
IHGNN: Interactive Hypergraph Neural Network for
Personalized Product Search

Dian Cheng1∗, Jiawei Chen1∗†, Wenjun Peng1, Wenqin Ye1,
Fuyu Lv2, Tao Zhuang2, Xiaoyi Zeng2, Xiangnan He1.
1University of Science and Technology of China, 2Alibaba Group.

{cdboy@mail.,cjwustc@,pengwj@mail.}ustc.edu.cn,ywwwwq@pku.edu.cn,
{fuyu.lfy,zhuangtao.zt}@alibaba-inc.com,yuanhan@taobao.com,xiangnanhe@gmail.com.

ABSTRACT
A good personalized product search (PPS) system should not only
focus on retrieving relevant products, but also consider user per-
sonalized preference. Recent work on PPS mainly adopts the repre-
sentation learning paradigm, e.g., learning representations for each
entity (including user, product and query) from historical user be-
haviors (aka. user-product-query interactions). However, we argue
that existing methods do not sufficiently exploit the crucial collabo-
rative signal, which is latent in historical interactions to reveal the
affinity between the entities. Collaborative signal is quite helpful
for generating high-quality representation, exploiting which would
benefit the learning of one representation from other related nodes.

To tackle this limitation, in this work, we propose a new model
IHGNN for personalized product search. IHGNN resorts to a hy-
pergraph constructed from the historical user-product-query in-
teractions, which could completely preserve ternary relations and
express collaborative signal based on the topological structure. On
this basis, we develop a specific interactive hypergraph neural net-
work to explicitly encode the structure information (i.e., collabora-
tive signal) into the embedding process. It collects the information
from the hypergraph neighbors and explicitly models neighbor fea-
ture interaction to enhance the representation of the target entity.
Extensive experiments on three real-world datasets validate the
superiority of our proposal over the state-of-the-arts.

CCS CONCEPTS
• Information systems→ Personalization.

KEYWORDS
Hypergraph; Personalized Product Search; Interaction
ACM Reference Format:
Dian Cheng, Jiawei Chen, Wenjun Peng, Wenqin Ye, Fuyu Lv, Tao Zhuang,
Xiaoyi Zeng, Xiangnan He. 2022. IHGNN: Interactive Hypergraph Neural
Network for Personalized Product Search. In Proceedings of the ACM Web

∗ Dian Cheng and Jiawei Chen contribute equally to the work.
† Jiawei Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3511954

Conference 2022 (WWW ’22), April 25–29, 2022, Virtual Event, Lyon, France.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3485447.3511954

1 INTRODUCTION
Online shopping pervades our daily lives. As the number of prod-
ucts in e-shopping platforms grows explosively, it is almost impos-
sible for a user to discover desirable products without the help of
product search engines. The search engine would retrieve a list
of potential products for each user when he submits a query. The
quality of the search results is crucial for both user satisfaction and
retailer revenues.

Different from the traditional ad-hoc search task that focuses
on finding the items matching the query, product search is more
challenging as the target products are highly personalized [12, 29].
In a typical e-shopping scenario, it is common that users have
quite different purchase intents even if they issue the same query.
Take the query “Delicious Food” as an example, European users
may expect some Pasta while Chinese users may be interested in
dumplings. It is widely recognized that user purchases would be
affected by their personalized preference [2, 38]. Therefore it is
important for a product search engine to be personalized, with
the goal to “understand exactly what the user wants and give him
personalized suggestions” [13].

To achieve this goal, existing methods on personalized product
search (PPS) [1, 2, 4, 12, 24, 42, 47, 48] mainly adopt the represen-
tation learning paradigm. They transform each entity (including
user, product, and query) to a vectorized representation and then
predict user purchase inclination based on the embeddings. Despite
their decent performance, we argue that existing methods have not
sufficiently exploited the collaborative signal. It is latent in historical
user-product-query interactions to reveal the affinity among the
entities, which is crucial for personalized search. For example, the
users engagingwith the same product may have similar preferences;
the queries under which the same products are purchased by a user
may have similar semantics. When equipped with such rich affinity
information, the learning of one representation can benefit from
other related ones, resulting in higher-quality representations. The
work that is closest to ours is [22], however, it only exploits three
manually-designed affinity patterns, which is far from sufficient.
How to fully leverage the collaborative signal for PPS is still an
open problem.

This work fills the research gap. Being aware of the effectiveness
of graph neural network (GNN) for relational representation learn-
ing [15, 20], we wish to take its advantages for PPS. In traditional

https://doi.org/10.1145/3485447.3511954
https://doi.org/10.1145/3485447.3511954

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Dian Cheng, Jiawei Chen, Wenjun Peng, Wenqin Ye, Fuyu Lv, Tao Zhuang, Xiaoyi Zeng, Xiangnan He

search [30, 43] and recommendation [18, 37], the graph is bipar-
tite that presents query-word matching and user-item matching.
Performing graph convolution on these graphs can collect informa-
tion from similar neighbors, which strengthens the representations
with collaborative signal explicitly. However, the appealing idea is
non-trivial to transfer to the PPS task, due to two main difficulties:

(P1) More complicated than traditional search and recommen-
dation, the interactions in PPS are ternary rather than binary —
each interaction involves three elements: user, product and query.
It is intractable to construct a simple graph to preserve ternary
relations. For example, if we forcibly split the ternary relations into
three binary relations among users, products and queries [17], we
will lose the information like under which query the user-product
interaction happens. Figure 1(b) gives a toy example, we cannot
determine under which query the interaction (𝑢2, 𝑝2) happened: 𝑞1,
or 𝑞2, or both of them. Since a simple graph cannot represent the
ternary relations without loss, we need to resort to a more general
topological structure to develop an effective personalized search
method.

(P2) Existing GNNs mainly adopt a linear aggregation over the
features of neighbors, ignoring the high-order feature interactions
of neighbors. In fact, in PPS, the interactions between related enti-
ties could be a strong signal to indicate the characteristics of the
target node. For example, when a user searches for “women’s bag”
and finally purchases a bag of the brand “Hermès”, the interaction
of the query and product would generate a quite useful semantic
(e.g., “women’s luxury brands”) for profiling the user’s preference.
We need to explicitly consider feature interaction to enhance the
representation for PPS.

To tackle these problems, we propose to construct a hypergraph
from the ternary user-product-query interactions. Compared with
simple graph, hypergraph is a more suitable data structure for mod-
eling ternary relations, because each hyperedge can connect any
quantity of nodes. On this basis, we further propose a novel per-
sonalized product search model, named Interactive HyperGraph
Neural Network (IHGNN), which recursively aggregates neighbor
information along the aforementioned hypergraph. Distinct to the
GNNs for recommendation or non-personalized search, our IHGNN
makes two important improvements: (1) As each hyperedge in the
hypergraph connects multiple nodes, IHGNN adopts a two-step
information propagation scheme — node aggregation, which ag-
gregates the information from the connected nodes to update the
hyperedge representation; and hyperedge aggregation, which col-
lects the information from the related hyperedges to update the
target node representation. (2) As the neighbor interaction is im-
portant in PPS, we explicitly conduct high-order feature interaction
of neighbors, and then aggregate the interacted results to enhance
the target node representations.

