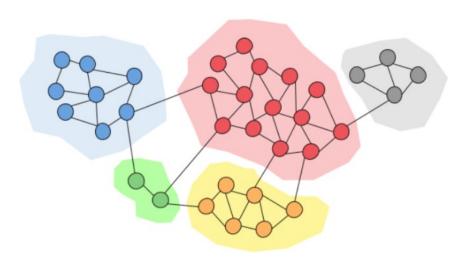


# A Deep Learning Framework for Selfevolving Hierarchical Community Detection

### Daizong Ding<sup>1</sup> Mi Zhang<sup>1</sup> Hanrui Wang<sup>1</sup> Xudong Pan<sup>1</sup> Min Yang<sup>1</sup> Xiangnan He<sup>2</sup>

School of Computer Science, Fudan University
School of Data Science, University of Science and Technology of China

## **Community Detection**



#### Input

• A graph represented by nodes and edges

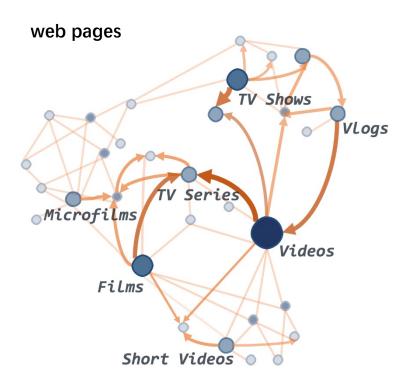
#### Output

• Node-community affiliations

#### Application

- Social network analysis
- Information retrieval
- .....

## **Hierarchical Community Detection**



#### Motivation

• Complex networks often have hierarchical structures

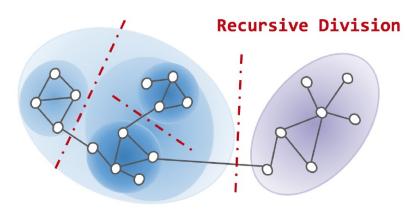
#### Design

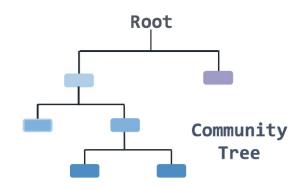
- Modeling hierarchical relationships between clusters
- Community tree

#### Methods

- Louvain
- Label Propagation Algorithm
- .....

## **Heuristic Algorithms**





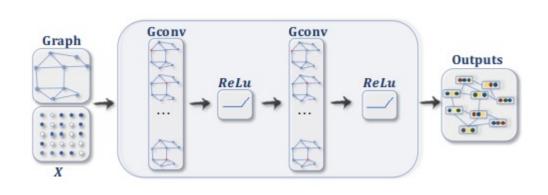
#### Solution

- Recursively division
  - Louvain
- Recursively aggregation

#### Cornerstone

- Heuristic algorithms
  - Random search
  - Greedy strategy

## **Deep Neural Networks**



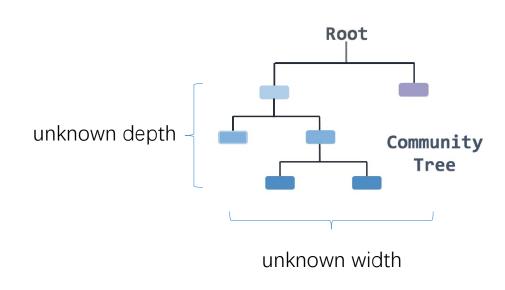
#### Recently,

- Deep neural network (DNN) has been applied to various graph applications
  - Node classification
  - Link prediction

#### However,

- Such technique has not been validated on hierarchical community detection
- Why?

