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Abstract
Large language models (LLMs) have attracted significant attention

in recommendation systems. Current work primarily applies su-

pervised fine-tuning (SFT) to adapt the model for recommendation

tasks. However, SFT on positive examples only limits the model’s

ability to align with user preference. To address this, researchers

recently introduced Direct Preference Optimization (DPO), which

explicitly aligns LLMs with user preferences using offline prefer-

ence ranking data. However, we found that DPO inherently biases

the model towards a few items, exacerbating the filter bubble issue

and ultimately degrading user experience.

In this paper, we propose SPRec, a novel self-play framework

designed to mitigate over-recommendation and improve fairness

without requiring additional data or manual intervention. In each

self-play iteration, the model undergoes an SFT step followed by

a DPO step, treating offline interaction data as positive samples

and the predicted outputs from the previous iteration as negative

samples. This effectively re-weights the DPO loss function using

the model’s logits, adaptively suppressing biased items. Extensive

experiments on multiple real-world datasets demonstrate SPRec’s

effectiveness in enhancing recommendation accuracy and fairness.

The code is available via https://github.com/RegionCh/SPRec.

CCS Concepts
• Information systems→ Recommender systems.
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1 Introduction
Recently, large language models (LLMs) have demonstrated signifi-

cant success across numerous domains, showcasing advanced capa-

bilities in learning, reasoning, and generalizing to downstream tasks

[12, 38]. In the field of recommender systems, there has been grow-

ing interest in leveraging the potential of LLMs [41]. One prominent

approach involves positioning LLMs as the central recommendation

backbone, utilizing users’ past interactions and current needs to

generate personalized recommendations [3, 40]. Compared to tradi-

tional methods, LLM-based recommendation systems (LRSs) offer

distinct advantages, including a deeper contextual understanding

and the flexibility to adapt to users’ evolving preferences.

To enable LLMs to learn collaborative filtering signals and effec-

tively perform item recommendations, a prevalent strategy is to

fine-tune pre-trained LLMs via Supervised Fine-Tuning (SFT) [3].

This approach allows LLMs to efficiently internalize user prefer-

ences from offline data by adjusting their parameters to align with
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the recommendation task. Building on SFT, recent research has

adopted Direct Preference Optimization (DPO) [31] to further re-

fine user preferences [2, 10, 25]. While SFT relies solely on desirable

answers, DPO incorporates both chosen and rejected response pairs,

allowing the LLM to learn user ranking preferences and gain a more

nuanced understanding of fine-grained, personalized information.

This approach mirrors the common practice in recommendation

models, which utilize both positive and negative samples for effec-

tive training [7, 32].

Despite these advancements, we find that employing DPO to

align user preferences in recommender systems inherently intro-

duces significant biases due to its underlying mechanisms. These

biases can lead to serious homogeneity issues, where LLMs recom-

mend items with similar names or content. Fig. 1 illustrates how

token-level and item-level biases manifest in the Top-𝐾 movie rec-

ommendation. Token-level biases arise due to the fact that LLMs

generate item names in a tokenized fashion. Since LLMs are usually

tuned to maximize the likelihood of target tokens, items with more

common tokens (e.g., movies with the word “the” in their titles) may

be overrepresented, regardless of user relevance. At the item level,

biases can emerge from multiple factors, particularly after fine-

tuning, where LLMs may disproportionately recommend popular

items, such as the Batman film series. This can lead to filter bubbles

[16, 17], where users are repeatedly exposed to a narrow range of

popular content, limiting the diversity of recommendations and

degrading the user experience.

Some research has been conducted on bias and unfairness is-

sues in LRSs [12, 15, 45]. Dai et al. [12] provided a comprehensive

overview of the various types of biases that emerge across different

stages of these models and outlined strategies to mitigate them. For

example, Jiang et al. [22] proposed re-weighting the fine-tuning

loss for each item and re-ranking the generated results to ensure

equitable treatment across genre groups. Similarly, Bao et al. [4]

adjusted the LLM decoding process by removing the length normal-

ization term and incorporating predictions from a text-free model,

helping to reduce amplification bias and address homogeneity is-

sues. However, thesemethods often rely on carefully crafted rules or

external knowledge, limiting their broader applicability in general

recommendation systems.

To this end, we propose a self-play recommendation tuning

framework, SPRec, to adaptively suppress biases and improve fair-

ness in LRSs without the need for additional data or expert knowl-

edge. The core idea of SPRec is straightforward: each tuning itera-

tion begins with an SFT round using positive samples from offline

data, followed by a DPO. In the DPO step, the SFT data is treated

as positive samples, while the predicted outputs from the previous

iteration are treated as negative samples. The philosophy is to let

the model “play” with its own output by re-weighting the DPO loss

function based on its predictions. As a result, items that rank higher

in the model’s predictions are penalized, while the SFT process

reinforces the ranking of positive items. Over time, this self-play

learning process adaptively suppresses undesirable items (biases)

while maintaining alignment with positive samples. Extensive ex-

periments on public datasets demonstrate that SPRec effectively

improves both accuracy and fairness, showcasing its potential as a

practical and efficient solution for LRSs.

The main contributions of this paper are as follows:

• We analyze how current LRSs tuned through DPO inevitably

exhibit biases due to their underlying learning mechanisms,

leading to the homogeneity issue.

• Wepropose SPRec, a self-play recommendation tuning frame-

work that addresses these biases and improves fairness with-

out the need for external knowledge.

• Experiments validate that SPRec improves accuracy, diver-

sity, and fairness, with ablation studies indicating that the

self-play negative samples contribute significantly to the

improvements.

2 Related work
We provide a brief overview of LLM-based recommender systems

and their associated bias issues, followed by an introduction to the

self-play mechanism employed in our method.

2.1 LLMs for Recommendation
LLMs have shown exceptional generative, generalization, and rea-

soning capabilities in NLP, driving research into their applications

for personalized recommendations. Their integration into recom-

mendation tasks follows three main paradigms: (1) acting as deci-

sion makers [4, 27], (2) assisting by providing contextual informa-

tion [19, 26], and (3) serving as user simulators [5, 46]. Early studies

explored prompt engineering to leverage LLMs for recommendation

tasks [18, 20].