In summary, this work makes the following contributions:

• We approach the PPS task with a user-product-query hyper-
graph and develop a hypergraph neural network to explicitly
encode the collaborative signal into representation learning.

• Wehighlight the importance of exploiting feature interaction
in representation learning, and propose to explicitly model
high-order feature interactions of neighbors in hypergraph
embedding aggregation.

(a) Bipartite graph (b) Collapsed Graph (c) Hypergraph

Figure 1: (a) gives a sample of user-product graph in rec-
ommendation, while (b)(c) give samples of collapsed graph
and hypergraph in personalized product search. 𝑢𝑖 , 𝑞𝑖 , 𝑝𝑖 (𝑖 =
1, 2, 3) are nodes representing user, product or query re-
spectively, ℎ𝑒𝑖 (𝑖 = 1, 2, 3, 4) denotes a hyperedge shown
as an ellipse in (c). Each user-query-product interaction
corresponds to a hyperedge. There are four interactions:
(𝑢1, 𝑞1, 𝑝1), (𝑢2, 𝑞1, 𝑝2), (𝑢2, 𝑞2, 𝑝3) and (𝑢3, 𝑞2, 𝑝2).

• We conduct extensive experiments on three real-world datasets
to demonstrate the effectiveness and the rationality of each
component design of IHGNN.

2 TASK FORMULATION AND PRELIMINARY
In this section, we first give the formal definition of personalized
product search task, and then give some background knowledge
related to hypergraph.

2.1 Personalized Product Search
Suppose we have a product search engine with a user setU, an item
set P, a possible query set Q and a set of historical user-product-
query interactions L. Let 𝑢 (𝑝 , or 𝑞) denote a user (an item, or
a query) in U (P, or Q). L consists of a list of user-item-query
triples (𝑢, 𝑝, 𝑞), indicating user 𝑢 has purchased1 the product 𝑝
under the query 𝑞. Also, we use 𝑦𝑢𝑝𝑞 ∈ {0, 1} to indicate whether
the interaction (𝑢, 𝑝, 𝑞) happens, i.e., 𝑦𝑢𝑝𝑞 = 1 for (𝑢, 𝑝, 𝑞) ∈ L and
𝑦𝑢𝑝𝑞 = 0 for (𝑢, 𝑝, 𝑞) ∉ 𝐿. The goal of personalized product search
is to learn a score function 𝑓 : U×P×Q → 𝑅 to accurately predict
the probability of a user 𝑢 to purchase product 𝑝 when searching
query 𝑞.

2.2 Hypergraph
Different from simple graph, a hypergraph is a more general topo-
logical structure where a hyperedge could connect two or more
nodes. Let G = (V, E,H) be an instance of hypergraph, which in-
cludes a node setV and a hyperedge set E. The |V| × |E| incidence
matrix H describes the connectivity of the hypergraph, with entries
defined as:

ℎ(𝑣, 𝑒) =
{ 1, if 𝑒 connects 𝑣,
0, if 𝑒 disconnects 𝑣, (1)

On this basis, we further give some notations in a hypergraph. For
each node 𝑣 ∈ V , its degree is defined as 𝑑 (𝑣) = ∑

𝑒∈E
ℎ(𝑣, 𝑒); For

1We remark that here the “purchase” can be replaced by other type of implicit feedback
such as “ Click” or “Add-to-Cart”. In this work we simply use the word “purchase” as a
placehoder for better description.

IHGNN: Interactive Hypergraph Neural Network for Personalized Product Search WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

Figure 2: Illustration of the proposed IHGNN.

each edge 𝑒 ∈ E, its degree is𝑑 (𝑒) = ∑
𝑒∈E

ℎ(𝑣, 𝑒). They can be further

collected as two diagonal matrices 𝐷𝑣 and 𝐷𝑒 of node degrees and
edge degrees, respectively. Let E𝑣 denote a set of related hyperedges
that connect to the node 𝑣 (i.e., E𝑣 = {𝑒 ∈ E|ℎ(𝑣, 𝑒) = 1}),V𝑒 denote
a set of nodes to which the hyperedge 𝑒 connects(i.e., V𝑒 = {𝑣 ∈
V|ℎ(𝑣, 𝑒) = 1}). Also, we can define the “neighbors” (𝑁𝑣) of node 𝑣
as a set of nodes that share at least one hyperedge with the node 𝑣
(i.e., 𝑁𝑣 = {𝑎 ∈ V|∃𝑒 ∈ E, ℎ(𝑣, 𝑒) = 1&ℎ(𝑎, 𝑒) = 1}).

3 PROPOSED METHOD: INTERACTIVE
HYPERGRAPH NEURAL NETWORK
(IHGNN)

In this section, we detail the proposed IHGNN for personalized prod-
uct search. IHGNN aims at explicitly encoding collaborative signal
into representation using user-product-query hypergraph. IHGNN
contains four modules: (1) a hypergraph construction module that
constructs hypergraph from the historical user-product-query in-
teractions L; (2) an embedding generation module that transforms
the features of entities into their initial representations; (3) an ag-
gregation module that refines the embeddings by collecting the
information from neighbors and high-order neighbors; and (4) a
prediction module that generates the prediction of user purchase
inclination based on the refined embeddings. Finally, we discuss
the properties of IHGNN and its connection with existing methods.

3.1 Hypergraph Construction
We first construct a hypergraph G based on historical ternary
user-product-query interactions. Specifically, given historical in-
teractions L, we have a hypergraph G = (V, E,𝑯) including:
(1) a node set V whose element represents a user, product or
query (i.e., V = U ∪ Q ∪ P); (2) a hyperedge set E, whose el-
ement represents a ternary relation depicting there exists an his-
torical interaction among them (i.e., 𝑒 ∈ E ↔ (𝑢, 𝑝, 𝑞) ∈ L,
ℎ(𝑢, 𝑒) = 1, ℎ(𝑝, 𝑒) = 1, ℎ(𝑞, 𝑒) = 1).

The constructed hypergraph could preserve complete ternary
relations and capture collaborative signal via topological structure.
From which, we can easily deduce nodes’ affinity based on their
proximity in the hypergraph. Figure 1(c) gives a toy example. We
can deduce user 𝑢1 and 𝑢2 may have similar preferences as they

both connect to (issued) the query 𝑞2. Such hypergraph provides an
opportunity to fully exploit collaborative signal for PPS, e.g.,we can
leverage hypergraph embedding to encode such important signal
(i.e., hypergraph structure) into representation. We will introduce
details on how to utilize the hypergraph structure for enhancing
PPS as follows.