## **Problem Analysis**

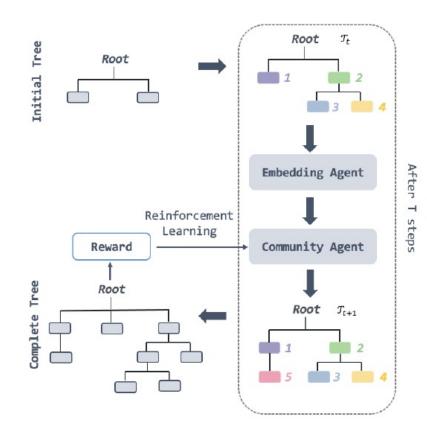


#### Main reason:

- DNN requires parametrized inputs and outputs:
  - Label of a node (an integer ID)
  - Link between two nodes (0 or 1)

#### However,

• It is difficult to parametrize a community tree without knowing its width and depth

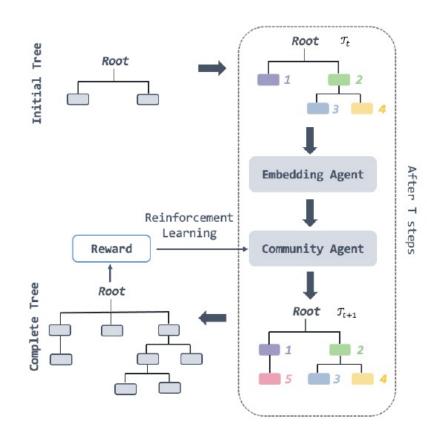


#### Our solution: ReinCom

 Dividing the problem into sub-problems that can be parametrized by the DNN

#### Tree generation by DNN:

- At each step, the DNN outputs the position for inserting a new community
- Starting from a small community tree, we can obtain a large one after several iteration
- Leverage reinforcement learning to guide the generation



#### **Embedding Agent**

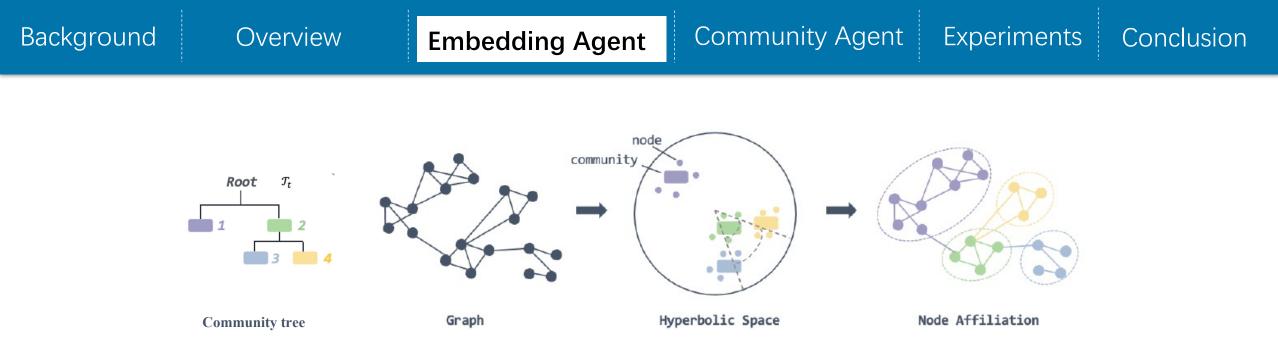
- Given a community tree, it partitions nodes to different communities
- Measure the quality of current community tree

#### **Community Agent**

- Adjust the existing community tree
- Predict the next position for inserting a new community
- Build new community tree and pass it to the embedding agent

#### Framework

• Two agents are designed to work collaboratively.



#### Input:

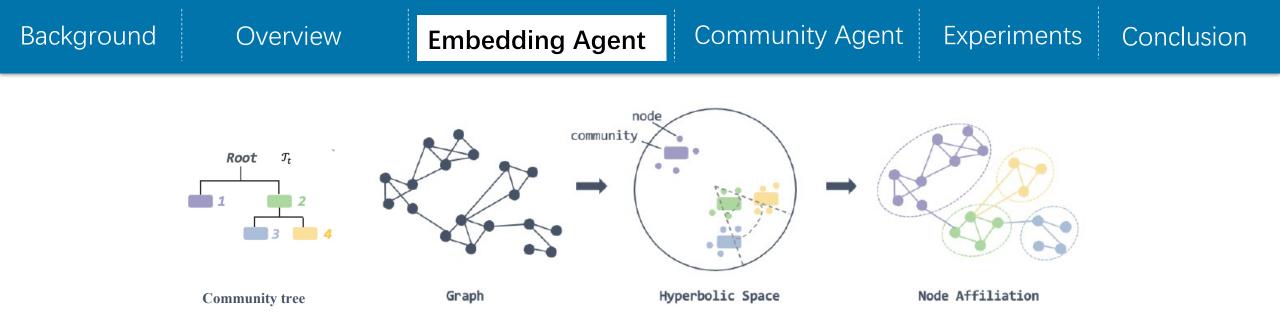
- The community tree  $\mathcal{T}_t$  at time t, containing communities  $c \in \{1, \dots, t\}$
- The graph  $\mathcal{G} = (\mathcal{V}, \Upsilon)$ , where  $\mathcal{V}$  is the set of nodes and  $\Upsilon$  represents linkage information between nodes