Later, fine-tuning methods emerged, demonstrating that adapt-

ing LLM parameters on recommendation data significantly en-

hances performance. These approaches primarily rely on SFT [4, 9].

To further align LLMs with user preferences, DPO has been em-

ployed for post-training [2, 10, 25]. However, prior work has over-

looked DPO’s inherent tendency to introduce severe biases, favor-

ing only frequently exposed items and degrading user experience.

In this work, we are the first to identify this issue and propose a

mitigation strategy.

2.2 Biases in Recommender Systems
Bias and fairness issues are pervasive in recommender systems and

have been extensively studied. Chen et al. [8] provide a comprehen-

sive survey on biases such as popularity bias, selection bias, and

position bias. These biases can significantly impact user satisfaction,

promoting clickbait content or reinforcing filter bubbles that reduce

engagement [17]. Additionally, algorithmic decisions may favor

certain items, raising fairness concerns [24, 39], disproportionately

affecting user groups and discouraging content creators [21, 44].

These challenges persist in LLM-based recommender systems

[36, 41, 43]. Research shows that LLMs can inherit social biases,

leading to unfair recommendations related to sensitive attributes

like gender and race [45]. Dai et al. [12] provide a unified distri-

bution mismatch perspective on bias and fairness in information

retrieval. Existing bias mitigation methods in LRSs typically rely

on predefined target distributions or external guidance for LLM

alignment. In contrast, we introduce the first self-play framework

for mitigating bias in LRSs, requiring neither prior knowledge nor

additional models. By simply modifying the tuning process, our

approach reduces long-tail effects and improves fairness.
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2.3 Self-Play Mechanism
Machine learning models are often data-driven, relying heavily on

the availability of offline data. However, offline data is inherently

limited, raising an important question: can algorithms improve

themselves iteratively without the need for additional data? This

is precisely the challenge that the self-play mechanism aims to

address. The concept of self-play originated from board games

such as Go and chess, exemplified by groundbreaking systems like

AlphaGo Zero [34] and AlphaZero [33].

In the era of LLMs, early preference alignment algorithms like

RLHF and DPO operate as single optimization procedures. Build-

ing on this, Chen et al. [11] proposed that LLMs can refine their

capabilities through self-play by interacting with instances of them-

selves. More specifically, the LLM generates its own training data

from prior iterations and subsequently learns a new policy that

outperforms the old one [42]. This iterative fine-tuning framework

has been shown to be equivalent to finding the Nash equilibrium of

a two-player game, gaining significant recognition due to its solid

theoretical foundation and simplicity [6]. In recommender systems,

we leverage the self-play mechanism to adaptively reduce biased

items in a simple and effective manner.

3 Preliminary
In this section, we provide a brief overview of the technologies for

aligning LLMs with the recommendation task. We then introduce

the idea of evaluating the biases and unfairness in LRSs.

3.1 Supervised Fine-tuning (SFT)
To enable an open-source LLM to learn recommendation tasks effec-

tively, a practical approach is fine-tuning all or part of its parameters

using demonstration data from offline recommendation logs. The

objective is to align the model’s behavior with the recommendation

task by maximizing the log-likelihood over the training dataset D:

𝜋𝑆𝐹𝑇 = argmax

𝜋𝜃
E(𝑥𝑖 ,𝑦𝑖 )∼D log𝜋𝜃 (𝑦𝑖 |𝑥𝑖 ), (1)

where (𝑥𝑖 , 𝑦𝑖 ) are input-output pairs from D, with 𝑥𝑖 representing

user context and interaction history, and𝑦𝑖 the target item. Defining

𝑝D (𝑦 |𝑥) as the empirical probability (i.e., item popularity), SFT

aligns model predictions by minimizing the forward KL-divergence:

𝜋𝑆𝐹𝑇 = argmin

𝜋𝜃
D𝐾𝐿 (𝑝D (𝑦 |𝑥), 𝜋𝜃 (𝑦 |𝑥))

= argmin

𝜋𝜃
E(𝑥𝑖 ,𝑦𝑖 )∼D − log𝜋𝜃 (𝑦𝑖 |𝑥𝑖 ) + 𝐻 (𝑝D ), (2)

where 𝐻 (𝑝D ) is the constant entropy of 𝑝D .

3.2 Direct Preference Optimization (DPO)
To ensure that model outputs align with intricate user preferences,

researchers have proposed Direct Preference Optimization (DPO)

[31], which optimizes the following objective function:

min

𝜋𝜃
−E(𝑥,𝑦𝑤 ,𝑦𝑙 )∼D log𝜎

[
𝛽 log

(
𝜋𝜃 (𝑦𝑤 |𝑥)
𝜋
ref
(𝑦𝑤 |𝑥)

)
− 𝛽 log

(
𝜋𝜃 (𝑦𝑙 |𝑥)
𝜋
ref
(𝑦𝑙 |𝑥)

)]
,

(3)

where (𝑥,𝑦𝑤 , 𝑦𝑙 ) denotes a prompt 𝑥 with a chosen (preferred)

answer 𝑦𝑤 and a rejected answer 𝑦𝑙 . The parameter 𝛽 acts as a
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Figure 2: Distribution of cold-start recommendation results.
Group 0: least popular, group 4: most popular.

regularization factor, controlling the extent to which the learned

policy 𝜋𝜃 deviates from the reference policy 𝜋
ref

.

In the context of recommendation tasks, 𝑥 represents the user

context, typically comprising user features and historical interac-

tion sequences, while𝑦𝑤 and𝑦𝑙 correspond to positive and negative

samples, respectively. The goal is to encourage the model to assign

higher probabilities to preferred items (𝑦𝑤 ) over less desirable ones

(𝑦𝑙 ), effectively capturing user preferences.

DPO offers an efficient and stable solution for preference align-

ment, eliminating the need for complex reward models often re-

quired in reinforcement learning-based approaches. Its natural abil-

ity to incorporate both positive and negative samples makes it

particularly well-suited for recommender systems, where learning

from contrasting user interactions is crucial [2, 10, 25].