3.2 Embedding Generation Module
This module aims at mapping entities into a common representation
space. Here we follow previous work [34] to transform the features
of queries to their representations. That is, for each query 𝑞 ∈ Q, we
utilize the query content information and use a mean pooling over
word embeddings 𝑧𝑤 to generate the query embedding 𝑧𝑞 ∈ 𝑅𝑑 :

𝑧𝑞 =

∑
𝑤∈𝑞 𝑧𝑤

|𝑞 |
(2)

For each user 𝑢 ∈ U (or product 𝑝 ∈ P), we directly generate its
embedding 𝑧𝑢 ∈ 𝑅𝑑 (or 𝑧𝑝 ∈ 𝑅𝑑) from an embedding look-up table
E ∈ 𝑅 ((|U |+|P |)×𝑑) (i.e., a parameter matrix).

3.3 Aggregation Module
In this module, we describe our embedding aggregation scheme,
which iteratively aggregates the information from the neighbors
to encode the collaborative signal into the embeddings. We first
illustrate the design of one-layer aggregation and then generalize
it to multiple successive layers.

3.3.1 First-order Aggregation. Intuitively, hypergraph neighbors
provide useful signals to understand the target node’s character-
istics. For example, the interacted products or submitted queries
provide direct evidences on a user’s preferences; Analogously, rele-
vant products are quite helpful to depict the semantics of the query.
Thus, it is nature to collect the information from the neighbors to re-
fine the representation of the target node. Distinct to the GNNs for
recommendation [36] or non-personalized search [45], our IHGNN
is conducted on hypergraph and thus adopts a two-step informa-
tion propagation scheme — i.e., hyperedges serve as mediums to
process and transfer the information from the neighbors. To be
more specific, for each node 𝑣 , as shown in Figure 3(a), we perform
the following two operations to update its representation:

Node aggregation. In this stage, we aggregate the information
propagated from 𝑣 ’s neighbors to related hyperedge. Specifically,
for each 𝑒 ∈ E𝑣 , we define the aggregation function as follow:

𝑚𝑒 = [𝑧𝑢 | | 𝑧𝑝 | | 𝑧𝑞]W (3)

where 𝑚𝑒 denotes the information contained by the medium 𝑒 ,
𝑢, 𝑝, 𝑞 denote the user, product, query node that 𝑒 connects, | | de-
notes the concatenation operation,W ∈ R3𝑑×𝑑 is a trainable weight
matrix to distill useful knowledge from the neighbor nodes. Here
we choose linear transformation instead of the conventional simple
average, as the hyperedge would collect different types of nodes
and we believe they may make different contributions.

Hyperedge aggregation. In this stage, we aggregate the infor-
mation from the related hyperedge to refine the representation of 𝑣
as:

𝑧
(1)
𝑣 =

∑
𝑒∈E𝑣

𝑚𝑒

𝑑 (𝑣)
(4)

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Dian Cheng, Jiawei Chen, Wenjun Peng, Wenqin Ye, Fuyu Lv, Tao Zhuang, Xiaoyi Zeng, Xiangnan He

(a) vanilla hypergraph propagation (b) Improved hypergraph propagation with higher-order interaction

Figure 3: Illustration of how our IHGNN aggregates the information from neighbors.

With such two operations, the knowledge of neighbor nodes has
been explicitly injected into the target node’s representation, rein-
forcing its quality.

Modeling neighbor feature interaction. However, we argue
that such linear aggregation scheme is insufficient, ignoring the
knowledge from the feature interaction among the neighbors. In
fact, in PPS, the neighbor interaction could be a strong signal that
indicates the characteristics of the target node. For example, pro-
vided a user searches for “women’s bag” and finally purchases a
bag of the brand “Hermès”, the interaction between the query and
the product would generate a quite useful semantic (e.g., “women’s
luxury brands”) for profiling the user’s preference. Based on this
point, we further develop an improved node aggregation opera-
tion as shown in Figure 3(b), which explicitly models the feature
interaction among the nodes (i.e., 𝑢, 𝑝, 𝑞 ∈ V𝑒) that the hyperedge
𝑒 connects. We have:

𝑓 𝑜1𝑒 = 𝑧𝑢 | | 𝑧𝑞 | | 𝑧𝑝
𝑓 𝑜2𝑒 = (𝑧𝑢 ⊙ 𝑧𝑞) | | (𝑧𝑢 ⊙ 𝑧𝑝) | | (𝑧𝑞 ⊙ 𝑧𝑝)
𝑓 𝑜3𝑒 = 𝑧𝑢 ⊙ 𝑧𝑞 ⊙ 𝑧𝑝

(5)

Where ⊙ stands for element-wise product, 𝑓 𝑜1𝑒 , 𝑓 𝑜2𝑒 , 𝑓 𝑜3𝑒 respectively
capture 1,2,3-order feature interaction of neighbors. Analogously,
we use a linear layer to aggregate the interaction information as:

𝑚𝑒 = [𝑓 𝑜1𝑒 | | 𝑓 𝑜2𝑒 | | 𝑓 𝑜3𝑒] 𝑾𝑜3 (6)

This useful information will be further propagated into the target
node representation via the hyperedge aggregation. We remark
that here we just conduct feature interaction among the neighbors
that share common hyperedge (i.e., 𝑢, 𝑝, 𝑞 ∈ V𝑒&𝑒 ∈ E𝑣) rather
than among all neighbors (i.e., 𝑢, 𝑝, 𝑞 ∈ N𝑣). The reason is that
these specific neighbors are highly related and their interactions
potentially generate strong signal. Also, this treatment is much
more efficient. Conducting feature interaction among all neighbors
is usually computationally unavailable.

3.3.2 Higher-order Aggregation. To completely exploit the collab-
orative signal, we further consider to stack aforementioned ag-
gregation module such that the target node’s representation could
benefit from the high-order neighbors. In fact, although these nodes
are not directly connected with the target node, they indeed share
some similarity and provide useful knowledge to learn the target

representation. Concretely, As Figure 3(b) displays, in the 𝑙-th layer,
the representation of the node 𝑣 is recursively updated as follow:

𝑧
(𝑙)
𝑣 =

∑
𝑒∈E𝑣

𝑚
(𝑙)
𝑒

𝑑 (𝑣)
(7)

where the hyperedge information 𝑚
(𝑙)
𝑒 can be calculated from

𝑧
(𝑙−1)
𝑢 , 𝑧 (𝑙−1)𝑝 ,𝑧 (𝑙−1)𝑞 with equation (3) or (6). Finally we concate-
nate the representations learned by different layers to generate the
entity’s final representation:

𝑧∗𝑣 = 𝑧
(0)
𝑣 | |𝑧 (1)𝑣 | |...| |𝑧 (𝐿)𝑣 (8)

By doing so, we enrich the initial embeddings with the information
propagated from similar (high-order) neighbors. The collaborative
signal has been explicitly injected in the representation.