#### Output:

• For each node  $v_i$ , the agent outputs its community  $c_i$ 

#### Goal:

• Estimate the quality of the community tree  $\mathcal{T}_t$ 



#### Embedding space:

- For each node  $v_i$ , we embed it with a vector representation  $e_i \in \mathbb{R}^D$
- For each cluster c, we also map it to the same vector space and assign it with  $e_c \in \mathbb{R}^D$

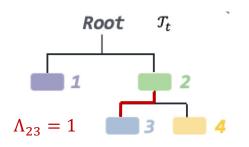
#### Node-community affiliation:

• The probability of node  $v_i$  belongs to community c can be measured by,

$$\rho_{ic} \propto \exp(-\|e_i - e_c\|^2)$$

• How to learn  $\rho_{ic}$ ?





#### Distance on the community tree:

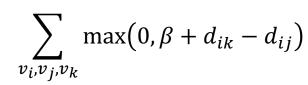
- We first define the distance between two communities given  $\mathcal{T}_t$
- The length of path to the common ancestor

#### Distance between two nodes:

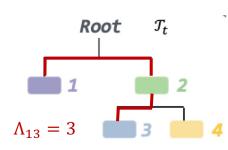
• Then the distance between two nodes can be represented by,

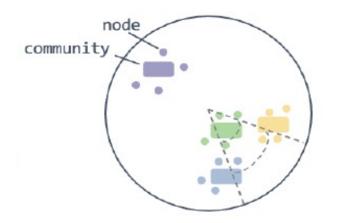
$$d_{ij} = \mathbb{E}_{c_i \sim p(c|v_i), c_j \sim p(c|v_j)} [\Lambda(c_i, c_j)] = \rho_i^T \Lambda \rho_j$$

Learning goal:



• where  $v_i$  and  $v_j$  have edge, while  $v_i$  and  $v_k$  do not have edge





Hyperbolic Space

#### The hyperbolic embedding space:

• To better model the hierarchical structure, we leverage the hyperbolic space for the embeddings:

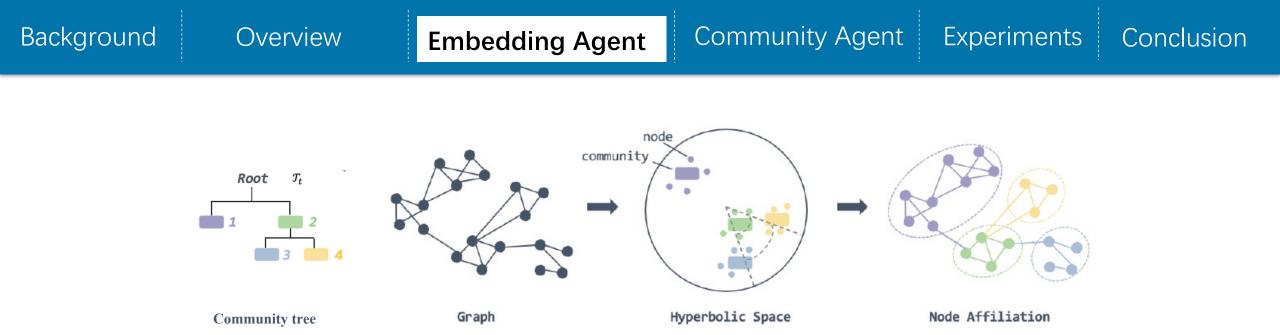
 $\bullet \quad \|e\|_2 \leq 1$ 

• 
$$||e_i - e_c||_H^2 = \operatorname{arccosh}\left(1 + \frac{2||e_i - e_c||_2^2}{(1 - ||e_i||_2)(1 - ||e_c||_2)}\right)$$

