four questions posed at the beginning of this section. A
key outcome of the study is that the users view (i.e., identity of
commenting users) is useful, but potentially overlooked in previ-
ous research.

Concluding this preliminary study, we see that early integration
by combining all three views into a single view yields improved
clustering performance, answering the second half of Q4. But as
the views differ in nature and in innate clustering quality, we sus-
pect that a more principled method of integration may yield even
better results. The remainder of our paper describes our approach
to find a convincing framework for answering Q4.

4. CO-REGULARIZED NMF
Our solution in finding a principled method to combine views

adopts the non-negative matrix factorization (NMF) technique. Af-
ter briefly reviewing on NMF in Section 4.1, we propose the general
CoNMF framework to combine multiple views for joint factoriza-
tion, and then introduce two paradigms of the framework – pair-
wise CoNMF and cluster-wise CoNMF. As an additional contribu-
tion, we further devise a novel k-means based method for CoNMF
initialization, and derive the time complexity of our proposed method.

4.1 Non-negative Matrix Factorization
NMF is a matrix factorization technique that factorizes the non-

negative data matrix into two non-negative matrices [28]. Formally,
let V ∈ Rm×n

+ be the data matrix of non-negative elements. Each
row vector Vi· denotes an item (m denotes the number of items and
n denotes the number of features). The factorization is formulated
as V ≈ WH , where W and H are m × K and K × n matri-
ces, respectively. K is the a pre-specified parameter denoting the
dimension of reduced space. In clustering applications, K also de-
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Algorithm 1: Co-regularized NMF (CoNMF)

Input: Non-negative matrices {V (s)}, parameters {λs}, parameters
{λst} and number of clusters K;

Output: Coefficient matrices {W (s)} and basis matrices {H(s)};
1 Normalize each view V (s) such that ||V (s)

i· || = 1;
2 Initialize matrices {W (s)} and {H(s)} (Section 4.5);
3 while Objective function does not converge and
4 Number of iterations ≤ Threshold do
5 for each s from 1 to nv do
6 Normalize W (s) and H(s) using Eq. (12) (Section 4.3.2);
7 Update W (s) and H(s) using either
8 Eq. (10) (Pair-wise CoNMF; cf Section 4.3) or
9 Eq. (14) (Cluster-wise CoNMF; cf Section 4.4);

10 end
11 end
12 return {W (s)} and {H(s)}

notes the number of desired clusters. The goal of factorization is to
minimize:

O = ||V −WH||, s.t. W ≥ 0, H ≥ 0, (1)

where || · || denotes the squared sum of all elements in the matrix.
W is termed the coefficient matrix and H the basis matrix.

It is known that the objective function is not convex inW andH .
As such, it is infeasible to find the global minima. In [37], Lee and
Seung propose a solution to find a local minima through alternating
optimization, which fixes W optimizing J over H , and then fixes
H optimizing J over W . The iterative update rules are as follows:

H ← H � WTV

WTWH
, W ←W � V HT

WHHT
, (2)

where � and the division symbol in this matrix context denote
element-wise multiplication and division5.

The non-negative property of NMF makes the reduced space
easy to interpret, in contrast to other matrix factorizations that do
not share this property (e.g., PCA and SVD). Specifically, each el-
ement Wik of matrix W indicates the degree of association of item
i with cluster k. As such, one just need to take the largest value of
row vectorWi· as the (hard) cluster assignment of item i. NMF has
shown good performance and much work has been done in both ap-
plying NMF to different problem areas as well as on studying NMF
itself [39]. Aside from the original use of NMF for learning parts
of images [28], NMF has shown superior performance in document
clustering [40] and website recommendation [30]. Some theoreti-
cal studies [13, 15] have shown the equivalence between NMF with
other clustering algorithms, including K-means, Spectral Cluster-
ing and PLSA, with additional constraints.

4.2 CoNMF Framework
The hypothesis behind multi-view clustering is that different views

should admit the same underlying clustering of the data. Formally,
given nv views denoting as {V (1), ..., V (nv)}, each view is factor-
ized as V (s) ≈ W (s)H(s), where W (s) are with same dimension
m ×K for all views, while H(s) are of dimension K × n(s), dif-
fering per view.

In our CoNMF approach (overview in Algorithm 1), we im-
plement this constraint by coupling the factorization of the views
through co-regularization. Generally speaking, the objective func-
tion of CoNMF is formulated as:

5For example, (A�B)ij = AijBij . Same for element-wise divi-
sion. We adopt this expression in the following sections.