3.4 Prediction Module
This model aims at generating prediction based on the learned
embeddings. As this module is not our focus, we simply refer to
[2] for implementation. It is relatively simple but proved effective.
Specifically, we estimate the purchase probability of user 𝑢 towards
the product 𝑝 when searching query 𝑞 as follow:

𝑦𝑢𝑞𝑝 = sigmoid
(
(𝜆𝑧∗𝑢 + (1 − 𝜆)𝑧∗𝑞)𝑇 𝑧∗𝑝

)
(9)

where 𝜆 is a hyper-parameter controlling the contribution from the
user preference and item relevance.

3.5 Model Optimization
For fairly comparison, we closely follow the related work [22] to
learn the model parameters. Specifically, we optimize the following
objective function:

𝐿 =
∑

(𝑢,𝑞,𝑝) ∈L∪B−
−𝑦𝑢𝑞𝑝 · log𝑦𝑢𝑞𝑝 − (1 − 𝑦𝑢𝑞𝑝) · log(1 − 𝑦𝑢𝑞𝑝)

where B− denotes a negative sampled set that contains the triples
with 𝑦𝑢𝑞𝑝 = 0.

3.6 Discussion
3.6.1 Connection with existing PPS methods. First, we compare
our IHGNN with GraphSRRL [22]. GraphSRRL explicitly considers
three manually-designed affinity patterns — e.g., Provided there

IHGNN: Interactive Hypergraph Neural Network for Personalized Product Search WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

are two interactions (𝑢1, 𝑞, 𝑝), (𝑢2, 𝑞, 𝑝),𝑢1 and𝑢2 may have similar
preference. In fact, these affinity patterns can adaptively be captured
by our model. With embedding aggregation, the information of 𝑧𝑞 ,
𝑧𝑝 as well as their interactions 𝑧𝑞 ·𝑧𝑝 can be propagated into the rep-
resentation of 𝑢1 and 𝑢2, making 𝑢1 and 𝑢2 hold a certain similarity.
Similar analysis can be conducted for other patterns. Besides such
three patterns, our IHGNN captures more and thus yields better
performance than GraphSRRL as reported in our experiments.

Also, it is worth to discuss the connections with some related
work [7, 13] that models Long Short-Term Preference. These meth-
ods would deduce user long-term (or short-term) preference from
his purchased products (or submitted queries). In fact, it can be
considered as a special way of utilizing collaborative signal. Our
IHGNN can also capture this pattern in the one-layer aggregation.
We would collect the information from the neighbors to update the
representation.

3.6.2 Connection with existing hypergraph neural network. Recent
years also witnessed some work [11, 41] on hypergraph neural
network. These methods derive HGNN from spectral convolution
and it has similar propagation scheme as our IHGNN. But IHGNN
differs from HGNN in the following two aspects: (1) when perform-
ing node aggregation, we give different weights for different types
of nodes; (2) we explicitly model feature interaction of neighbors,
which is of importance in PPS.

3.6.3 Connection with graph neural network. Here we mainly com-
pare our IHGNN with the GNNs on the collapsed graph, where
we split the ternary relations into three binary relations. The key
difference is in that our IHGNN utilize a medium (i.e., hyperedge)
to process and transfer information, such that the ternary relation
can be treated in a holistic view; while GNN can only handle the
fragment information. It makes our IHGNN usually achieve better
performance than GNNs on the collapsed graph.

4 EXPERIMENTS
In this section, we conduct experiments to validate the effective-
ness of our IHGNN. Our experiments are intended to address the
following research questions:

• RQ1: Does IHGNN outperform state-of-the-art PPS meth-
ods?

• RQ2: How do different components (e.g., using hypergraph,
weighted propagation, high-order interaction) contribute to
the model performance?

• RQ3: How do different hyper-parameters (e.g., depth of ag-
gregation 𝐿, and embedding size 𝑑) affect the performance
of IHGNN?

4.1 Datasets
We utilize three datasets in our experiments, including one real-
world dataset that collected from real PPS scenario and two available
conventional semi-synthetic dataset.

AlibabaAir dataset. The dataset is collected from taobao.com,
one of the biggest e-shopping platforms in China. We randomly
sampled 200,000 users and collect their search logs on the platform
from 23-Dec-2020 to 29-Dec-2020. The dataset contains the display
information of user-query-product, and labels denoting whether

Table 1: Dataset Statistics.

users queries products interactions
Ali-1Core 200,000 102,816 220,779 940,946
Ali-5Core 39,976 46,098 39,326 403,982
CIKM 23,882 3,256 23,550 339,341
CDs_5 112,379 509 67,602 1,296,885

the user clicked the product. Approximately 930,000 clicks and
10,000 purchases are contained. This dataset also contains basic
query word segmentation results. Users, query words/characters,
products were all encrypted as id numbers for privacy protection.
We conduct 5-core and 1-core filtering (i.e., retaining entities with
at least 5 or 1 interactions) to generate two datasets, marked as
Ali-1Core and Ali-5Core, respectively. This treatment would like to
show the robust of our model on cold start users (or items).

CIKMCup dataset. This is a product search dataset from CIKM-
Cup2016 Track2. However, over half of the search logs are anony-
mous and do not have user ids. Another shortcoming is that most
queries are manually composed according to category browsing.
In our experiments, in order to use enough data, we preserve the
category browsing results, click data, and view data after we fil-
ter out the anonymous search logs. Also, 5-core filtering has been
conducted. Note that GraphSRRL [22] directly used the default rec-
ommendation results as ground truth, which may not be consistent
with user true preference and thus is not adopted by us.

Amazon simulated dataset. This is a review dataset consisting
of users’ reviews on products. It is used by [2] in earlier research of
PPS task. A user-product review pair is extended to a user-query-
product triple by treating the product’s category string as a query.
Since Amazon datasets are semi-synthetic and are not as convincing
as other datasets (AlibabaAir) adopted in this work, here we simply
choose one typical sub-dataset (i.e., CDs_5) for experiments.

The statistics of three datasets is shown in Table 1.

4.2 Compared methods
The following methods are tested in our experiments:

• LSE [30] is a classic latent vector space model for product
search. LSE learns word and item representations in one
latent vector space and directly models the match score be-
tween products and query words. It does not consider to
model users and therefore is non-personalized.

• HEM [2] extends LSE [30]with personalization setting. HEM
adopts representation learning paradigm. It learns user, prod-
uct and query representation and then utilize an inner prod-
uct function to make a prediction.

• ZAM [1] extends HEM to determine how much personaliza-
tion is needed.