To satisfy the constraint:

$$e_i = \left(1 - \exp\left(-\omega(\eta_i)\right)\right) \cdot \frac{\tilde{\boldsymbol{e}}_i}{\|\tilde{\boldsymbol{e}}_i\|_2}$$

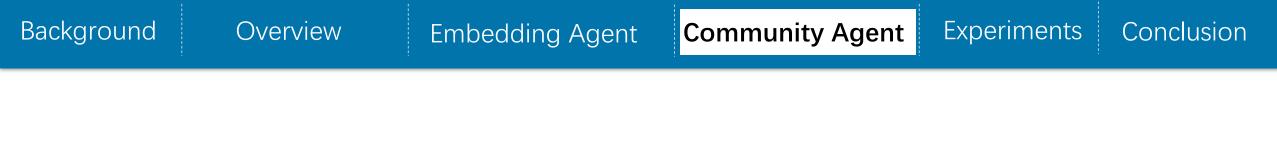
- $\eta_i \in \mathbb{R}$  is the scale parameter
- $\tilde{e}_i \in \mathbb{R}^D$  is the vector parameter

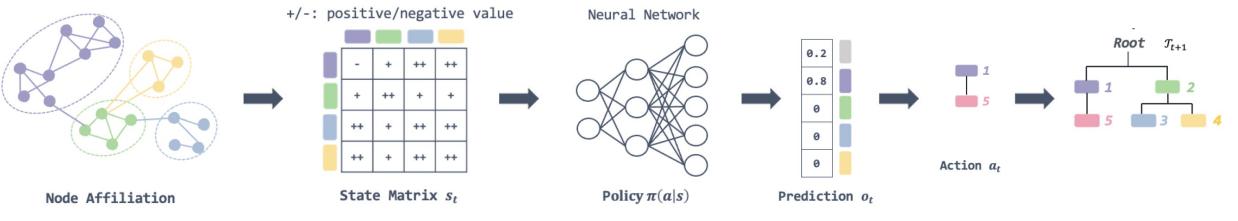


• After the learning, the node-community affiliation  $c_i$  is calculated by,

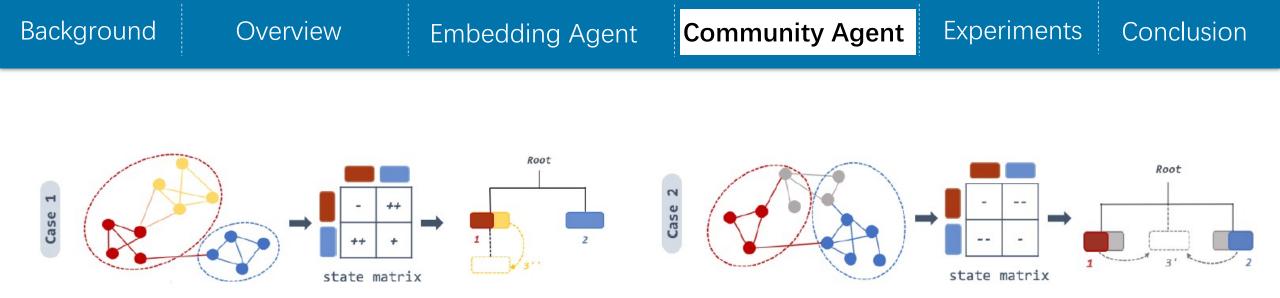
 $c_i = argmax \rho_{ic}$ 

• The hierarchical information in  $\mathcal{T}_t$  is learned by the distance  $\Lambda$  on the tree, the graph  $\mathcal{G}$  and the hyperbolic space