J =

nv∑
s=1

λs||V (s) −W (s)H(s)||+R, s.t.W (s) ≥ 0, H(s) ≥ 0,

(3)
where λs are the parameters to combine the factorization of differ-
ent views andR is the co-regularization function that enforces sim-
ilarity constraints on multiple views. CoNMF is a general frame-
work as different regularization schemes and similarity measures
can be used to implement the co-regularization function R.

4.3 Pair-wise CoNMF
To implement the hypothesis of multi-view clustering, an intu-

itive method is to regularize the coefficient matrices of the different
views towards a common consensus, which is then used for clus-
tering. This is the cornerstone of MultiNMF [32] (consensus-based
co-regularization). However, a key weakness of this approach is
that it fares well only when views are largely homogeneous and
of roughly the same quality. In real world applications, different
views may be generated heterogeneously and may vary drastically
in quality. This is the case that we observe in our comment-based
clustering settings (cf. Table 4 of Section 5.3). In the MultiNMF
approach, the model’s constraints enforce a rigid common consen-
sus that forces views with higher clustering utility to be degraded by
ones with lower utility, which may lead to poorer performance (cf.
Table 6 of Section 5.4).

Pair-wise CoNMF relaxes MultiNMF’s constraints, instead of
imposing similarity constraints on each pair of views. Through the
pair-wise co-regularization, we expect that the coefficient matrices
learned from two views can complement with each other during the
factorization process. It should thus yield a better latent space and
be more effective for clustering.

Intuitively, the co-regularization function of pair-wise CoNMF
is defined as follows:

R1 =

nv∑
s=1

nv∑
t=1

λst||W (s) −W (t)|| =
∑
s,t

λst||W (s) −W (t)||,

(4)
where λst is the parameter to denote the weight of the similarity
constraint on W (s) and W (t). Substituting R in Eq. (3) with R1,
we obtain the objective function:

J1 =

nv∑
s=1

λs||V (s) −W (s)H(s)||+
∑
s,t

λst||W (s) −W (t)||,

s.t. W (s) ≥ 0, H(s) ≥ 0.
(5)

We then minimize the objective function to get the solution.

4.3.1 Optimization
Similar to the known solution for NMF, we can adopt alternating

optimization to minimize the objective function. The optimization
works as follows: (1) fix the value of W (s) while minimizing J1
over H(s); then (2) fix the value of H(s) while minimizing J1 over
W (s). We iteratively execute these two steps until convergence, or
until a set number of iterations is exceeded.

The objective function J1 can be re-written as:

J1 =

nv∑
s=1

λsTr(V
(s)TV (s) − 2V (s)TW (s)H(s)

+H(s)TW (s)TW (s)H(s))

+
∑
s,t

λstTr(W
(s)TW (s) − 2W (s)TW (t) +W (t)TW (t)),

(6)
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where Tr(·) denotes the trace function. Here, ||A|| = Tr(ATA)
and Tr(AB) = Tr(BA) are used in the derivation. To enforce the
non-negativity constraints, we need to incorporate Lagrange mul-
tipliers. Let α(s) and β(s) be the Lagrange matrices for constraint
W (s) ≥ 0 and H(s) ≥ 0, respectively. The Lagrange L1 is:

L1 = J1 +

nv∑
s=1

Tr(α(s)W (s)T ) + Tr(β(s)H(s)T ). (7)

Then, the derivatives of L1 with respect to W (s) and H(s) are:

∂L1

∂W (s)
=λs(−2V (s)H(s)T + 2W (s)H(s)H(s)T )

+

nv∑
t=1

λst(2W
(s) − 2W (t)) + α(s),

∂L1

∂H(s)
=λs(−2W (s)TV (s) + 2W (s)TW (s)H(s)) + β(s).

(8)

Using the Karush-Kuhn-Tucker (KKT) conditions thatα(s)
ij W

(s)
ij =

0 and β(s)
ij H

(s)
ij = 0, we have:

∂L1

∂W (s)
�W (s) =0,

∂L1

∂H(s)
�H(s) =0.

(9)

Solving the above equations, we derive the following update rules:

H(s) ← H(s) � W (s)TV (s)

W (s)TW (s)H(s)
,

W (s) ←W (s) �
λsV

(s)H(s)T +
∑nv

t=1 λstW
(t)

λsW (s)H(s)H(s)T +
∑nv

t=1 λstW (s)
.

(10)

These update rules form the solution for the pair-wise CoNMF
algorithm’s iterative execution. It is easy to see thatW (s) andH(s)

are non-negative after each update. Moreover, it is provable that the
objective function J1 is non-increasing under the above iterative
updating rules, and the convergence is guaranteed. The proof can
be shown by constructing the auxiliary function similar to [37]6.