• TEM [4] is a transformer-based embedding model for per-
sonalized product search. It improves ZAM by adding the
ability of dynamically controlling the influence of person-
alization. Its core idea is to encode the sequence of query
and user’s purchase history with a transformer architecture,

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Dian Cheng, Jiawei Chen, Wenjun Peng, Wenqin Ye, Fuyu Lv, Tao Zhuang, Xiaoyi Zeng, Xiangnan He

Table 2: Performance comparisons for personalized product search. The boldface font denotes thewinner in that column. Also,
the best baselines are marked with †. The row ‘Gain’ indicates the relative performance gain of our IHGNN compared to the
best baseline. ‘*’ and ‘**’ denote the improvement is significant with t-test with 𝑝 < 0.05 and 𝑝 < 0.1, respectively.

Ali-1Core Ali-5Core CIKM CDs_5
HR@10 NDCG@10 MAP@10 HR@10 NDCG@10 MAP@10 HR@10 NDCG@10 MAP@10 HR@10 NDCG@10 MAP@10

LSE 0.1373 0.0848 0.0870 0.1979 0.1257 0.1343 0.3147 0.2215 0.2735 0.1300 0.0696 0.0515
HEM 0.1490 0.0957 0.0980 0.2238 0.1485 0.1610 0.4100 0.3541 0.4601 0.1409 0.0762 0.0567
ZAM 0.1412 0.0915 0.0978 0.2559 0.1749 0.1916 0.3767 0.3273 0.4491 0.0938 0.0482 0.0345
TEM 0.1320 0.0916 0.1020 0.2493 0.1758 0.1939 0.4471 0.3576 0.4509 0.1292 0.0666 0.0478

GraphSRRL 0.1306 0.0872 0.0952 0.2445 0.1659 0.1811 0.4729 0.3729 0.4700 0.1577 0.0846 0.0625
GCN 0.1773 0.1177 0.1221 0.2549 0.1743 0.1876 0.4424 0.3557 0.4394 0.1451 0.0785 0.0584
GAT 0.1908† 0.1264† 0.1329† 0.2715† 0.1858† 0.2018† 0.5238† 0.4211† 0.5217† 0.1652† 0.0873† 0.0638†

HyperGCN 0.1803 0.1180 0.1212 0.2655 0.1826 0.1986 0.4100 0.3474 0.4430 0.1396 0.0755 0.0561
IHGNN-O3 0.2073* 0.1465* 0.1591* 0.2894* 0.2091* 0.2307* 0.5514* 0.4855* 0.6314* 0.1672* 0.0893** 0.0657**

Gain 8.6% 15.9% 19.7% 6.6% 12.5% 14.3% 5.3% 15.3% 21.0% 1.2% 2.3% 3.0%

which gives different personalization weights to different
history items.

• GraphSRRL [22] improvesHEMwith utilizing threemanual-
designed affinity patterns to enhance the representation
learning. Because GraphSRRL demonstrate superiority over
DREM [3], we do not include DREM as baselines.

• GCN [20], GAT [33], HyperGCN [11]: We also design
three quite competitive baselines — utilizing graph-based
methods for enhancing representation learning. GNN and
GAT are conducted on collapsed graph, while HyperGCN is
conducted on the same hypergraph as ours. We remark that
here we do not compare some other graph-based methods
[26], as they require other side information, which is unfair.

• IHGNN: the proposedmethod in this paper.We test different
version of IHGNN, where ‘IHGNN-O*’ denotes the model
considering different maximum orders of feature interaction.

4.3 Experimental Setup
4.3.1 Data split. We split the dataset into 3 parts according to the
search time of user interaction: 70% for training, 10% for validation,
and 20% for testing.

4.3.2 Evaluation. For each test data (user, query, products), we use
the top-10 setting, where the top-10 ranking results are utilized to
calculate the evaluation metrics. We use three conventional metrics:
hit ratio (HR), normalized discounted cumulative gain (NDCG)
and mean average precision (MAP). HR focuses on the retrieval
performance by calculating the ratio of positive products appearing
in search results. NDCG and MAP are common metrics for ranking
algorithms.

4.3.3 Implementation Details. We implement our IHGNN 2 with
PyTorch. The embedding size is set to 32. We randomly sample 10
negative products for one user-query-product interaction. We use
Adam optimizer with learning rate 0.001 to optimize all models,
where the batch size is 100. The embeddings are initialized by
using the default Xavier uniform method and other parameters are
initialized by the Kaiming uniformmethod. All graph-based models,

2https://github.com/CDboyOne/IHGNN

including GraphSRRL, GCN, GAT, HyperGCN, and IHGNN, use
2 graph layers. Models are trained on i9-9900X CPU and 2080Ti
GPU. In training process, we calculate the metrics on validation
and test dataset. We choose the test metrics according to the best
NDCG@10 result on validation set. We train all models until they
converge for fair comparison. Hyper-parameter 𝜆 is set to 0.5.

4.4 Results and Analysis (RQ1)
Table 2 presents the performance our IHGNN comparing with
baselines. From the results, we have the following observations:

Personalized Vs. non-Personalized. LSE has the worst per-
formance. HEM is a personalized extension of LSE and has much
better performance, which demonstrates that personalization is
effective. This result is easy to understand because product search
is a very personal behavior.

Graph-based Vs. not Graph-based. Among all the baselines,
methods based on graph usually have better performance. For exam-
ple, on Ali-1Core, GCN performs 23.0% better thanmethods without
graph and GAT performs 32.1% better in terms of NDCG@10. On
other datasets, GCN and HyperGCN usually have good perfor-
mance, and GAT always performs better than other baselines. This
is because: 1) GNNs describe the relation among user, query and
product very well, which is helpful for better personalization. 2)
GNNs naturally model the interaction among users, queries, or
products through multi-hop neighbors. HEM, ZAM and TEM does
not exploit interactions in the user-query-product triples, and the
meta-path-like method used by GraphSRRL does not directly utilize
the interaction relation.

IHGNN Vs. Others. Our proposed IHGNN significantly outper-
forms the baselines on all datasets. This is because: 1) Hypergraphs
completely preserve the information in triple interaction data. Al-
though HyperGCN does not outperform GCN at a significant level
on Ali-1Core, the improvement from HyperGCN to IHGNN is much
more than improvement from GCN to GAT. This indicates that the
structure of hypergraph provides better ability to mine the per-
sonalization information in data. 2) We introduce weights in node
aggregation. As different type of nodes may carry different levels of
information, using weights would improve the performance. Simi-
lar results can be seen from the better performance of GAT over

IHGNN: Interactive Hypergraph Neural Network for Personalized Product Search WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

(a) Ali-1Core NDCG@10 (b) Ali-5Core NDCG@10 (c) Ali-1Core NDCG@10 (d) Ali-5Core NDCG@10

Figure 4: Performance with different numbers of graph layers and different embedding sizes on Ali-1/5Core dataset.