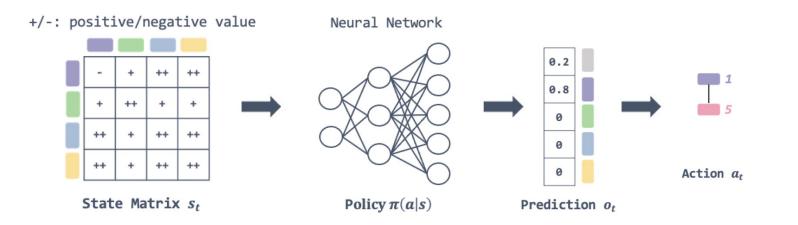


- Predicting the position for inserting a new community according to the node-community affiliations
- Leveraging the DNN for the prediction



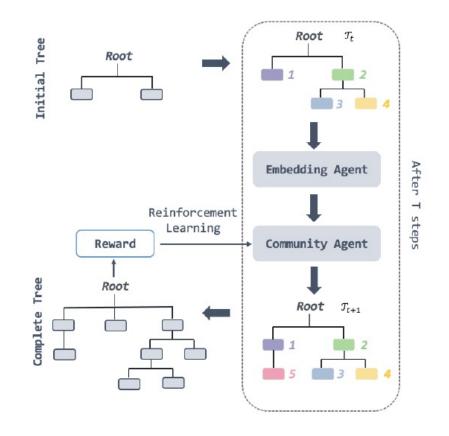
#### Why do we need to insert a new community?

- Current community tree  $\mathcal{T}_t$  is not effective enough
  - For node  $v_i$  and  $v_j$  with link between them, the  $c_i$  and  $c_j$  are different
  - For node  $v_i$  and  $v_j$  without a link, they have the same c
- We can describe the inaccurate node-community affiliations by a **state matrix**
- Nevertheless, it is difficult to determine the position when the state matrix becomes large and complex



#### Solution:

- We propose to leverage DNN for the prediction
- Given the state matrix  $s_t$ , the DNN predicts the probability  $o_t$  of existing communities
- Then we sample an  $a_t = \{0, 1, \dots, t\}$  from  $o_t$  and insert a new community under  $a_t$

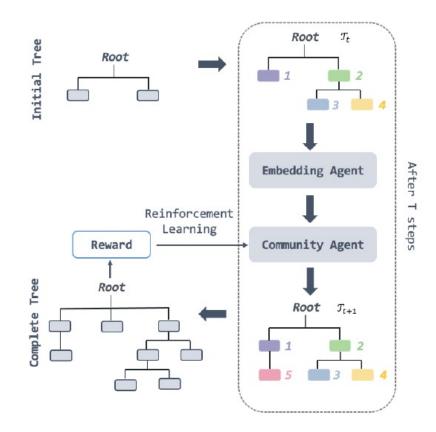


#### Generation of a community tree:

- Randomly initialize the embedding agent
- Set  $\mathcal{T}_0 = \{0\}$
- For  $t = 1, \dots, T 1$ :
  - Update the embedding agent with  $\mathcal{T}_t$
  - Calculate the state matrix  $s_t$  with  $c_i$
  - Use the community agent  $\pi(a|s_t)$  to build  $\mathcal{T}_{t+1}$
- Output the  $T_T$  and the latest  $c_i$

How to train the community agent?

## **Reinforcement Learning**



We leverage the reinforcement learning:

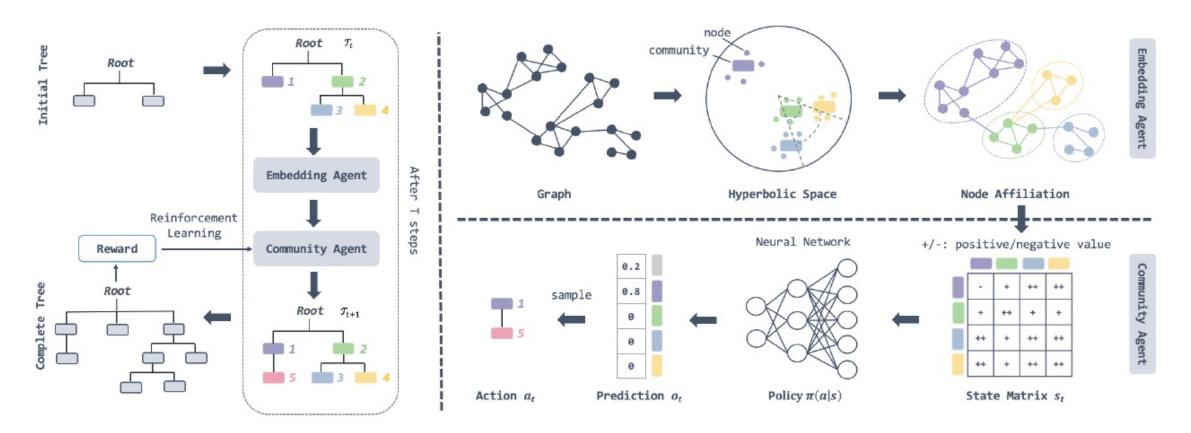
- Generating a community tree  $T_T$
- Calculate the reward of the tree  $\mathcal{T}_t$  at each step by