3.3 Evaluating Bias via Distribution Alignment
When aligning user preferences, LLMs may inadvertently learn

biased or unfair outcomes. To assess the bias and fairness issues

in LRSs, a mainstream perspective is to formulate the problems

as a mismatch distribution problem [12]. Specifically, let 𝑅 denote

the ground-truth user preference (e.g., an item list), following the

distribution 𝑃 (𝑅), and let 𝑅 represent the model-predicted prefer-

ences, drawn from 𝑃 (𝑅). Bias or unfairness is then quantified by

the mismatch between these two distributions: 𝑃 (𝑅) ≠ 𝑃 (𝑅).
To apply this framework, we follow Jiang et al. [22], approximat-

ing 𝑃 (𝑅) using the category distribution from offline training data.

We further employ their MGU metric to systematically measure

the degree of mismatch in our experiments.

4 Problem of DPO: Amplify Popularity Bias
We present an empirical analysis to demonstrate how DPO exacer-

bates popularity bias in LRSs, followed by a theoretical examination

of the underlying mechanisms driving this phenomenon.

4.1 Empirical Analysis
To systematically evaluate how DPO amplifies recommendation

bias, we design a cold-start recommendation task using two widely-

used benchmark datasets: MovieLens and Goodreads
1
. In this task,

the LLM generates recommendations without access to user interac-

tion history. We randomly sample 100 items and partition them into

1
Dataset details are provided in Section 6.1.1
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Figure 3: Illustration of SFT, DPO, and SPRec in LLM-based recommendations. (a) SFT generates mass-covering results but
retains inherent biases. (b) DPO amplifies these biases by over-representing certain items. (c) SPRec mitigates bias through
self-play, leveraging model outputs as negative samples to achieve balanced recommendations.

five groups based on interaction probabilities, ensuring balanced

popularity levels. Positive samples are drawn accordingly, while

negative samples for DPO training are randomly selected. The train-

ing and validation sets contain 4096 and 512 samples, respectively.

After training, we analyze the distribution of recommendations

across the five groups.

Fig. 2 shows the proportion of recommendations allocated to

each group before and after training, where group 0 represents the

least popular items and group 4 the most popular. The results reveal

three key insights: (1) SFT introduces a slight bias toward group 4;

(2) DPO significantly amplifies this bias, causing recommendations

to concentrate almost entirely on the most popular items; and (3)

our proposed method, SPRec (introduced in detail later), effectively

mitigates the bias amplification induced by DPO.

4.2 Theoretical Analysis
In recommendation tasks, the input and positive samples (𝑥,𝑦𝑤)
are derived from logged interactions in offline data, while negative

samples 𝑦𝑙 are drawn from non-interacted items. Given an input

𝑥 , the probability 𝑝D (𝑦 |𝑥) represents the conditional popularity
of item 𝑦 in the dataset, and 𝑞D (𝑦 |𝑥) denotes the probability of

the same item 𝑦 being selected as a negative sample. Using these

definitions, the DPO loss in Eq. (3) can be rewritten as:

LDPO (𝜋𝜃 ;𝜋𝑟𝑒 𝑓 ) = −E(𝑥,𝑦𝑤 )∼D,𝑦𝑙∼𝑞D ( · |𝑥 ) ℓ (𝜋𝜃 , 𝜋ref , 𝑥,𝑦𝑤 , 𝑦𝑙 ),

with ℓ (·) = log𝜎 [𝛽 log( 𝜋𝜃 (𝑦𝑤 |𝑥)
𝜋𝑟𝑒 𝑓 (𝑦𝑤 |𝑥)

) − 𝛽 log( 𝜋𝜃 (𝑦𝑙 |𝑥)
𝜋𝑟𝑒 𝑓 (𝑦𝑙 |𝑥)

)] .

(4)

In this setting, the optimal policy has a closed-form solution, as

stated in the following theorem:

Theorem 1. The optimal policy 𝜋∗
𝜃
(·|𝑥) for the DPO loss defined

in Eq. (4) is given by:

𝜋∗
𝜃
(𝑦 |𝑥) ∝ 𝜋

ref
(𝑦 |𝑥) ·

(
𝑝D (𝑦 |𝑥)
𝑞D (𝑦 |𝑥)

)
1/𝛽

.

The proof is deferred to Appendix A. This result highlights that

the optimal policy is proportional to the reference policy 𝜋
ref
(𝑦 |𝑥),

adjusted by the relative likelihood ratio

(
𝑝D (𝑦 |𝑥 )
𝑞D (𝑦 |𝑥 )

)
1/𝛽

.

In most recommendation settings, negative samples are uni-

formly distributed [2, 10], i.e., 𝑞D (𝑦 |𝑥) = U = 1

| I | , where I is the

set of all candidate items. Additionally, in typical DPO-based pref-

erence alignment scenarios, 𝛽 is constrained to 0 < 𝛽 < 1. Under

these conditions, the DPO loss inherently biases the model toward
popular items with higher 𝑝D (𝑦 |𝑥), exacerbating popularity bias. In
the extreme case where 𝛽 → 0, the optimal policy collapses to rec-

ommending only the most popular items, effectively disregarding

less frequent but potentially valuable recommendations.

Remark: This result is a byproduct of DPO’s loss function. Un-

like the forward KL-divergence D𝐾𝐿 (𝑝D (𝑦 |𝑥), 𝜋𝜃 (𝑦 |𝑥)) used in

the SFT loss in Eq. (2), DPO optimizes the reverse KL-divergence

D𝐾𝐿 (𝜋𝜃 (𝑦 |𝑥), 𝜋ref (𝑦 |𝑥)). Forward KL-divergence is known for its

mass-covering property, which encourages learning an average

behavior and is less sensitive to subtle differences in the prefer-

ence distribution (as illustrated in Fig. 3(a)) [35]. In contrast, the

reverse KL-divergence used in DPO promotes mode-seeking be-

havior [28, 37], guiding the model to focus on the “peaks” of the

distribution (Fig. 3(b)).