Table 3: Variants of IHGNN for ablations study. “Node”
means node types in the graph, which contains options of
user(u), query(q), and product(p). “Weighted prop.” points
out if the model has mechanism of weighted propagation.
“Feature order” refers to the maximum feature interaction
order of the model.

Node Weighted prop. Feature order
IHGNN-up u, p × 1
IHGNN-qp q, p × 1
HyperGCN u, q, p × 1
IHGNN-O1 u, q, p

√
1

IHGNN-O2 u, q, p
√

2
IHGNN-O3 u, q, p

√
3

GCN. 3) Introduction of high-order feature interaction gives our
model the ability to capture feature interactions that generally exist
in the datasets.

HyperGCN Vs. GCN. To our surprise, we can find HyperGCN
performs quite close to GCN, even performs worse in some datasets.
This result validates that although the hypergraph carries rich
collabarative signal, we need to carefully design the embedding
model to enjoy the merit of it. Blindly use existing methods may not
bring much performance gain. Our IHGNN is specifically designed
for PPS and achieves better performance than HyperGCN and GCN.

Comparison in terms of datasets. As mentioned in section
4.1, real-world search data are usually very sparse. Therefore, we
generate Ali-1Core to test models’ performance on sparse data.
From the table we can see that our IHGNN still yields a strong
result. From Ali-5Core to Ali-1Core, baselines such as LSE and
GraphSRRL decrease by 40.5% and 42.2% on average on HR@10
and NDCG@10. Baselines using GNN (GCN, GAT, HyperGCN)
decrease by 30.8% and 33.3% on average. In contrast, our IHGNN
only decrease by 28.4% and 29.9% on the two metrics. It shows that
our model degrades less on sparser data.

4.5 Ablation Study (RQ2)
In Table 3, we listed different variants of IHGNN used for ablation
study. The results of ablation study is shown in Table 4.

Contribution of weighted node aggregation. Note that the
main difference between HyperGCN and IHGNN-O1 is whether to

Table 4: Results of ablation study.

Ali-1Core Ali-5Core
HR@10 NDCG@10 HR@10 NDCG@10

IHGNN-up 0.1523 0.0997 0.2711 0.1893
IHGNN-qp 0.1750 0.1171 0.2410 0.1637
HyperGCN 0.1803 0.1180 0.2655 0.1826
IHGNN-O1 0.2038 0.1427 0.2812 0.2035
IHGNN-O2 0.2023 0.1420 0.2873 0.2094
IHGNN-O3 0.2073 0.1465 0.2894 0.2091

useweights in node aggregation. By comparing their results in Table
4, we observe that the weighted propagation brings big performance
promotion. This is because weighted aggregation helps our model
learn different importance of user, query, and product on different
datasets. It also allows model to learn the importance of different
features.

Contribution of modeling high-order interaction. By com-
paring the results of IHGNN-O1∼3 in Table 4, we can find con-
sidering 2- and 3-order feature indeed boosts PPS performance.
This result is coincident with our intuition. The interactions among
neighbors indeed provide useful signal to enhance the representa-
tion learning of the target node.

Contribution of leveraging complete relations. Section 4.4
has discussed the effect of using hypergraph comparing with col-
lapsed graph. In this section, we further explore the effect of us-
ing complete relations. We construct a model that only consider
user and product nodes: IHGNN-up, and another model that only
considers query and product nodes: IHGNN-qp. By comparing
IHGNN-up/qp with IHGNN-O1∼3 in Table 4, we see that modeling
user-query-product triples using a hypergraph is much better than
only modeling user-product or query-product tuples in product
search scenario.

4.6 Sensitivity Analysis (RQ3)
Effect of GNN layer count. The number of GNN layers decides
how many hops each node can visit in the process of message
passing. In this experiment, we vary the number of GNN layers
from 0 to 6 and test the performance of different models including
GCN, GAT, HyperGCN and IHGNN-O3. The result is presented
in Figure 4 (a,b). With the layer of the convolutions increasing,

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Dian Cheng, Jiawei Chen, Wenjun Peng, Wenqin Ye, Fuyu Lv, Tao Zhuang, Xiaoyi Zeng, Xiangnan He

the performance will become better at the beginning. This result
validates the effectiveness of leveraging (hyper)-graph aggregation
in the recommender system. But when the layer surpasses a thresh-
old, the performance becomes unaffected or even experiences some
degradation with the further increase. Too deep layer may not bring
additional collaborative signal, and even may bring some noise in
learning.

Effect of embedding size. We have also studied the effect of
embedding size on models’ performances on Ali-1Core and Ali-
5Core data. We varied the embedding sizes from 32 to 256. The
result is shown in Figure 4 (c, d). The results show that increasing
embedding size benefits IHGNN model. And our IHGNN model
outperforms all baselines with different embedding sizes. We also
observe that the superiority of IHGNN is more obvious on the
sparser Ali-1Core dataset, which demonstrates that our model has
better ability to capture feature information from sparse data.

5 RELATEDWORK
5.1 Product Search
Early product search is based on structural data retrieved from
relational databases, such as brands and categories [21, 32]. Duan
et al. [8, 9] proposed a probabilistic mixture model by analysing
e-commerce search logs to effectively match query and title. But
there are still semantic gaps between query words and product titles,
which leads to the semantic mismatch problem. Some works [19, 28,
31] proposed to map query and product text into a hidden semantic
space to learn the representations using deep neural networks.

Other than semantic match, personalization is playing a impor-
tant role in improving user experience and increasing the retailer
revenues in product search. Ai et al. [2] and Ge et al. [12] both
proposed a hierarchical embedding model to jointly learn represen-
tations of users, queries, and products in a hidden semantic space. A
zero attention model (ZAM) [1] is then proposed that automatically
determines the level of personalization for a specific user-query
pair. Bi et al. [4, 5] proposed a transformer-based embedding model
(TEM) and a review-based transformer model (RTM) to dynamically
control the influence of personalization. Zhou et al. [47] proposed
a context-aware long-short term preference model to enhance the
representation of the current query.

Some researchers focus on different scenarios in product search,
such as streaming [40] and conversational systems [6, 44]. Some
works leverages different information in product search to help
ranking. Long et al. [23] used popularity combined with relevance
to improve product ranking. Guo et al. [14] utilized multi-modal
data in product search. Wu et al. [39] utilized click and purchase
data to jointly optimize search results.

5.2 Graph Based Product Search
Graph embedding method has been proven effective in information
retrieval task [16]. By using graph embedding based method, Ai
et al. [3] proposed to construct explainable PPS model through a
product-category-product knowledge graph. Similarly, Niu et al. [26]
construct a dual heterogeneous graph attention network for the
query-item graph in e-commerce search. Zhang et al. [45] used
graph-based features to enhance learning-to-rank frameworks. Ren

et al. [27] used heterogeneous click graph to learn generic search
intents.

