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Community Detection

Image from: https://towardsdatascience.com/community-detection-algorithms-9bd8951e7dae

Input

• A graph represented by nodes and edges

Output

• Node-community affiliations

Application

• Social network analysis

• Information retrieval

• ……
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Hierarchical Community Detection

Motivation

• Complex networks often have hierarchical structures

Design

• Modeling hierarchical relationships between clusters

• Community tree

Methods

• Louvain

• Label Propagation Algorithm

• ……
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Heuristic Algorithms

Solution

• Recursively division

• Louvain

• Recursively aggregation

Cornerstone

• Heuristic algorithms

• Random search

• Greedy strategy
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Deep Neural Networks

Recently,

• Deep neural network (DNN) has been applied to various 

graph applications

• Node classification

• Link prediction

However,

• Such technique has not been validated on hierarchical 

community detection

• Why?
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Image from: Wu Z, Pan S, Chen F, et al. A comprehensive survey on graph neural networks[J]. IEEE transactions on neural networks and learning systems, 2020, 32(1): 4-24.
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Problem Analysis

Main reason:

• DNN requires parametrized inputs and outputs:

• Label of a node (an integer ID)

• Link between two nodes (0 or 1)

However,

• It is difficult to parametrize a community tree without 

knowing its width and depth
unknown width

unknown depth
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Overview

Our solution: ReinCom

• Dividing the problem into sub-problems that can be

parametrized by the DNN

Tree generation by DNN:

• At each step, the DNN outputs the position for inserting a 

new community

• Starting from a small community tree, we can obtain a large

one after several iteration

• Leverage reinforcement learning to guide the generation
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Overview

Embedding Agent

• Given a community tree, it partitions nodes to different 

communities

• Measure the quality of current community tree

Community Agent

• Adjust the existing community tree

• Predict the next position for inserting a new community

• Build new community tree and pass it to the embedding agent

Framework

• Two agents are designed to work collaboratively.
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Input:

• The community tree 𝒯! at time 𝑡, containing communities 𝑐 ∈ 1,⋯ , 𝑡

• The graph 𝒢 = (𝒱, Υ), where 𝒱 is the set of nodes and Υ represents linkage information between nodes

Output:

• For each node 𝑣" , the agent outputs its community 𝑐"
Goal:

• Estimate the quality of the community tree 𝒯!
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Embedding space:

• For each node 𝑣" , we embed it with a vector representation 𝑒" ∈ ℝ#

• For each cluster 𝑐, we also map it to the same vector space and assign it with 𝑒$ ∈ ℝ#

Node-community affiliation:

• The probability of node 𝑣" belongs to community 𝑐 can be measured by,

𝜌"$ ∝ exp − 𝑒" − 𝑒$ %

• How to learn 𝜌"$?
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Distance on the community tree:

• We first define the distance between two communities given 𝒯!
• The length of path to the common ancestor

Distance between two nodes:

• Then the distance between two nodes can be represented by,

𝑑"& = 𝔼$!∼(($|+!),$"∼(($|+") Λ 𝑐" , 𝑐& = 𝜌".Λ𝜌&

Learning goal:

:
+!,+",+#

max 0, 𝛽 + 𝑑"/ − 𝑑"&

• where 𝑣" and 𝑣& have edge, while 𝑣" and 𝑣/ do not have edge
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The hyperbolic embedding space:

• To better model the hierarchical structure, we leverage the 

hyperbolic space for the embeddings:

• 𝑒 % ≤ 1

• 𝑒" − 𝑒$ 0
% = arccosh 1 + % 1!21$ %

%

32 1! % 32 1$ %

To satisfy the constraint:

𝑒" = 1 − exp −𝜔 𝜂" ⋅
I𝒆𝒊
I𝒆𝒊 %

• 𝜂" ∈ ℝ is the scale parameter

• I𝒆𝒊 ∈ ℝ𝑫 is the vector parameter
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Overview:

• After the learning, the node-community affiliation 𝑐" is calculated by,

𝑐" = 𝑎𝑟𝑔𝑚𝑎𝑥 𝜌"$
• The hierarchical information in 𝒯! is learned by the distance Λ on the tree, the graph 𝒢 and the 

hyperbolic space
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Overview:

• Predicting the position for inserting a new community according to the node-community affiliations

• Leveraging the DNN for the prediction
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Why do we need to insert a new community?

• Current community tree 𝒯! is not effective enough

• For node 𝑣" and 𝑣& with link between them, the 𝑐" and 𝑐& are different

• For node 𝑣" and 𝑣& without a link, they have the same 𝑐

• We can describe the inaccurate node-community affiliations by a state matrix

• Nevertheless, it is difficult to determine the position when the state matrix becomes large and complex
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Solution:

• We propose to leverage DNN for the prediction

• Given the state matrix 𝑠!, the DNN predicts the probability 𝑜! of existing communities

• Then we sample an 𝑎! = 0,1,⋯ , 𝑡 from 𝑜! and insert a new community under 𝑎!
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Overview
Generation of a community tree:

• Randomly initialize the embedding agent

• Set 𝒯6 = 0

• For 𝑡 = 1,⋯ , 𝑇 − 1:

• Update the embedding agent with 𝒯!
• Calculate the state matrix 𝑠! with 𝑐"
• Use the community agent 𝜋 𝑎 𝑠! to build 𝒯!73

• Output the 𝒯. and the latest 𝑐"
How to train the community agent?
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Reinforcement Learning

We leverage the reinforcement learning:

• Generating a community tree 𝒯.
• Calculate the reward of the tree 𝒯! at each step by

• Update the community tree with [𝑟3, ⋯ , 𝑟.]
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Overview
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Experiment
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Main Results
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hierarchical

non-hierarchical
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Visualization
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Online Updating

When there are new nodes and links:

• We can leverage the community agent to insert a new community
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More Results
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Conclusion

• We present the first deep learning based framework on hierarchical community detection

• Empirical results on four real-world complex networks validate the effectiveness of our 

framework compared with existing heuristic approaches

• Besides:

• Online updating for new observations

• Application to multiple downstream tasks due to the learned embeddings

Conclusion
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Future Work

• Optimization for industry-scale networks

• Integrate more candidate operations such as delete and split for the community agent

• Leverage node attributes to further improve the performance

• ……

Conclusion



Thank you for listening!

If you have any questions, please contact us.
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