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ABSTRACT
Modern recommender systems learn user representations from
historical interactions, which suffer from the problem of user feature
shifts, such as an income increase. Historical interactions will inject
out-of-date information into the representation in conflict with the
latest user feature, leading to improper recommendations. In this
work, we consider the Out-Of-Distribution (OOD) recommendation
problem in an OOD environment with user feature shifts. To pursue
high fidelity, we set additional objectives for representation learning
as: 1) strong OOD generalization and 2) fast OOD adaptation.

This work formulates and solves the problem from a causal view.
We formulate the user feature shift as an intervention and OOD
recommendation as post-intervention inference of the interaction
probability. Towards the learning objectives, we embrace causal
modeling of the generation procedure from user features to
interactions. However, the unobserved user features cannot be
ignored, which make the estimation of the interaction probability
intractable. We thus devise a new Variational Auto-Encoder for
causal modeling by incorporating an encoder to infer unobserved
user features from historical interactions. We further perform
counterfactual inference to mitigate the effect of out-of-date
interactions. Moreover, a decoder is used to model the interaction
generation procedure and perform post-intervention inference.
Fast adaptation is inherent owing to the reuse of partial user
representations. Lastly, we devise an extension to encode fine-
grained causal relationships from user features to preference.
Empirical results on three datasets validate the strong OOD
generalization and fast adaptation abilities of the proposed method.
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1 INTRODUCTION
Recommender systems have been widely deployed for personalized
information filtering to alleviate information explosion on the
Web [14, 27]. As the core of recommender models, learning
representation of user preference relies on historical interactions.
Existing approaches are mainly based on the Independent and
Identically Distributed (IID) assumption of the interactions between
training and testing periods. However, user feature shifts (e.g., an
income increase) are common in practice, which will affect the user
preference and behaviors. As such, the representations learned with
out-of-date interactions (e.g., purchases of cheap copies) will cause
improper recommendations (cf. Figure 1). We reveal that existing
recommender models encounter significant performance drop in
an OOD environment with user feature shifts (cf. Table 2), thus
hurting user experience and leading to notorious issues like the
unfairness across users. As such, it is essential to consider the OOD
recommendation problem.

OOD recommendation has received little scrutiny. Existing
approaches that have the potential to deal with user feature shifts
mainly fall into three categories. 1) Feature-based models [27],
which can be adapted to the OOD environment by model inference
with the latest user features. However, they still suffer from the
out-of-date interactions since they are unable to disentangle the
effects of user features and historical interactions. 2) Disentangled
recommendation [22] aims to learn factorized representations for
user preference, which can be more robust to distribution shifts.
Nevertheless, previous studies mostly ignore user features and
encode the out-of-date interactions in the representation [41]. 3)
Model re-training [28, 36] also facilitates adaptation, but faces a
dilemma between the re-training frequency and computation cost.
Moreover, it requires to collect new interactions after the feature
shifts, which means that inappropriate items are still recommended
until sufficient new interactions are collected.

To strengthen recommender systems, we require the representa-
tion learning of user preference to pursue two objectives: 1) strong
OOD generalization; and 2) fast adaptation. OOD generalization
means that the model can infer accurate user preference for the
latest user features, i.e., directly adapting to the OOD environment.
Once very few new interactions are collected from the OOD
environment, fast adaptation implies that the model can be quickly
and accurately updated. To achieve the two learning objectives, the
key lies in the abilities to: 1) figure out the mechanism to understand
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Figure 1: Examples of OOD recommendation.

how feature shifts a�ect user preference; 2) mitigate the e�ect of out-
of-date interactions on OOD recommendation; and 3) reuse partial
unchanged user representations to accelerate adaptation [32].

We resort to causal language and scrutinize the cause-e�ect
factors in the interaction generation procedure, which are
abstracted as a causal graph in Figure 2. The causal graph describes
the causal relationships from user features (� 1 and � 2) to user
preference (/ 1 and / 2), and user interactions (� ). Note that we
split the user features into the observed group (� 1) and unobserved
group (� 2), and set two types of preference depending on whether
it is a�ected by the observed features (/ 1) or not (/ 2). Existing
methods construct the preference representation by encoding both
� 1 and� , and thus su�er from the out-of-date interactions in the
OOD environment. From the causal view, OOD recommendation is
indeed thepost-intervention inferenceof interaction probabilities
%¹� j3>¹� 1 = e0

1º• � 2º, where the feature shift from� 1 = e1 to
� 1 = e0

1 is formulated as an intervention [25]. Furthermore, as
3>¹� 1 = e0

1º only a�ects / 1, we can facilitate fast adaptation by
reusing the una�ected part/ 2 [25, 32].