We argue that existing graph-based methods only include two
types of entities ((query,product) or (user,product)) rather than
all of them (user,product,query) in the constructed graph, failing
to modeling the ternary relation among them. Our experiments
also validate that modeling ternary relations is quite useful. To the
best of our knowledge, only one work Liu et al. [22] considered
all the entities in the graph and exploited there types of structural
relationship in user-query-product interactions. But such three
manually-designed patterns are far from sufficient.

5.3 Hypergraph Learning
Relations of three or more entities cannot be represented by a
traditional graph. Hypergraph naturally models high-order rela-
tions. Zhou et al. [46] first introduced hypergraph learning into
transductive classification task, generalizing the methodology of
spectral clustering to hypergraphs, which originally operates on
undirected graphs. Feng et al. [11] presented hypergraph neural
networks (HGNNs) to consider the high-order data structure to
learn representation better with multi-modal data. Mao et al. [25]
applied hypergraph ranking to multi-objective recommendation
task by establishing a user-product-attribute-context data model.
Wang et al. [35] developed a next-item recommendation framework
empowered by sequential hypergraphs to infer the dynamic user
preferences with sequential user interactions.

However, to our best knowledge, few works used hypergraph in
personalized product search. In this paper, we applied hypergraph
neural networks to PPS task and improved our model’s performance
by optimizing model structure and exploiting high-order feature
interactions. Also, we remark these methods may not be suitable
to be directly applied in PPS. Our IHGNN is designed specifically
for PPS with modeling weighs in node aggregation and modeling
high-order feature interactions. Although there are some recent
work [10, 49] modeling high-order feature interaction on GNN, the
feature interaction on hypergraph has not been explored.

6 CONCLUSIONS AND FUTUREWORK
In this article, we proposed a newhypergraph-basedmethod IHGNN
to better model the crucial collaborative signal among users, queries
and products for personalized product search. Also, an improved
hypergraph neural network is developed and the neighbor feature
interactions are explicitly introduced. Extensive experiments have
been conducted to validate the superiority of IHGNN over baselines.
We also analyze the contribution of each component in our model.

For future work, we consider using attention mechanisms in
both hypergraph propagation phases and high-order feature cal-
culation. Also, it would be interesting to explore disentanglement
representation in PPS, as users may have diverse preference and
queries may have diverse semantics.

7 ACKNOWLEDGEMENTS
This work is supported by the National Natural Science Founda-
tion of China (62102382,U19A2079), the USTC Research Funds of
the Double First-Class Initiative (WK2100000019) and the Alibaba
Innovative Research project (ATT50DHZ420003).

IHGNN: Interactive Hypergraph Neural Network for Personalized Product Search WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

REFERENCES
[1] Qingyao Ai, Daniel N Hill, SVN Vishwanathan, and W Bruce Croft. 2019. A zero

attention model for personalized product search. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management. 379–388.

[2] Qingyao Ai, Yongfeng Zhang, Keping Bi, Xu Chen, and W Bruce Croft. 2017.
Learning a hierarchical embedding model for personalized product search. In
Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 645–654.

[3] Qingyao Ai, Yongfeng Zhang, Keping Bi, and W Bruce Croft. 2019. Explainable
product search with a dynamic relation embedding model. ACM Transactions on
Information Systems (TOIS) 38, 1 (2019), 1–29.

[4] Keping Bi, Qingyao Ai, and W Bruce Croft. 2020. A Transformer-based Em-
bedding Model for Personalized Product Search. In Proceedings of the 43rd In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. 1521–1524.

[5] Keping Bi, Qingyao Ai, and W Bruce Croft. 2021. Learning a Fine-Grained
Review-based Transformer Model for Personalized Product Search. In Proceedings
of the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 123–132.

[6] Keping Bi, Qingyao Ai, Yongfeng Zhang, and W Bruce Croft. 2019. Conversa-
tional product search based on negative feedback. In Proceedings of the 28th acm
international conference on information and knowledge management. 359–368.

[7] Keping Bi, Choon Hui Teo, Yesh Dattatreya, Vijai Mohan, and W Bruce Croft.
2019. Leverage implicit feedback for context-aware product search. arXiv preprint
arXiv:1909.02065 (2019).

[8] Huizhong Duan, ChengXiang Zhai, Jinxing Cheng, and Abhishek Gattani. 2013.
A probabilistic mixture model for mining and analyzing product search log. In
Proceedings of the 22nd ACM international conference on Information & Knowledge
Management. 2179–2188.

[9] Huizhong Duan, ChengXiang Zhai, Jinxing Cheng, and Abhishek Gattani. 2013.
Supporting keyword search in product database: a probabilistic approach. Pro-
ceedings of the VLDB Endowment 6, 14 (2013), 1786–1797.

[10] Fuli Feng, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. 2021. Cross-GCN:
Enhancing graph convolutional network with k-Order feature interactions. IEEE
Transactions on Knowledge and Data Engineering (2021).

[11] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. 2019. Hy-
pergraph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 3558–3565.

[12] Songwei Ge, Zhicheng Dou, Zhengbao Jiang, Jian-Yun Nie, and Ji-Rong Wen.
2018. Personalizing search results using hierarchical RNN with query-aware
attention. In Proceedings of the 27th ACM International Conference on Information
and Knowledge Management. 347–356.

[13] Yangyang Guo, Zhiyong Cheng, Liqiang Nie, YinglongWang, Jun Ma, and Mohan
Kankanhalli. 2019. Attentive long short-term preference modeling for person-
alized product search. ACM Transactions on Information Systems (TOIS) 37, 2
(2019), 1–27.

[14] Yangyang Guo, Zhiyong Cheng, Liqiang Nie, Xin-Shun Xu, and Mohan Kankan-
halli. 2018. Multi-modal preference modeling for product search. In Proceedings
of the 26th ACM international conference on Multimedia. 1865–1873.

[15] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems. 1025–1035.

[16] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems. 1025–1035.

[17] Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. 2015. Trirank: Review-
aware explainable recommendation by modeling aspects. In Proceedings of the
24th ACM International on Conference on Information and Knowledge Management.
1661–1670.

[18] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[19] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
click through data. In Proceedings of the 22nd ACM International Conference on
Information & Knowledge Management. 2333–2338.

[20] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[21] Soon Chong Johnson Lim, Ying Liu, and Wing Bun Lee. 2010. Multi-facet product
information search and retrieval using semantically annotated product family
ontology. Information Processing & Management 46, 4 (2010), 479–493.

[22] Shang Liu, Wanli Gu, Gao Cong, and Fuzheng Zhang. 2020. Structural Relation-
ship Representation Learning with Graph Embedding for Personalized Product
Search. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management. 915–924.