The issue of DPO has also been highlighted by other researchers

[29]. Specifically, Feng et al. [14] derive that DPO suppresses neg-

ative samples more aggressively than it elevates positive samples

during optimization. Moreover, Azar et al. [1] demonstrate that

the empirical optimal policy often drives 𝜋𝜃 (𝑦𝑙 |𝑥) → 0 for all 𝛽 ,

stemming from an underfitting of the potential reward.

In the context of recommendation, this behavior can be detri-

mental, as it exacerbates the filter bubble issue and undermines

user interests by limiting exposure to diverse items [16].

5 Method
We present how to address the popularity bias in DPO by utiliz-

ing the self-play philosophy. Then we detail the proposed SPRec

architecture.

5.1 Solution: Suppress Biases through Self-Play
Since the DPO loss inherently causes the policy 𝜋𝜃 to learn sharp

“peaks”, leading to bias, an intuitive solution is to directly suppress
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these learned peaks. To address this, we utilize a self-play frame-

work, dubbed SPDPO, which iteratively alternates between policy

learning and bias suppression. Specifically, in the (𝑡 +1)-th iteration,
negative samples are drawn from themodel’s predictive distribution

𝜋𝜃𝑡 (·|𝑥) at iteration 𝑡 , resulting in the following learning paradigm:

𝜋𝜃𝑡+1 ← argmax

𝜋𝜃
E(𝑥,𝑦𝑤 )∼𝐷,𝑦𝑙∼𝜋𝜃𝑡 ( · |𝑥 )𝑙 (𝜋𝜃 ;𝜋𝜃𝑡 ;𝑥,𝑦𝑤 , 𝑦𝑙 ). (5)

By comparing Eq. (5) with Eq. (4), we obtain that the objective

function L𝑆𝑃𝐷𝑃𝑂 in the (𝑡 +1)-th iteration can be viewed as L𝐷𝑃𝑂
weighted by

𝜋𝜃𝑡 (𝑦𝑙 |𝑥 )
𝑞D (𝑦𝑙 |𝑥 ) , which can be expressed as follows:

L𝑆𝑃𝐷𝑃𝑂 = −E(𝑥,𝑦𝑤 )∼D,𝑦𝑙∼𝑞D ( · |𝑥 )
𝜋𝜃𝑡 (𝑦𝑙 |𝑥)
𝑞D (𝑦𝑙 |𝑥)

𝑙 (𝜋𝜃 ;𝜋𝜃𝑡 ;𝑥,𝑦𝑤 , 𝑦𝑙 ) .
(6)

Again, if DPO uses negative samples from a discrete uniform distri-

bution 𝑞D (𝑦 |𝑥) = U = 1

| I | , then the objective function L𝑆𝑃𝐷𝑃𝑂
can be viewed as L𝐷𝑃𝑂 weighted by 𝜋𝜃𝑡 (𝑦𝑙 |𝑥). This highlights
that the objective adaptively pays more attention to biased items

by increasing their learning rates if they have higher probabilities

in the model’s output distribution.

Remark: Unlike traditional recommendation methods that prede-

fine negative samples or allocate weights in advance, our approach

dynamically selects negative samples during the learning process.

This provides a significant advantage, enabling the model to adap-

tively adjust its learning paradigm for effective bias suppression. As

a result, this approach mitigates the filter bubble issue and enhances

the diversity of recommendations.

5.2 Architecture of SPRec
Utilizing the loss function in Eq. (5), we propose a self-play rec-

ommendation tuning framework, SPRec, which generally includes

multiple iterations of both an SFT step and a DPO step. The work-

flow is illustrated in Fig. 3(c), in which three key steps are conducted

sequentially in each iteration:

(1) Dataset Construction: For each positive sample {(𝑥𝑖 , 𝑦𝑖𝑤)} in
the offline dataset, sample a negative sample 𝑦𝑖

𝑙
by running the

current model 𝜋𝜃𝑡 and using its predicted recommendation as

𝑦𝑖
𝑙
. Thus we obtain pairwise preference data for each sample as

{(𝑥𝑖 , 𝑦𝑖𝑤 , 𝑦𝑖𝑙 )}.
(2) SFT Step: Use only the positive sample {(𝑥𝑖 , 𝑦𝑖𝑤)} to refine the

model 𝜋𝜃𝑡 through SFT techniques such as instruction learning.

(3) DPO Step: Align the model 𝜋𝜃𝑡 by perform DPO step using

pairwise dataset {(𝑥𝑖 , 𝑦𝑖𝑤 , 𝑦𝑖𝑙 )}, and obtain 𝜋𝜃𝑡+1 .

This process repeats for 𝑇 iterations per epoch. The self-play

mechanism is adaptable to any LLM-based recommender system.

To ensure comparability with existing DPO-based recommenders

[2, 10, 25], we can extend from a single to multiple negative samples,

with results analyzed in experiments.

Remark: Although the loss function in Eq. (5) is inherently capable

of aligning the model with positive samples, our experiments reveal

that incorporating an SFT step in each self-play iteration can further

enhance performance.

In fact, combining SFT and DPO has been shown to be an ef-

fective practice in recent research and open-sourced LLM models.

For example, each iteration of post-training for Llama 3 includes

an SFT stage followed by a DPO stage [13]. Similarly, Pang et al.

[30] demonstrate the effectiveness of an iterative preference opti-

mization algorithm using a modified DPO loss with an additional

negative log-likelihood (NLL) term, which mirrors the SFT loss

defined in Eq. (1).

6 Experiments
In this section, we conduct experiments to address the following

research questions:

• RQ1: How does the SPRec training framework compare to base-

line methods in terms of accuracy, diversity, and fairness?

• RQ2: What are the contributions of different components within

the SPRec framework?

• RQ3: How do the random sampling ratio and the number of

negative samples impact the performance?

6.1 Experimental Setup
6.1.1 Datasets. We conducted extensive experiments on four real-

world datasets: MovieLens2, Steam3
, Goodreads4, and the CDs and

Vinyl category of the Amazon Review Dataset
5
. Additional details

about the datasets are provided in the Appendix B. Following the

data processing approach in [4, 10], interaction sequences with

fewer than 10 entries were excluded. The datasets were then split

chronologically into training, validation, and test sets in an 8:1:1

ratio, ensuring mutual exclusivity and preventing data leakage.