4.3.2 Normalization
While the above provides a sound solution for the optimization,

in practice we find that inserting a normalization step is important.
The above solution is guaranteed to minimize the objective function
with local minima, but we notice that this solution does not always
lead to meaningful results. There are two possible reasons for this:
(1) the W matrices of the different views might not be comparable
at the same scale; (2) there is a case that the value of objective
function is always decreased but which does not progress towards
a solution. To see the case, let us consider a solution W (s) and
H(s). In the next iteration, the value of J1 can be decreased by the
update:

H(s) ← cH(s), W (s) ← 1

c
W (s), (11)

where c is a constant larger than 1. Under these update rules,
the first term of J1 in Eq. (5) (the combination of factorization of
different views) remains unchanged, while the second term (co-
regularization function) is decreased. In this case, J1 is decreased
through just scaling the W (s) and H(s), which is not meaningful.
6The proof is provided in the supplementary materials at
http://www.comp.nus.edu.sg/~xiangnan

We can solve both problems by normalizing the W matrices of
the different views to make them comparable with each other, and
effectively disallowing scaling. Notice that each column vector of
W (s) represents a cluster, whose elements give the strength of asso-
ciation of the items to the cluster. As such, normalizing the column
vectors of W (s) makes the cluster assignments of different views
comparable. As our preliminary analysis (Section 3.3) has shown
that the vector based L2 norm is more effective in offsetting the
influence of vector length for clustering, we adopt the L2 norm.

Formally, let Q(s) be the diagonal matrix with values Q(s)
jj =√∑

iW
(s)2
ij . Then the normalization strategy works as follows:

W (s) ←W (s)Q(s)−1, H(s) ← Q(s)H(s). (12)

Note that H(s) is scaled by Q(s) correspondingly. In applying this
simultaneous normalization, the value of the first term of Eq. (5)
remains unchanged, while the co-regularization function is then
forced to become meaningful as the coefficient matrices from dif-
ferent views are comparable.

With this modified procedure, we first normalize the W and H
matrices of all views, and then execute the update rules during each
iteration. In each iteration, the update rules decrease the value of
J1 with the normalized W and H (we term it normalized descent).
While the normalization process may change the original value
of J1 before updating, the algorithm may not naturally converge.
However, we argue that this normalized descent is more meaning-
ful than purely decreasing the value of J1, because it avoids both
the comparable problem and scaling problem.

4.4 Cluster-wise CoNMF
Adopting the L2 normalization admits another possible imple-

mentation of CoNMF. As the column vector of the coefficient ma-
trix W represents a cluster, when we adopt the vector-based L2

norm, each entry ofWTW gives the cosine similarity between two
clusters. As such, WTW can then be interpreted as the pair-wise
cluster similarity matrix.

This leads to a natural definition for a cluster-wise paradigm of
CoNMF. We define the co-regularization function of cluster-wise
CoNMF as follows:

R2 =
∑
s,t

λst||W (s)TW (s) −W (t)TW (t)||. (13)

Following the same process of optimization as in Section 4.3.1,
we obtain the following update rules for cluster-wise CoNMF:

H(s) ← H(s) � W (s)TV (s)

W (s)TW (s)H(s)
,

W (s) ←W (s) �
λsV

(s)H(s)T + 2
∑

t λstW
(s)W (t)TW (t)

λsW (s)H(s)H(s)T + 2
∑

t λstW (s)W (s)TW (s)
.

(14)
Note that the update rules for H(s) of both CoNMF instantia-

tions are the same, and are equivalent to standard NMF. This is
because our proposed CoNMF only makes soft regularization with
respect to the W matrices, while the H matrices – which repre-
sent the factorization of each individual view – remain unchanged.
This desireable property effectively retains the information of each
view during the factorization process. We discuss this property in
Section 5.4.

4.5 Initialization
As the objective function of NMF is non-convex, the iterations

only find locally-optimal solutions. Under standard NMF, W and
H are initialized randomly. However, research on NMF have found
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that proper initialization plays an important role in the performance
of NMF in many applications [6, 26]. It is reported that all NMF
algorithms are sensitive to the initialization [26].

With multi-view clustering in mind, we propose a method to ini-
tialize CoNMF more effectively based on k-means, which is simple
and efficient. Running k-means yields two outputs: the cluster as-
signment of each item and the centroid of each cluster. We propose
to use these outputs to initialize W and H , respectively. We ini-
tialize the W matrix uniformly for all views while initializing the
H matrix separately for each view. This is because the W matrices
will be softly regularized with each other, while the H matrices are
updated separately to represent the factorization of each view.