[23] Bo Long, Jiang Bian, Anlei Dong, and Yi Chang. 2012. Enhancing product
search by best-selling prediction in e-commerce. In Proceedings of the 21st ACM

international conference on Information and knowledge management. 2479–2482.
[24] Shuqi Lu, Zhicheng Dou, Xu Jun, Jian-Yun Nie, and Ji-Rong Wen. 2019. Psgan:

A minimax game for personalized search with limited and noisy click data. In
Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval. 555–564.

[25] Mingsong Mao, Jie Lu, Jialin Han, and Guangquan Zhang. 2019. Multiobjective e-
commerce recommendations based on hypergraph ranking. Information Sciences
471 (2019), 269–287.

[26] Xichuan Niu, Bofang Li, Chenliang Li, Rong Xiao, Haochuan Sun, Hongbo Deng,
and Zhenzhong Chen. 2020. A dual heterogeneous graph attention network to
improve long-tail performance for shop search in e-commerce. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 3405–3415.

[27] Xiang Ren, Yujing Wang, Xiao Yu, Jun Yan, Zheng Chen, and Jiawei Han.
2014. Heterogeneous graph-based intent learning with queries, web pages and
wikipedia concepts. In Proceedings of the 7th ACM international conference on
Web search and data mining. 23–32.

[28] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
A latent semantic model with convolutional-pooling structure for information
retrieval. In Proceedings of the 23rd ACM International Conference on Information
& Knowledge Management. 101–110.

[29] Jaime Teevan, Susan T Dumais, and Daniel J Liebling. 2008. To personalize or not
to personalize: modeling queries with variation in user intent. In Proceedings of
the 31st annual international ACM SIGIR conference on Research and development
in information retrieval. 163–170.

[30] Christophe Van Gysel, Maarten de Rijke, and Evangelos Kanoulas. 2016. Learning
latent vector spaces for product search. In Proceedings of the 25th ACM interna-
tional on conference on information and knowledge management. 165–174.

[31] Christophe Van Gysel, Maarten de Rijke, and Evangelos Kanoulas. 2016. Learning
latent vector spaces for product search. In Proceedings of the 25th ACM interna-
tional on conference on information and knowledge management. 165–174.

[32] Damir Vandic, Flavius Frasincar, and Uzay Kaymak. 2013. Facet selection al-
gorithms for web product search. In Proceedings of the 22nd ACM international
conference on Information & Knowledge Management. 2327–2332.

[33] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[34] Ivan Vulić and Marie-Francine Moens. 2015. Monolingual and cross-lingual in-
formation retrieval models based on (bilingual) word embeddings. In Proceedings
of the 38th international ACM SIGIR conference on research and development in
information retrieval. 363–372.

[35] Jianling Wang, Kaize Ding, Liangjie Hong, Huan Liu, and James Caverlee. 2020.
Next-item recommendation with sequential hypergraphs. In Proceedings of the
43rd international ACM SIGIR conference on research and development in informa-
tion retrieval. 1101–1110.

[36] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165–174.

[37] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,
and Xing Xie. 2021. Self-Supervised Graph Learning for Recommendation. In
Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 726–735.

[38] Le Wu, Xiangnan He, Xiang Wang, Kun Zhang, and Meng Wang. 2021. A Survey
on Neural Recommendation: From Collaborative Filtering to Content and Context
Enriched Recommendation. arXiv preprint arXiv:2104.13030 (2021).

[39] Liang Wu, Diane Hu, Liangjie Hong, and Huan Liu. 2018. Turning clicks into
purchases: Revenue optimization for product search in e-commerce. In The 41st
International ACM SIGIR Conference on Research & Development in Information
Retrieval. 365–374.

[40] Teng Xiao, Jiaxin Ren, Zaiqiao Meng, Huan Sun, and Shangsong Liang. 2019.
Dynamic bayesian metric learning for personalized product search. In Proceed-
ings of the 28th ACM International Conference on Information and Knowledge
Management. 1693–1702.

[41] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand
Louis, and Partha Talukdar. 2018. HyperGCN: A new method of training graph
convolutional networks on hypergraphs. arXiv preprint arXiv:1809.02589 (2018).

[42] Jing Yao, Zhicheng Dou, Jun Xu, and Ji-Rong Wen. 2020. RLPer: A Reinforcement
Learning Model for Personalized Search. In Proceedings of The Web Conference
2020. 2298–2308.

[43] Ting Zhang, Bang Liu, Di Niu, Kunfeng Lai, and Yu Xu. 2018. Multiresolution
graph attention networks for relevance matching. In Proceedings of the 27th ACM
International Conference on Information and Knowledge Management. 933–942.

[44] Yongfeng Zhang, Xu Chen, Qingyao Ai, Liu Yang, and W Bruce Croft. 2018.
Towards conversational search and recommendation: System ask, user respond. In
Proceedings of the 27th acm international conference on information and knowledge
management. 177–186.

[45] Yuan Zhang, Dong Wang, and Yan Zhang. 2019. Neural IR meets graph embed-
ding: a ranking model for product search. In The World Wide Web Conference.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Dian Cheng, Jiawei Chen, Wenjun Peng, Wenqin Ye, Fuyu Lv, Tao Zhuang, Xiaoyi Zeng, Xiangnan He

2390–2400.
[46] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. 2006. Learning with

hypergraphs: Clustering, classification, and embedding. Advances in neural
information processing systems 19 (2006), 1601–1608.

[47] Yujia Zhou, Zhicheng Dou, and Ji-Rong Wen. 2020. Encoding History with
Context-aware Representation Learning for Personalized Search. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in

Information Retrieval. 1111–1120.
[48] Yujia Zhou, Zhicheng Dou, and Ji-Rong Wen. 2020. Enhancing Re-finding Behav-

ior with External Memories for Personalized Search. In Proceedings of the 13th
International Conference on Web Search and Data Mining. 789–797.

[49] Hongmin Zhu, Fuli Feng, Xiangnan He, Xiang Wang, Yan Li, Kai Zheng, and
Yongdong Zhang. 2020. Bilinear graph neural network with neighbor interactions.
arXiv preprint arXiv:2002.03575 (2020).

	Abstract
	1 Introduction
	2 Task Formulation and Preliminary
	2.1 Personalized Product Search
	2.2 Hypergraph

	3 Proposed Method: Interactive Hypergraph Neural Network (IHGNN)
	3.1 Hypergraph Construction
	3.2 Embedding Generation Module
	3.3 Aggregation Module
	3.4 Prediction Module
	3.5 Model Optimization
	3.6 Discussion

	4 Experiments
	4.1 Datasets
	4.2 Compared methods
	4.3 Experimental Setup
	4.4 Results and Analysis (RQ1)
	4.5 Ablation Study (RQ2)
	4.6 Sensitivity Analysis (RQ3)

	5 Related Work
	5.1 Product Search
	5.2 Graph Based Product Search
	5.3 Hypergraph Learning

	6 Conclusions and Future Work
	7 Acknowledgements
	References