To ensure comparability across different LLM-based methods, we

further sampled 4,096 interactions from each dataset’s training set

as the training samples for all methods, 512 interactions from the

validation set, and 1,000 interactions from the test set.

To process category information, we extracted categorymetadata

from each dataset and identified the most 10 popular categories

within the training sets. To ensure category independence, we

removed categories with clear hierarchical relationships, such as

“FPS” and “Shooting” in the Steam dataset, and “Rock” and “Classical

Rock” in the CDs and Vinyl dataset.

6.1.2 Evaluation Setting. To leverage the strengths of LLMs in

generative recommendation tasks, we prompt the LLM to generate a

predicted item based on the input history sequence. Then, following

the procedures in BIGRec [3], we calculate scores and rankings for

the entire item space and ground our predicted item to an exact

item in the dataset.

6.1.3 Metrics. We evaluate the model on 1,000 randomly sampled

test cases per iteration using four key metrics. Accuracy is mea-

sured by NDCG@5 and HR@5, averaged across results. Diversity

is assessed via DivRatio, representing the proportion of unique

recommendations. Over-recommendation is quantified by ORRatio,

indicating the proportion of results dominated by the three most fre-

quently recommended items. Fairness is evaluated using MGU [22],

capturing category-level discrepancies between recommendations

and user history.

2
https://grouplens.org/datasets/movielens/

3
https://cseweb.ucsd.edu/~jmcauley/datasets.html#amazon_reviews

4
https://mengtingwan.github.io/data/goodreads

5
http://jmcauley.ucsd.edu/data/amazon/index_2014.html

https://grouplens.org/datasets/movielens/
https://cseweb.ucsd.edu/~jmcauley/datasets.html#amazon_reviews
https://mengtingwan.github.io/data/goodreads
http://jmcauley.ucsd.edu/data/amazon/index_2014.html
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Figure 4: Comparison of models across genres on Group Unfairness (GU) in top-1 recommendation.

Table 1: Overall performance comparison of SPRec (green) ,

SFT-based (brown) , and DPO-based (blue) methods. Best
results are bold, sub-optimal ones underlined. ↑ indicates
higher is better, while ↓ indicates lower is better.

Dataset Model DivRatio↑ ORRatio↓MGU↓ HR↑ NDCG↑
SASRec 0.0031 1.0000 0.1209 0.0225 0.0136

BIGRec 0.1939 0.2561 0.0620 0.0347 0.0281

RW 0.1918 0.2551 0.0577 0.0327 0.0276

D
3

0.1246 0.3238 0.0664 0.0266 0.0197

DMPO 0.1827 0.2561 0.0529 0.0310 0.0264

SDPO 0.1816 0.2449 0.0462 0.0310 0.0258

RosePO 0.1857 0.2378 0.0538 0.0290 0.0244

MovieLens

SPRec 0.2806 0.1510 0.0432 0.0388 0.0319

SASRec 0.0030 1.0000 0.0458 0.0202 0.0139

BIGRec 0.1420 0.3170 0.0175 0.0310 0.0236

RW 0.1050 0.3730 0.0238 0.0380 0.0281

D
3

0.1199 0.2581 0.0260 0.0413 0.0324

DMPO 0.1560 0.3310 0.0164 0.0410 0.0314

SDPO 0.1580 0.3270 0.0161 0.0420 0.0315

RosePO 0.1860 0.3230 0.0181 0.0300 0.0215

Goodreads

SPRec 0.2090 0.2170 0.0099 0.0330 0.0250

SASRec 0.0021 1.0000 0.1205 0.0226 0.0170

BIGRec 0.3198 0.2597 0.0461 0.0132 0.0130

RW 0.2821 0.2648 0.0432 0.0112 0.0103

D
3

0.3135 0.2672 0.0320 0.0103 0.0088

DMPO 0.3116 0.1740 0.0195 0.0090 0.0090

SDPO 0.3218 0.2118 0.0380 0.0110 0.0106

RosePO 0.3625 0.1853 0.0426 0.0090 0.0090

CDs_and_Vinyl

SPRec 0.3859 0.1670 0.0242 0.0143 0.0140

SASRec 0.0010 1.0000 0.1094 0.0660 0.0379

BIGRec 0.1940 0.3910 0.0650 0.0780 0.0766

RW 0.2890 0.2710 0.0313 0.0760 0.0735

D
3

0.1580 0.4560 0.0511 0.0730 0.0718

DMPO 0.2270 0.2990 0.0443 0.0850 0.0834

SDPO 0.2080 0.3510 0.0475 0.0820 0.0810

RosePO 0.2310 0.3160 0.0499 0.0820 0.0805

Steam

SPRec 0.2930 0.2560 0.0367 0.0910 0.0893

6.1.4 Baseline. For traditional recommendation models, we select

SASRec [23], a widely used baseline employing a sequential method

with a self-attention mechanism. For LLM-based models, we con-

sider several baselines. (1) For SFT-based methods, BIGRec [3]

serves as an instruction-tuning LLM framework for sequential rec-

ommendations and forms the foundation for SPRec. Re-weighting
(RW) [22] improves fairness in BIGRec by balancing recommen-

dations across categories through dataset-based training weights.

Debiasing-Diversifying Decoding (D3) [4] enhances diversity in
BIGRec using a decoding strategy guided by SASRec. (2) For DPO-

based models, DMPO [2] introduces DPO into LRSs by sampling

multiple negative items as rejected responses, while Softmax-DPO
(SDPO) [10] follows a similar approach but incorporates a softmax

loss over multiple negative samples. Finally, RosePO [25] is a pref-

erence optimization framework that combines negative sampling

strategies and personalized uncertainty to achieve fairness, unbi-

asedness, and robustness. The implementation details are listed in

Appendix C.

6.2 Overall Performance Comparison (RQ1)
The experimental results are presented in Table 1, leading to the

following observations. The non-LLM baseline, SASRec, performs

poorly with the given training size, which is expected as SASRec

requires large datasets to achieve effective fitting. In this study, we

primarily focus on LLM-based methods, and SASRec’s results are

included only for reference and as the assistant model for D
3
during

the decoding stage.