Initialization of W matrices. To initialize W , we first run k-
means on the combined view. The clustering assignments can be
represented as a m × K cluster membership matrix M , such that
Mik = 1 if and only if item i is assigned to cluster k, otherwise
Mik = 0. As W is the coefficient matrix denoting the cluster
membership, M can be used to initialize W . We propagate the
Mik = 1 entries as-is in W (s), but importantly, set all Mik = 0
entries to a random number r in the range (0, 1), instead of 0. This
is needed to prevent the search space from becoming too sparse
prematurely, as under the multiplicative CoNMF update rules, zero
entries lead to a disconnected search space and result in overly lo-
calized search. The proposed initialization smooths out the initial
search space, dealing with sparsity, while conforming to the same
k-means combined view clustering in the first iteration.

Initialization ofH matrices. For the initialization of eachH(s),
we first run k-means on the view s. Let the centroid of a cluster be a
vector c(s)k , then all centroids of the clustering can be represented as
a matrix C(s) = [c(s)1 , ..., c(s)K ]T . We use C(s) as the initialization
of H(s). The reasons are as follows. The factorization of NMF can
be written as

Vi· ≈
K∑

k=1

WikHk·, (15)

where Vi· is the i-th row vector of data matrix V , Hk· is the k-th
row vector of H . As such, Hk· can be seen as the basis vector to
resemble the original data. In k-means clustering, each item is as-
signed to the cluster with nearest centroid. Therefore, the centroids
of k-means clustering can also be deemed as the K basis vectors
of the original data. As such, using the centroids to initialize H
places them in the same space initially, which is more meaningful
than random initialization. Similarly, as the update rules of H(s)

are multiplication-based and C(s) may be very sparse, which may
cause shrinkage of the search space. We add a small constant ε to
each element of C(s) to avoid the shrinking effect.

4.6 Time Complexity Analysis
We now analyse CoNMF’s time complexity, using standard NMF

as the basis for big O notation.
CoNMF is essentially an extension of NMF for multiple data

matrices. It can be shown that the cost for NMF’s update rules
in each iteration is O(nmK). As CoNMF’s update rule for each
H(s) is same with the original NMF, its cost is also O(nmK).
For each W (s) of pair-wise CoNMF in Eq. (10), the additional
cost in terms of plain NMF is the second term of the numera-
tor and denominator, whose time complexity is O(nvmK). As
such, the time complexity of update rules of pair-wise CoNMF is
O(nvmK + nmK). As nv denotes the number of views, which
is a small constant (in our comment-based clustering, nv = 3) s.t.
nv � n, this yields O(nvmK + nmK) ≈ O(nmK). Simi-
larly, for cluster-wise CoNMF, the time complexity of update rules
of each view is O(nvmK

2 + nmK) ≈ O(nmK). Therefore,

Figure 2: Items per category in our Last.fm dataset.

the time complexity of CoNMF update rules in each iteration is
O(nvnmK), as there are nv views to update, making CoNMF a
linear extension of NMF. We empirically verified this in our experi-
ments, as the actual running time of CoNMF was similar to running
plain NMF on the three single views in series.

In real applications, although n may be very large, the data ma-
trix is typically very sparse. As such, the number of actual opera-
tions can be far less. In addition, the multiplication-based update
rules of our proposed CoNMF solutions further reduce the calcula-
tion, especially in later iterations. Distributed computation strate-
gies for NMF with MapReduce [30] can also be used on CoNMF,
ensuring that CoNMF can also be applied to large-scale data.

5. EXPERIMENTS
Our evaluation focuses on evaluating CoNMF for comment-based

multi-view clustering; specifically, to quantify the performance gain
by utilizing the signal across views. We do this by first benchmark-
ing the performance computed from single views, then contrasting
it against the performance on multi-view clustering. We also com-
pare CoNMF against other multi-view clustering techniques.

5.1 Datasets
We experiment with two datasets: Last.fm and Yelp. Table 3

gives summary demographics over the two datasets.
Last.fm. This dataset is the source of our preliminary study de-

scribed earlier. Last.fm lists 26 music genres. We use 21 of these,
which are shown in Figure 2. We exclude “world”, “60s”, “70s”,
“80s”, “90s”, which we feel are less reflective of a particular music
style. For each of the 21 genres’ music page, we crawl the artists
tagged to it. As an artist may be tagged with multiple genres, we
retain only artists tagged to a single genre, to facilitate hard cluster-
ing evaluation. For each artist, we crawl his or her bio description
and user comments. In total, our Last.fm dataset consists of 9, 694
artists, 455, 457 users and 2, 993, 222 comments. Figure 2 shows
the distribution of items (artists) to genre in our Last.fm dataset.