Towards this end, we propose a Causal OOD Recommendation
(COR) framework that models the interaction generation procedure
according to the causal graph. The challenge of this framework is to
deal with the unobserved features� 2, which makes the estimation
of %¹� j3>¹� 1 = e0

1º• � 2º intractable. To solve this challenge, we
resort to variational inference and design a new Variational Auto-
Encoder (VAE) with an encoder to infer the unobserved� 2 from the
historical interactions� and observed� 1 by modeling%¹� 2j�• � 1º.
Besides, a decoder network is needed to estimate%¹� j� 1• � 2º.
Once learned, we can perform post-intervention inference by
feeding the latest user featurese0

1 to the VAE. Moreover, to prevent
potential impacts from out-of-date interactions in� , we adopt
a counterfactual inferenceto block the harmful e�ect of � . As
to fast adaptation with new interactions, we reuse/ 2 and only
update/ 1 via �ne-tuning. Furthermore, we design an extension to
demonstrate that COR is able to capture more �ne-grained causal
relationships between� 1, � 2, and/ 1. Extensive experiments on
a synthetic dataset and two real-world ones validate that COR
is able to achieve strong OOD generalization and fast adaptation
with comparable IID performance. We release the code and data at
https://github.com/Linxyhaha/COR.

To summarize, the main contributions of this work are as follows:

� We study a new OOD recommendation problem, formulating
and solving it from a causal view.

� We propose a Causal OOD Recommendation framework, which
performs causal modeling and inference to handle feature shifts.

� Extensive experiments on three datasets demonstrate the
superiority of COR on enhancing OOD generalization and fast
adaptation while maintaining the IID performance.

Figure 2: Causal graph of the interaction generation process.

2 RECOMMENDATION RE-FORMULATION
In this section, we inspect the interaction generation process and
formulate OOD recommendation from a causal view.

Causal View of User Interaction Generation In Figure 2, we
abstract the interaction generation process as a causal graph. We
explain its rationality as follows.

� � 1• � 2 represent observed user features (e.g.,age and income) and
unobserved user features (e.g.,conformity and social networks),
respectively. Most recommender systems access partial user
features due to privacy restriction and device limitation.

� / 1• / 2 represent the latent user preference, which is split into
two groups regarding whether it is a�ected by� 1. / 2 is separated
because there always exists user preference una�ected by� 1.

� � denotes user's interaction status over items.
� ¹ � 1• � 2º ! / 1 and � 2 ! / 2 denote that user preference is

determined by user features. For instance,incomea�ects the
preference overpriceandbrand.

� ¹ / 1• / 2º ! � means that user's interaction status over items is
determined by user preference.

Formulation of OOD Recommendation We useD 2 f1• ”””• *g
and 8 2 f1• ”””• �g to index users and items, respectively. For a
userD, the recommender models aim to learn the user preference
representation»z1•z2¼from the observed features� 1 = e1 and
historical interactions� = d 2 f0•1g� which is a multi-hot vector
with 38 = 1 indicating an interaction between item8and the user1.
Based on the representation»z1•z2¼, the model then infers the
interaction probabilities over items to make recommendations. This
work studies an unexploredOOD recommendation problem,
where the user feature encounters a shift frome1 to e0

1, such
as an increased income2. From a causal view, we term the
feature shift as anintervention[25], denoted as3>¹� 1 = e0

1º.
Accordingly, the recommender model should be able to infer
the post-intervention distribution of� . To evaluate the OOD
recommendation performance, we propose two speci�c tasks:

1) OOD generalization , which evaluates the generalization ability
of a model when the intervention3>¹� 1 = e0

1º is known but user
interactions after the intervention are unavailable.

2) Fast adaptation assumes that very few post-intervention user
interactions are collectable from the OOD environment, and
evaluates how quickly and accurately the model adapts to the
OOD environment.

1For notation brevity, we omit the subscriptD in e1, d , z1, andz2.
2As an initial attempt, we ignore shifts of unobservede0

2, e.g.,mood changes, which
are left to future work since the detection of such changes is still an open problem.
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