$$r_{t} = \sum_{(v_{i}, v_{k}) \in y_{ik} = 0} d_{ik} - \sum_{(v_{i}, v_{j}) \in y_{ij} = 1} d_{ik}$$

• Update the community tree with  $[r_1, \cdots, r_T]$ 

Experiments Conclusion

### **Overview**



## **Experiment**

Table 1: Statistics of datasets.

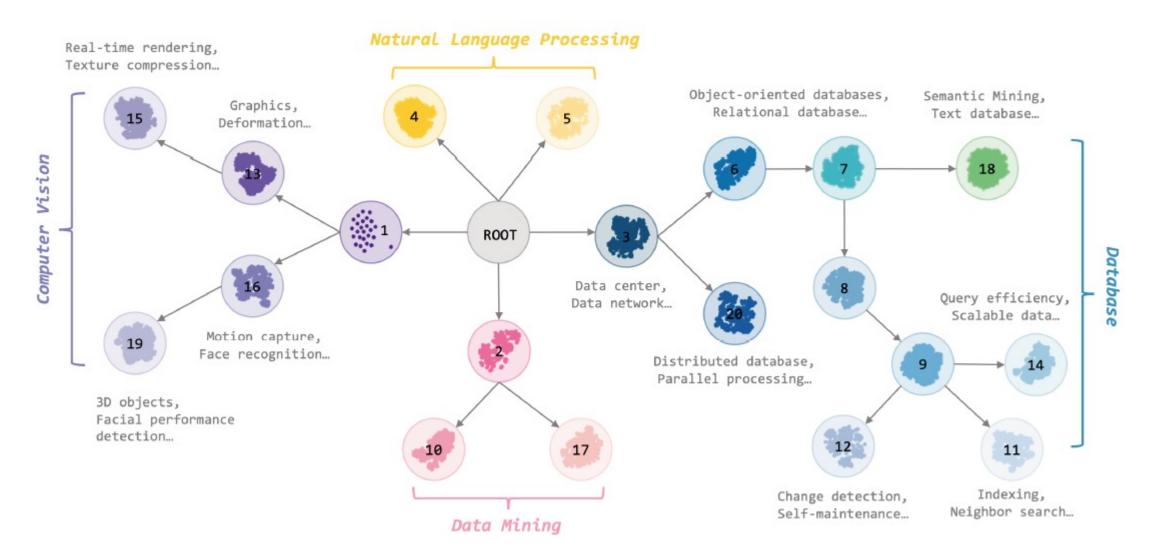
|            | Aminer       | BlogCatalog  | Wiki-Vote    | Deezer-RO    |
|------------|--------------|--------------|--------------|--------------|
| Nodes      | 12840        | 8943         | 3513         | 11847        |
| Edges      | 190658       | 660840       | 95028        | 105844       |
| Labels     | 4            | 39           | NA           | 78           |
| Modularity | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| NMI        | $\checkmark$ | ×            | ×            | ×            |
| AUC        | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| F1         | ×            | $\checkmark$ | ×            | $\checkmark$ |