After the reduction on features described in Section 3.3, we ar-
rive at a reduced set of 14, 076 description features (unique tokens),
31, 172 comment features and 131, 153 unique users. The follow-
ing experiments are on the reduced dataset.

Yelp. This dataset is a subset of the Yelp Challenge Dataset
(YDC)7, which is from the greater Phoenix, AZ metropolitan, in-
cluding 11, 537 items (businesses), 229, 907 comments and 43, 873
users. Each item is associated with relevant categories, from a fixed
vocabulary provided by Yelp. There are 22 first-level categories.
Retaining only items that are unambiguously mapped to only one
first-level category, we obtain 9, 537 items. Figure 3 shows the
statistics of number of items per category on this dataset. As can
be seen, the distribution is very skewed: the top category “restau-

7http://www.yelp.com/dataset_challenge
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Table 3: Per-view demographics for our datasets.
Dataset Item # Des. Com. Usr.
Last.fm 9, 694 14, 076 31, 172 131, 353
Yelp 2, 624 1, 779 18, 067 17, 068

Figure 3: Items per category in our Yelp dataset.

rants” takes 39.9% items and the top three categories take 64.5%
items. Such a skewed distribution influences the clustering eval-
uation greatly. To balance the number of items per category, one
common way is to randomly sample some items for the large cate-
gories [32, 24]. However, this makes evaluation unstable and hard
to replicate. As such, we further limit our dataset to categories with
that have only items in the range of 100 to 500. Our final Yelp
dataset consists of 2, 624 items from 7 categories: Health & Medi-
cal, Active Life, Local Services, Pets, Nightlife, Home Services and
Arts & Entertainment. This dataset consists of three views as well.
The comment words view and users view are extracted the same
way as in Last.fm, with the exception that we drop the users view
frequency filter, as the dataset is smaller in general. For the item-
intrinsic view (description view), we use the businesses’ names.

5.2 Baselines
We implement CoNMF on the basis of nimfa [42], a python li-

brary for NMF. Aside from the baseline k-means and NMF, we
further compare with the following algorithms:

1. SVD. We run SVD on the data matrix, using the objective
latent number of dimensions as K, then cluster the reduced space
using k-means. This is a typical SVD workflow for clustering [40].

2. MMLDA [36]. Multi-Multinomial LDA is an extension of
LDA for clustering webpages from content words and social tags,
which can be seen as two views. Latent topics of words and tags
are generated from the same multinomial distribution. As it is a
two-view clustering algorithm, we merge the two text-based views
(description and comment words view) into a single “words” view,
then run the algorithm on the words view and users view, to derive
the final clustering. We use the EM implementation of [10]. The
topic prior is set to be 0.7, as suggested by the authors.

3. CoSC [24]. This is a co-regularization based extension of
spectral clustering algorithm, designed specifically for multi-view
clustering. We use the default Gaussian kernel to build the affin-
ity matrix and set the regularization parameters to be 0.01, as sug-
gested by the authors.

4. MultiNMF [32]. This is a consensus-based regularization so-
lution for NMF on multi-view clustering. As the authors provide
a NMF-based initialization, we use their suggested initialization
method, setting the regularization parameters uniformly as 0.01 as
suggested. Trying other values, we also find its performance to
be consistent. Initially, MultiNMF normalizes the data matrix us-
ing L1-whole, which has been shown to be sensitive to the vector
length. For this reason, we further evaluate a solution that attempts
to remove the influence of vector length. This solution, which we

Table 4: Single-view clustering results. The best performing
algorithm’s results are bolded.

Metric Accuracy (%) F1 (%)
View Des. Com. Usr. Des. Com. Usr.

Last.fm
k-means 23.5 30.1 34.5 14.5 16.8 14.7
SVD 28.2 27.6 28.0 24.5 23.4 24.5
NMF 29.5 39.1 43.6 17.4 28.0 31.6

Yelp
k-means 25.2 56.3 25.0 26.6 50.2 26.4
SVD 23.7 23.8 19.6 22.3 22.8 19.8
NMF 37.2 60.2 23.6 27.5 57.0 21.5

term, MultiNMF-L2, first conducts item-basedL2 norm beforeL1-
whole, and then runs MultiNMF.

For fair comparison, we consider all three views as equally impor-
tant in our comment-based clustering. In the CoNMF settings, the
regularization parameters are set to 1 for all views and datasets. We
study the parameter settings in Section 5.4.1. As the W matrix of
either view can be used for clustering, we report the performance of
the best view. For each method, 20 test runs with different random
initializations were conducted and the average score is reported. In
the following, we report statistical significance (judged at the 5%
level by a one-tailed two-sample t-test) where appropriate.