6.2.1 Limitations of SFT-based Methods. Fine-tuning LLMs with

instruction-based methods results in recommendations heavily fa-

voring popular items, leading to a lack of diversity. For example,

in the Goodreads dataset, the DivRatio of BIGRec is only 0.142,

meaning the model provides just 14 distinct recommendations per

100 tasks. Similarly, in the Steam dataset, BIGRec’s ORRatio reaches

0.391, with over 39% of recommendations concentrated on the 3

most popular items. These findings highlight that relying solely

on SFT introduces severe biases, significantly overexposing certain

popular items.

6.2.2 Limitations of DPO-based Methods. For DPO methods us-

ing random sampling, such as SDPO and DMPO, while multiple

negative samples improve recommendation accuracy, they perform

poorly on diversity and fairness metrics. On the Goodreads and

MovieLens datasets, SDPO and DMPO have minimal impact on Di-

vRatio and ORRatio and may even degrade model performance. On

the CDs and Steam datasets, although ORRatio decreases, diversity

metrics remain largely unchanged, suggesting that the model favors

moderately popular items but fails to effectively recommend new

ones. In contrast, RosePO performs well on the CD dataset due to
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Table 2: Ablation results. “with RN” for random negative
samples, “w/o” for without specific components.

Dataset Model DivRatio↑ ORRatio↓MGU↓ HR↑ NDCG↑
w/o SFT 0.3020 0.0837 0.0198 0.0184 0.0149

w/o DPO 0.1959 0.2714 0.0637 0.0316 0.0260

with RN 0.2194 0.2224 0.0544 0.0286 0.0230
MovieLens

SPRec 0.2806 0.1510 0.0432 0.0388 0.0319

w/o SFT 0.2010 0.2390 0.0044 0.0270 0.0206

w/o DPO 0.1350 0.2970 0.0142 0.0350 0.0274

with RN 0.1380 0.3380 0.0188 0.0420 0.0310Goodreads

SPRec 0.2090 0.2170 0.0099 0.0330 0.0250

w/o SFT 0.3381 0.2373 0.0216 0.0132 0.0126

w/o DPO 0.3136 0.2363 0.0333 0.0143 0.0136

with RN 0.3625 0.2536 0.0359 0.0163 0.0150CDs_and_Vinyl

SPRec 0.3859 0.1670 0.0242 0.0143 0.0140

w/o SFT 0.2900 0.2260 0.0173 0.0880 0.0868

w/o DPO 0.2220 0.3910 0.0620 0.0790 0.0776

with RN 0.2860 0.2530 0.0351 0.0860 0.0837
Steam

SPRec 0.2930 0.2560 0.0367 0.0910 0.0893

its negative sampling strategy based on semantic information. How-

ever, this approach heavily relies on the semantic characteristics of

the dataset’s structure, resulting in relatively poor performance on

other datasets and limiting its generalizability for debiasing.

In summary, existing DPO-based methods fail to address fairness

issues in LRS.

6.2.3 Superiority of SPRec. As shown in Table 1, SPRec signif-

icantly improves both DivRatio and ORRatio metrics across all

datasets compared to BIGRec, demonstrating its effectiveness in

mitigating the over-recommendation of popular items and enhanc-

ing diversity. Additionally, SPRec outperforms BIGRec on most

fairness metrics, reducing the discrepancies between the model’s

recommendations and users’ historical sequences, thereby provid-

ing fairer recommendations.

SPRec also surpasses all baseline models on DivRatio and ORRa-

tio, showcasing its superior ability to balance recommendation dis-

tributions. For fairness, SPRec achieved the highest MGU scores on

the MovieLens and Goodreads datasets, and the second-highest on

the Steam and CD datasets. Moreover, as shown in Fig. 4, SPRec al-

leviates category-level unfairness on the MovieLens dataset, achiev-

ing the best results in 7 out of 8 categories, further underscoring

its effectiveness in improving fairness.

While RosePO performs well on the CDs and Vinyl dataset,

leveraging semantic-based negative sampling to address fairness

in music recommendations, and Re-weighting shows strong per-

formance on the Steam dataset by employing category-based re-

weighting for gaming recommendations, these methods are tailored

to specific datasets and lack generalizability. In contrast, SPRec’s

self-play framework provides a universal solution, overcoming

dataset-specific challenges and delivering fairer recommendations

across diverse scenarios.

6.3 Ablation Study (RQ2)
We conducted a series of ablation experiments to explore the impact

of each component of the SPRec training framework.
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Figure 5: Performance on the MovieLens dataset across dif-
ferent ablation experiments.

6.3.1 SPRec without SFT. As shown in Table 2, SPRec w/o SFT

achieves the lowest recommendation accuracy across all datasets

except Steam. This indicates that, during the self-play process, the

model’s excessive focus on fairness compromises its accuracy. In

the MovieLens dataset (Fig. 5), the absence of the SFT stage leads

to a steady decline in recommendation accuracy (NDCG) through-

out training. These findings highlight the critical role of SFT in

maintaining SPRec’s recommendation performance.

6.3.2 SPRec without DPO. Removing DPO reduces SPRec to fur-

ther SFT training, ensuring that performance gains are not due

to incorporating additional data. As shown in Table 2, additional

SFT fails to improve diversity or fairness metrics, and the recom-

mendations remain biased. Furthermore, Fig. 5 reveals minimal

fluctuations during training, indicating that the prior SFT training

has already converged. This experiment underscores the limitations

of SFT-based methods in addressing recommendation fairness and

diversity.

6.3.3 Randomly sampling negative items. As observed in Table 2,

when the negative sampling strategy is replaced with random sam-

pling, SPRec-RN fails to achieve further improvements in DivRatio

and ORRatio metrics on the MovieLens and Goodreads datasets.