### **Main Results**

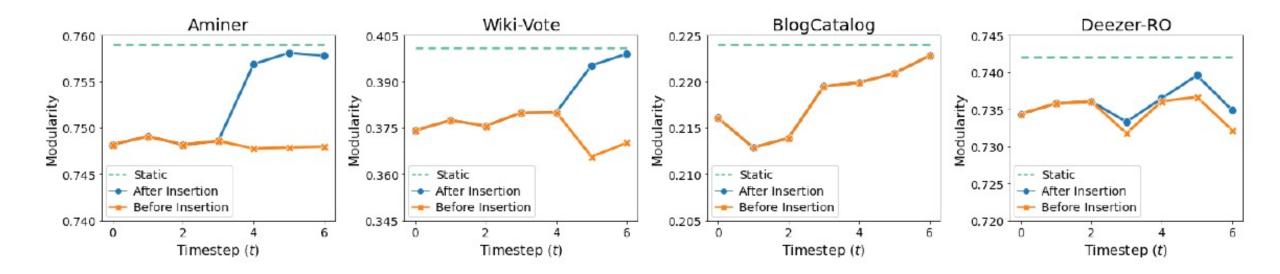
|                  |                        | Modularity              |                         |                       | NMI                   |                         |
|------------------|------------------------|-------------------------|-------------------------|-----------------------|-----------------------|-------------------------|
|                  |                        | Aminer                  | Wiki-Vote               | BlogCatalog           | Deezer-RO             | Aminer                  |
|                  | GEMSEC                 | 0.661                   | 0.211                   | 0.021                 | 0.649                 | 0.361                   |
| hierarchical     | Louvain<br>HCDE        | 0.647<br>0.689          | 0.307<br>0.210          | 0.159<br>0.180        | 0.603<br>0.037        | 0.539<br>0.410          |
| non-hierarchical | MNMF<br>vGraph<br>ComE | 0.709<br>0.710<br>0.745 | 0.297<br>0.258<br>0.309 | 0.154<br>N/A<br>0.139 | 0.665<br>N/A<br>0.740 | 0.294<br>0.001<br>0.765 |
|                  | ReinCom                | 0.759                   | 0.403                   | 0.224                 | 0.742                 | 0.798                   |

#### s Conclusion

### Visualization



## **Online Updating**



#### When there are new nodes and links:

• We can leverage the community agent to insert a new community

## **More Results**

Table 5: Self-comparisons on two datasets.

|                            | Aminer         |                | Wiki-Vote      |                |  |
|----------------------------|----------------|----------------|----------------|----------------|--|
|                            | Modularity     | AUC            | Modularity     | AUC            |  |
| Non-hierarchical<br>Random | 0.703<br>0.719 | 0.950<br>0.957 | 0.326<br>0.295 | 0.853<br>0.846 |  |
| w/o. Hyperbolic            | 0.728          | 0.948          | 0.295          | 0.870          |  |
| ReinCom                    | 0.759          | 0.960          | 0.327          | 0.884          |  |

Table 6: Inference time of different methods.

|         | Wiki-Vote | Deezer-RO | Deezer-HR |
|---------|-----------|-----------|-----------|
| Nodes   | 3513      | 11847     | 42586     |
| Edges   | 95028     | 105844    | 935138    |
| MNMF    | 4min      | 39min     | N/A       |
| vGraph  | 240min    | N/A       | N/A       |
| ReinCom | 45min     | 50min     | 500min    |

Table 3: F1 value for node classification.

|         | Deezer-RO |          | BlogCatalog |          |
|---------|-----------|----------|-------------|----------|
|         | Macro-F1  | Micro-F1 | Macro-F1    | Micro-F1 |
| LINE    | 0.023     | 0.302    | 0.062       | 0.190    |
| GNE     | 0.029     | 0.396    | 0.016       | 0.071    |
| ComE    | 0.029     | 0.314    | 0.018       | 0.053    |
| GEMSEC  | 0.023     | 0.277    | 0.107       | 0.263    |
| ReinCom | 0.058     | 0.401    | 0.138       | 0.281    |

## Conclusion

- We present the first deep learning based framework on hierarchical community detection
- Empirical results on four real-world complex networks validate the effectiveness of our framework compared with existing heuristic approaches
- Besides:
  - Online updating for new observations
  - Application to multiple downstream tasks due to the learned embeddings



### **Future Work**

- Optimization for industry-scale networks
- Integrate more candidate operations such as delete and split for the community agent
- Leverage node attributes to further improve the performance



## Thank you for listening!

If you have any questions, please contact us.