5.3 Single-view Clustering
Running clustering on the single views establishes a baseline for

comparison against multi-view clustering. It also allows us to com-
pare the different single view clustering algorithms: k-means, SVD
and NMF.

For Last.fm (Table 4, top), NMF achieves the best performance
most often. The performance variation across different views is
consistent in k-means and NMF: the users view performs best, and
the description view performs worst. SVD, in contrast, yields con-
sistent sub-par performance across all views, even when we vary
the K for the number of latent dimensions (not shown). As SVD
maps the data into orthogonal bases, which may lead to negative
values, SVD’s clusters are difficult to interpret naturally [40]. Thus,
it is inappropriate to judge clustering credibility of the views. The
results of SVD on the Yelp dataset also reflect this.

For Yelp (Table 4, bottom), the comment words view performs
best, and the users view performs worst. Additionally, the gap be-
tween different views’ performance are larger than those for Last.fm.
We posit that the disparity will challenge standard multi-view clus-
tering algorithms, as the views with poor performance may degrade
the clustering of the well-performing views.

5.4 Multi-view Clustering
Table 5 shows the results of multi-view clustering. K-means,

SVD and NMF are run on the combined view. CoNMF-P achieves
the best performance in all cases, while CoSC and CoNMF-C achieve
comparable performance on Last.fm and Yelp, respectively. Al-
though the difference between CoNMF-P and CoNMF-C is less
salient for Last.fm, it is consistent and statistically significant.

We also note that the standard deviation in Yelp is generally
larger than Last.fm, which we attribute to the larger performance
gap in the single view clustering: the performance gap (accuracy
/ F1) in terms of k-means between the comment words and users
view is 31.3% / 23.8%; in contrast, the largest gap in Last.fm (be-
tween users and description views) is 11.0% / 0.2%.

Single view clustering on the combined view leads to mixed re-
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Table 5: Multi-view clustering results (mean ± standard devi-
ation with 95% confidence intervals).

Dataset Last.fm Yelp
Metric Acc. (%) F1 (%) Acc. (%) F1 (%)
k-means 40.1± 2.5 24.2± 1.9 58.2± 7.2 52.2± 6.5
SVD 29.7± 4.5 24.2± 3.1 23.0± 1.8 21.5± 2.4
NMF 45.5± 3.2 35.6± 1.9 58.5± 6.8 51.8± 5.6

MMLDA 35.2± 1.6 27.5± 1.5 48.1± 7.3 47.1± 6.8
CoSC 51.7±2.3∗ 38.9±1.7∗ 60.8± 2.7 56.4± 3.0
MulNMF 29.9± 1.8 21.6± 1.3 31.6± 2.4 24.2± 1.5
MulNMF-L2 45.5± 2.3 31.7± 1.6 30.2± 2.6 24.8± 1.5
CoNMF-P 51.9±2.5∗ 38.8±1.8∗ 67.6±4.6∗ 63.8±3.7∗
CoNMF-C 49.7± 2.5 36.2± 1.8 67.3±5.4∗ 63.6±4.9∗

Table 6: Effect of two regularization schemes on the clustering
accuracy (%) of each single view.

Dataset Last.fm Yelp
View Des. Com. Usr. Des. Com. Usr.
MulNMF-L2 43.4 45.0 44.8 29.8 30.9 28.9
CoNMF-P 33.2 42.4 51.9 50.2 67.6 43.4

sults: sometimes better and sometimes worse. SVD does not show
significant improvement, k-means improves only for Last.fm, and
NMF does better for Last.fm but worse for Yelp. This provides evi-
dence that when views differ in quality, simply combining all views
may not lead to improved performance.

Surprisingly, MMLDA underperforms the single view clustering
of k-means and NMF. A plausible explanation is that the assump-
tion of shared distribution to generate the latent topics of words
view and users view may not hold for comment-based clustering.
MMLDA was originally proposed to combine words and tags for
webpage clustering. Words and tags are all text-based features,
which are used to describe webpages and are still homogeneous.
However in comment-based clustering, the users view and the words
view are entirely different in nature: the users view reflects the
users who are interested in a range of items, while the words view
describe items. As such, the shared distribution constraint of MM-
LDA may be too hard, and a soft constraint may perform better.

MultiNMF does not outperform the single view baselines sig-
nificantly. We believe both the normalization and regularization
strategies of MultiNMF may be responsible. For normalization,
MultiNMF proposes to use L1-whole, which is sensitive to vector
length. As can be seen in Last.fm, the original MultiNMF does
not perform well, but that applying item-based L2 norm before L1-
whole works better. In consensus-based regularization, multiple
views are regularized towards a common consensus, which may de-
crease performance when incorporating views with lower quality.
The Yelp results provide evidence for this case: NMF on the best
(worst) view yields an accuracy of 60.2% (23.6%), and the resultant
MultiNMF only achieves 31.6% accuracy. The large performance
gap between CoNMF and MultiNMF on Yelp supports our claim
that pair-wise co-regularization suffers less from noisy views, and
that the joint factorization generates a better latent space for more
effective clustering.