Additionally, SPRec-RN’s fairness metrics perform worse compared

to SPRec. Although SPRec-RN shows a significant improvement in

DivRatio on the CDs and Vinyl dataset, its ORRatio still performs

poorly. This suggests that random sampling of negative samples

during training is ineffective at suppressing popular items, and the

recommendation results continue to exhibit a significant long-tail

effect. This ablation experiment demonstrates that our Self-play

negative sampling strategy effectively balances the distribution

of the model’s output, leading to debiasing in recommendations.

Replacing the negative sampling strategy with random sampling

(SPRec-RN) fails to improve DivRatio and ORRatio metrics on the

MovieLens and Goodreads datasets (Table 2). Additionally, SPRec-

RN exhibits worse fairness metrics compared to SPRec. While it

achieves a significant boost in DivRatio on the CDs dataset, its
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Figure 7: Effect of negative sample size.

ORRatio remains poor. These results suggest that random nega-

tive sampling is ineffective in suppressing popular items, leaving a

pronounced long-tail effect in the recommendations. This experi-

ment demonstrates that our self-play negative sampling strategy

effectively balances the model’s output distribution, resulting in

debiased recommendations.

6.4 Impact of Negative Samples (RQ3)
We investigate the role of negative samples in SPRec by introducing

a proportion of random negative samples to contaminate SPRec’s

original self-play samples. Additionally, we examine the impact of

increasing the number of negative samples in SPRec’s loss function

(Eq. (6)). To achieve this, we adopt the SDPO loss function to expand

to multiple negative samples. For efficiency, we limit the training

sample size to 1,024, keeping other experimental settings consistent

with Section 6.2. To ensure result stability, the model’s performance

is averaged over the last three training iterations. We report the

results on the Movielens dataset.

6.4.1 Effect of Random Sampling Ratio. In each training iteration,

we randomly replace a proportion of negative samples with ran-

domly selected items while leaving the remaining negative samples

unchanged as the model’s recommendation outputs. As shown in

Fig. 6, increasing the proportion of random negative samples leads

to a steady decline in diversity and accuracy. Fairness also dete-

riorates, with recommendations becoming more skewed toward

a small subset of popular items. These results highlight the supe-

riority of our proposed self-play negative sampling strategy over

random sampling.

6.4.2 Effect of Negative Sample Size. To generate 𝑁 negative sam-

ples, we use beam search decoding to sample 2𝑁 items from the

model’s output. After deduplication, the top 𝑁 items with the high-

est predicted probabilities are selected as negative samples. As

shown in Fig. 7, increasing the number of negative samples re-

sults in stable recommendation accuracy but significantly improves

diversity and fairness, reducing the focus on popular items. This

demonstrates the versatility of the self-play negative sampling

strategy, which can be effectively combined with multi-negative

sampling approaches to further debias LRS.

7 Conclusion & Discussion
Our work establishes a critical bridge between preference align-

ment techniques and fairness-aware recommendation in the era of

LLMs. Through both theoretical analysis and empirical validation,

we demonstrate that conventional DPO-based tuning fundamen-

tally conflicts with the principles of equitable recommendation,

creating self-reinforcing popularity biases that traditional debias-

ing approaches fail to address. The proposed SPRec framework

represents a paradigm shift in recommendation alignment - rather

than treating bias mitigation as a post-hoc correction, we redesign

the core learning mechanism to enable autonomous bias suppres-

sion through self-regulated competition between model genera-

tions. This approach not only achieves state-of-the-art performance

across accuracy and fairness metrics but more importantly, provides

a blueprint for developing self-correcting AI systems that maintain

alignment with both user preferences and ethical constraints.

Despite its effectiveness, our work primarily addresses bias in

DPO-based tuning, while overlooking the popularity bias already

present in SFT due to its cross-entropy loss. Future research should

focus on mitigating bias at the SFT stage to ensure fairness from

the start of fine-tuning. Additionally, optimizing preferences in rec-

ommendation is a long-term challenge, requiring alignment across

sequential recommendations rather than individual predictions.

However, LLMs generate outputs token by token, making it dif-

ficult to optimize preferences from token-level to item-level and

ultimately list-level recommendations. Tackling this issue will re-

quire new datasets, benchmarks, and models capable of long-term

alignment. A promising direction is reinforcement learning with

process-level rewards, shifting optimization from short-term token

likelihood to long-horizon user engagement.
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A Mathematical Derivations
Proof of Theorem 1. The DPO loss is derived from the objec-

tive of Reinforcement Learning with Human Feedback (RLHF):

max

𝜃
E𝑥∼D,𝑦∼𝜋𝜃 ( · |𝑥 ) [𝑟 (𝑥,𝑦)] − 𝛽DKL (𝜋𝜃 ∥𝜋ref ), (7)

where the reward model is defined via the BT model:

max

𝑟
E(𝑥,𝑦𝑤 )∼D,𝑦𝑙∼𝑌𝑢 log𝜎 (𝑟 (𝑥,𝑦𝑤) − 𝑟 (𝑥,𝑦𝑙 )) .

In the original paper of DPO [31], the authors proved that the

optimal policy 𝜋∗
𝜃
for DPO loss in Eq. Eq. (4) and the solution to the

optimization problem in Eq. (7) are the same. Thus, we can analyze

the solution to Eq. (7), equivalent to examining the DPO loss.

Consider a fixed context 𝑥 and define 𝑟 (𝑦 |𝑥) as:
𝑟 (𝑦 |𝑥) = exp(𝑟 (𝑥,𝑦)), (8)

then our goal is to optimize 𝒓 (·|𝑥) ∈ RI+ , which is a |I |-dim vector

representing the latent rewards for all items in the recommendation

dataset I. we can rewrite the reward model’s optimization as:

max

𝒓̂ ( · |𝑥 ) ∈RI+

∑︁
𝑦𝑤 ∈I

∑︁
𝑦𝑙 ∈I

𝑝D (𝑦𝑤 |𝑥)𝑞D (𝑦𝑙 |𝑥) log
(

𝑟 (𝑦𝑤 |𝑥)
𝑟 (𝑦𝑤 |𝑥) + 𝑟 (𝑦𝑙 |𝑥)

)
.