To demonstrate the difference of two regularization schemes, we
show the clustering accuracy of each single view after regulariza-
tion in Table 6. After the consensus-based regularization of Mult-
iNMF, each view obtains similar performance and reaches a con-
sensus. However, the information of a view itself is lost due to the
consensus constraints. In contrast, CoNMF retains the performance
variance across views is similar to the original NMF (Table 4),
while improving each view’s clustering performance over NMF. It

Figure 4: Evaluation on λst while holding λs = 1 for all views.

is this ability that leads to the overall improvement of CoNMF over
MultiNMF as in Table 5.

Overall, the results demonstrate the effectiveness of CoNMF for
comment-based multi-view clustering. By combining all three views
in a principled way, CoNMF performs consistently better than clus-
tering in single views as well as in the combined view. In Last.fm,
CoNMF achieves a comparable performance with state-of-the-art
method CoSC, and outperforms other baselines significantly. In
Yelp, CoNMF performs best and achieves about 7% performance
gain over the best baseline, CoSC.

5.4.1 CoNMF Parameter Study
There are two sets of regularization parameters in CoNMF: λs

for each view, and λst for each pair of views. Relative λs values
determine each view’s importance in factorization; while relative
λst values determine the weight of the pair’s similarity constraint
in co-regularization. Relative values across λs and λst balance the
effect of factorization and co-regularization.

By default, all parameters are set to 1. Figure 4 shows the perfor-
mance of CoNMF-P when varying λst while holding λs = 1 for
all views. We report only the accuracy of CoNMF-P, as F1 figures
and CoNMF-C are similarly consistent. As can be seen, for both
datasets, CoNMF-P is relatively stable across a wide spectrum of
settings, performing best when λst in the 1–2 range. Specifically,
for Last.fm across all settings, CoNMF-P betters other baselines
besides CoSC (best performance obtained when λst = 2, which
is 52.5%, but is still in the same significance level with CoSC). In
Yelp, over all parameter settings, the performance is significantly
better than all baselines. As the three views have different cluster-
ing credibility, we also studied whether we can improve the clus-
tering by tuning the weight λs of the best view. However, the per-
formance is not improved.

These results indicate that CoNMF is stable across a wide range
of parameters. As the coefficient matrices are normalized before
the update rules at each iteration, they are already comparable for
co-regularization. This suggest that both sets of parameters can be
set to 1 when no prior knowledge informs their setting.

6. DISCUSSION
We examine two specific topics worth a more detailed discus-

sion: on the utility of the users view for comment-based clustering,
and how clustering could be applied to tag generation (a topic of
much current interest).

6.1 Users View Utility
Intuitively, the utility of the users view relies on users comment-

ing on like items, which provides evidence for clustering. The
users view is most effective for users who selectively comment only
many items in a single category. However, when users comment on
either only one item, the value of their comment action (n.b., just
the action, and not the content) is zero.

We can filter users by comment frequency to try to favor the
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Table 7: Sample prominent words drawn from the clusters of the comment words view.
Last.fm Yelp

Cluster Top words Cluster Top words
Ambient ambient, beauti, relax, wonder, nice, music Active life class, gym, instructor, workout, studio, yoga
Blues blue, guitar, delta, guitarist, piedmont, electr Arts & Enter. golf, play, cours, park, trail, hole, theater, view
Classical compos, piano, concerto, symphoni, violin Health & Med. dentist, dental, offic, doctor, teeth, appoint
Country countri, tommi, steel, canyon, voic, singer Home services apart, compani, unit, instal, rent, mainten
Hip hop dope, hop, hip, rap, rapper, beat, flow Local services store, cleaner, cloth, dri, shirt, custom, alter
Jazz jazz, smooth, sax, funk, soul, player Nightlife bar, drink, food, menu, beer, tabl, bartend
Pop punk punk, pop, band, valencia, brand, untag, hi Pets vet, dog, pet, cat, anim, groom, puppi, clinic

Figure 5: Accuracy and running time of NMF on the users view

former case. We set a comment frequency threshold t, filtering
out users who comment less frequently than the threshold from the
original datasets. Figure 5 shows how the performance and running
time of NMF vary with threshold t. As CoNMF extends NMF, the
performance–time curve for CoNMF is consistent with NMF. We
observe that a small amount of filtering is significantly useful in
lessening the computational costs for NMF on the users view. As
a case in point, when t = 20, only 2.7% and 1.4% of the original
users remain in the users view of the two datasets. In such cases,
the filtered users do not contribute much signal, and may even fil-
ter noise and improve performance (as seen in the Yelp dataset for
10 ≤ t ≤ 30). When filtering is set too aggressively, we lose signal
and accuracy drops. As a result, we conclude that a modest amount
of filtering helps to boost efficiency by dropping ineffective users.

6.2 Comment-based Tag Generation
In CoNMF, W is the reduced latent space of items, while H

serves as the basis matrix for representing a view. As each base (row
vector of H) represents a cluster, the leading elements of each
base are most representative of the cluster. As the comment words
view’s elements correspond to comment tokens, CoNMF yields a
natural method to identify representative words in the comments for
each cluster. Table 7 shows the words that are mapped to the lead-
ing elements in H for the comment words view. For convenience,
we automatically map a cluster to a category name by using the
Kuhn-Munkres algorithm, shown in the “Cluster” columns. These
results show that CoNMF often identifies meaningful words to rep-
resent a cluster. We also generated the top words derived from the
description view (not shown), finding that the identified words are
often complementary to those from comments. Our manual assess-
ment is that the ones derived from the comments are better general
descriptors for both datasets. This may be caused by the superior
clustering performance of the comment words view has over the
description view.

This facility of CoNMF can be utilized in downstream applica-
tions, such as tag generation. Approaches might use the top-ranked
words as tags directly, or use the values in H as weights into a
more sophisticated tag generation algorithm [31]. In related work,
Lappas et al. [27] has shown that item–aspect distribution learned
from social networks can improve tag generation. As the coefficient

matrix resulting from CoNMF can be seen as the item–aspect dis-
tribution (after normalization via L1 norm), we believe CoNMF’s
improved clustering will also lead to improved tag generation.

7. CONCLUSION AND FUTURE WORK
We have systematically investigated how to best utilize user com-

ments for clustering Web 2.0 items, a core task to several informa-
tion retrieval and web mining applications. In an initial study on
Last.fm, we show that the information extracted from user com-
ments – the textual comments and the commenting users – provide
complementary information to items’ intrinsic features. Combining
all three sources of information improves clustering performance
over using intrinsic features alone.

Spurred by this result, we formalize this problem as a multi-
view clustering problem. We first propose a general framework,
CoNMF, as an extension to NMF that combine multiple views for
joint factorization. Two paradigms of CoNMF – pair-wise and
cluster-wise – are then introduced. Experiments on Yelp and Last.fm
datasets show that CoNMF effectively makes use of information
from user comments for the clustering task.

In the future, we will study whether including comment times-
tamps can aid clustering, as user interests may evolve with time.
We plan to evaluate the impact of our comment-based clustering
on tasks such as web search ranking, recommendation and auto-
matic tag generation. We note that our work to extend NMF for
multi-view clustering requires that all views share the same num-
ber of clusters for the items and features. However, different views
may carry different semantics and may be better described using
differing number of clusters per view. We plan to explore Tri-
factorization [12] to address this constraint and possibly enhance
performance. Other extensions, which have been shown useful
for NMF-based clustering techniques, such as adding orthogonal-
ity [12] and sparsity constraints [19], will be explored for CoNMF.
Moreover, as our proposed CoNMF is a general approach, having a
wider applicability in modeling data with multiple signals, we plan
to study its performance on other user generated content, such as
Twitter and Facebook streams.

8. ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers for their valu-

able comments, and wish to acknowledge the additional proofread-
ing and discussions with Jun-Ping Ng, Aobo Wang, Tao Chen,
Ming Gao and Jinyang Gao.

9. REFERENCES
[1] Z. Akata, C. Thurau, and C. Bauckhage. Non-negative

matrix factorization in multimodality data for segmentation
and label prediction. In 16th Computer Vision Winter
Workshop, 2011.

780



[2] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information
retrieval. ACM Press New York, 1999.

[3] S. Bird, E. Klein, and E. Loper. Natural language processing
with Python. O’reilly, 2009.

[4] M. B. Blaschko and C. H. Lampert. Correlational spectral
clustering. In Proc. of CVPR ’08, pages 1–8, 2008.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[6] C. Boutsidis and E. Gallopoulos. Svd based initialization: A
head start for nonnegative matrix factorization. Pattern
Recognition, 41(4):1350–1362, 2008.

[7] E. Bruno and S. Marchand-Maillet. Multiview clustering: A
late fusion approach using latent models. In Proc. of SIGIR
’09, pages 736–737, 2009.
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