Then we calculate the gradients:

𝜕𝑝D (𝑦𝑤 |𝑥)𝑞D (𝑦𝑙 |𝑥) log
(

𝑟 (𝑦𝑤 |𝑥)
𝑟 (𝑦𝑤 |𝑥) + 𝑟 (𝑦𝑙 |𝑥)

)
/𝜕𝑟 (𝑦 |𝑥)

=


𝑝D (𝑦 |𝑥)𝑞D (𝑦𝑙 |𝑥) (

1

𝑟 (𝑦 |𝑥) −
1

𝑟 (𝑦 |𝑥) + 𝑟 (𝑦𝑙 |𝑥)
) 𝑦𝑤 = 𝑦,𝑦𝑙 ≠ 𝑦,

− 𝑝D (𝑦𝑤 |𝑥)𝑞D (𝑦 |𝑥)
1

𝑟 (𝑦𝑤 |𝑥) + 𝑟 (𝑦 |𝑥)
𝑦𝑤 ≠ 𝑦,𝑦𝑙 = 𝑦,

0 else.

Hence, the objective’s gradient w.r.t. 𝑟 (𝑦 |𝑥) can be written as:

𝜕
∑︁
𝑦𝑤 ∈I

∑︁
𝑦𝑙 ∈I

𝑝D (𝑦𝑤 |𝑥)𝑞D (𝑦𝑙 |𝑥) log
(

𝑟 (𝑦𝑤 |𝑥)
𝑟 (𝑦𝑤 |𝑥) + 𝑟 (𝑦𝑙 |𝑥)

)
/𝜕𝑟 (𝑦 |𝑥)

=0 +
∑︁
𝑦𝑙≠𝑦

[
𝑝D (𝑦 |𝑥)𝑞D (𝑦𝑙 |𝑥) (

1

𝑟 (𝑦 |𝑥) −
1

𝑟 (𝑦 |𝑥) + 𝑟 (𝑦𝑙 |𝑥)
)
]

−
∑︁
𝑦𝑤≠𝑦

𝑝D (𝑦𝑤 |𝑥)𝑞D (𝑦 |𝑥)
1

𝑟 (𝑦𝑤 |𝑥) + 𝑟 (𝑦 |𝑥)

=
∑︁
𝑦𝑖 ∈I

[
𝑝D (𝑦 |𝑥)𝑞D (𝑦𝑖 |𝑥) (

1

𝑟 (𝑦 |𝑥) −
1

𝑟 (𝑦 |𝑥) + 𝑟 (𝑦𝑖 |𝑥)
)
]

−
∑︁
𝑦𝑖 ∈I

𝑝D (𝑦𝑖 |𝑥)𝑞D (𝑦 |𝑥)
1

𝑟 (𝑦𝑖 |𝑥) + 𝑟 (𝑦 |𝑥)
(add 0)

=
∑︁
𝑦𝑖 ∈I

[
𝑝D (𝑦 |𝑥)𝑞D (𝑦𝑖 |𝑥)

𝑟 (𝑦 |𝑥) − 𝑝D (𝑦𝑖 |𝑥)𝑞D (𝑦 |𝑥) + 𝑝D (𝑦 |𝑥)𝑞D (𝑦𝑖 |𝑥)
𝑟 (𝑦𝑖 |𝑥) + 𝑟 (𝑦 |𝑥)

]
.

By setting the gradients to be 0, we obtain that for ∀𝑦 ∈ I, the
optimal reward 𝑟∗ (𝑦 |𝑥) is:

𝑟∗ (𝑦 |𝑥) ∝ 𝑝D (𝑦 |𝑥)
𝑞D (𝑦 |𝑥)

.

By plugging it into Eq. (8), we have:

𝑟∗ (𝑥,𝑦) = log𝑝D (𝑦 |𝑥) − log𝑞D (𝑦 |𝑥) + Constant.
Back to the RLHF objective, we have:

max

𝜃
E𝑥∼D,𝑦∼𝜋𝜃 ( · |𝑥 ) [log𝑝D (𝑦 |𝑥) − log𝑞D (𝑦 |𝑥)] − 𝛽DKL (𝜋𝜃 ∥𝜋ref ),

which has a well-known closed form solution [31]:

𝜋∗
𝜃
(𝑦 |𝑥) ∝ 𝜋

ref
(𝑦 |𝑥) ·

(
𝑝D (𝑦 |𝑥)
𝑞D (𝑦 |𝑥)

)
1/𝛽

.

□

B Dataset Statistics
Our datasets span diverse domains, including movies, books, mu-

sic, and games, offering varied sizes and user interaction patterns

to provide a comprehensive basis for evaluating LRSs. Note that

while we report the full dataset statistics, only a subset of inter-

action sequences is sampled for LLM fine-tuning, as detailed in

Section 6.1.1.

Table 3: Statistics of Datasets.

Datasets #Items #Interactions #Sequences

MovieLens 10,682 10,000,054 9,301,274

Goodreads 4,058 160,398 6,031

CDs_and_Vinyl 13,078 185,855 21,347

Steam 32,094 178,961 29,876

C Implementation Details
For LLM-based methods, we adopted Llama-3.2-1B-Instruct as the

backbone LLM. Considering the ability of LLMs to quickly adapt to

downstream tasks with limited data, we followed BIGRec [3] and

used relatively smaller datasets. To ensure fairness in comparison,

all baseline methods and SPRec utilize the same dataset as used in

the SFT training phase. For SPRec, the total number of iterations

was set to 5, with each SFT and DPO phase trained for 1 epoch. To

ensure that the training data used in each iteration is not identical,

we further randomly sample half of the training data (i.e., 2048

interactions) for training in each iteration. All experiments were

carried out on four RTX 3090 GPUs, each with 24GB of VRAM.

For the traditional model SASRec, we use the same training and

validation datasets as other LLM-based methods, with dataset sizes

of 4,096 and 512, respectively. The embedding size was fixed at

64, and the dropout ratio was set to 0.1. Negative samples were

randomly sampled in training, with Adam as the optimizer and

a learning rate of 4e-3. More details of the implementation are

available via https://github.com/RegionCh/SPRec.

https://github.com/RegionCh/SPRec
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