

A Graph-Theoretic Fusion Framework for Unsupervised Entity Resolution

Presented by: Dongxiang Zhang

ENTER FOR FUTURE MEDI

Entity Resolution

Text Records	Identical Entity
Les Celebrites 160 Central Park S New York French	
Les Celebrites 155 W. 58th St. New York City French (Classic)	V
Palm 837 Second Ave. New York City Steakhouses	
Palm Too 840 Second Ave. New York City Steakhouses	X

Two examples from the restaurant dataset.

Previous Work

Distance-based Methods

- Edit Distance, TF-IDF
- Simple and scalable, but not effective enough

Learning-based Methods

- Learn a distance metric
- Model ER as a classification task and apply SVM
- Require considerable amount of training data
- Crowd-based Methods
 - CrowdER, TransM, TransNode, GCER, ADC, Power+
 - Achieve state-of-the-art accuracy but require human intervention

Our Objective

Propose an unsupervised approach

- More accurate when compared with distance-based methods
- Require no training/labeling efforts when compared with learning-based methods
- Require no human intervention and financial cost when compared with crowd-based methods

The General Idea

In the traditional unsupervised methods

- Step 1: Craft a distance measure between two records
- Step 2: Tune a threshold such that two records with similarity score higher than the threshold are considered as the same entity

> We are motivated to improve these two steps by

- Proposing ITER algorithm to learn record similarity
- Proposing CliqueRank to estimate the likelihood of two records referring to the same entity
- Iteratively Reinforcing these two components

Unsupervised Fusion Framework

ITER Algorithm

If a term only occurs in a group of matching records, then we consider the term as highly discriminative

- Examples include product models for electronic devices or telephone numbers for restaurant.
- These terms have low term frequency and may not be emphasized by TF-IDF
- If a term is shared by many non-matching records, its weight will be punished

ITER Algorithm

 $x_t = \sum_{i \neq j} \frac{p(r_i, r_j)s(r_i, r_j)}{P_t}$ $s(r_i, r_j) = \sum_{t \in r_i \land t \in r_j} norm(x_t)$

Record-Pair Nodes

ITER Algorithm

Algorithm 1: ITER Algorithm

Input: Bipartite graph structure with edge weight $p(r_i, r_j)$; **Output:** Node salience x_t and record pair similarity score $s(r_i, r_j);$ 1. Randomly initialize x_t in (0, 1); 2. while x_t does not converge do for each record pair (r_i, r_j) do 3. Set its weight $s(r_i, r_j) \leftarrow \sum$ 4. $x_t;$ $t \in r_i \land t \in r_i$ 5. for each term t do Set its weight $x_t \leftarrow \sum \frac{p(r_i, r_j)s(r_i, r_j)}{P_t}$; 6. Set $x_t = 1/(1 + \frac{1}{x_t})$ 7. 8. return x_t and $s(r_i, r_j)$

未来媒体研究中心 CENTER FOR FUTURE MEDIA

CliqueRank Algorithm

- > Given Gr, our goal is to identify matching probability.
- Ideally, the probability should be 1 for matching pairs and 0 for non-matching pairs

CliqueRank Algorithm

- Random-Walk based interpretation
 - Ideally, if r_i and r_j refer to different entities, they should be located in different cliques and not reachable from each other
 - Otherwise, if we start a random walk from one record r_i, it will be very likely to visit the other record r_j within certain number of steps

Random-Surfer Sampling

Algorithm 2: Random-Surfer Sampling (RSS)

1. Construct a record graph G_r based on $s(r_i, r_j)$;

2. for each edge
$$(r_i, r_j) \in G_r$$
 do

3.
$$c_1 \leftarrow 0; \quad c_2 \leftarrow 0$$

4. for
$$m \leftarrow 1; m \le M/2; m + + do$$

5.
$$c_1 \leftarrow c_1 + RandomWalk(r_i, r_j);$$

6. for
$$m \leftarrow 1; m \le M/2; m + + do$$

7.
$$c_2 \leftarrow c_2 + RandomWalk(r_j, r_i);$$

8.
$$p(r_i, r_j) \leftarrow (c_1 + c_2)/M;$$

9. return
$$p(r_i, r_j)$$
;

Random Walk Algorithm

Algorithm 3: RandomWalk(*start*, *target*)

CliqueRank Algorithm

> Iterative sampling is slow, and we switch to matrix operation

 $\succ M_t$ be the matrix with reaching probability from r_i to r_j with 1 step $M_t[i,j] = p(r_i \to r_j)$

 $> M_t^S$ be the matrix with reaching probability from r_i to r_j with S steps

$$M_t^S = \underbrace{M_t \times M_t \times \ldots \times M_t}_{S-1 \text{ times of operation } \times}$$

> The random surfer algorithm essentially estimates such probability

CliqueRank Algorithm

- We make customizations to the RSS algorithm
- > $M_b[i, j]$ be the initial transition probability matrix

$$p_b(r_i \to r_j) = \frac{(1+b)^{\alpha} s(r_i, r_j)^{\alpha}}{norm(r_i, r_j)}$$

- > $M_n[i, j]$ is set to 1 if r_i to r_j are connected in Gr
- > Finally, we can define the reaching probability with S steps

$$M_t^S = \begin{cases} M_b & \text{if } S = 1\\ M_t \times (M_t^{S-1} \odot M_n) & \text{if } S > 1 \end{cases}$$

Benchmark Datasets

Restaurant

- 858 non-identical restaurant records.
- Each record contains the information of restaurant name and address.

> Product

- 1081 records from the abt website and the other 1092 records from the buy website.
- Each product record contains its name and descriptive information.

> Paper

- 1865 non-identical publication records.
- Each record has a cluster id and its textual information consists of authors, title, publication venue and year.

Experimental Setup

> For the three datasets, we use the same setting of parameters

- α=20
- S=20
- η=0.98
- 5 iterations between the reinforcement of ITER and CliqueRank

Eigen library is used to boost matrix multiplication

http://eigen.tuxfamily.org/index.php?title=Main Page

> Accuracy

	Restaurant	Product	Paper	
String-distance based approaches				
Jaccard	0.836	0.332	0.792	
TF-IDF	0.871	0.658	0.821	
Machine-learnin	g based appro	oaches		
Gaussian Mixture Model [5]	0.704	-	-	
HGM+Bootstrap [5]	0.844	-	-	
MLE [5]	0.904	-	-	
SVM [6]	0.922	-	0.824	
Crowd-sourcing	g based approa	aches	-	
CrowdER [8]	0.934	0.800	0.824	
TransM [10]	0.930	0.792	0.740	
GCER [9]	0.930	0.760	0.785	
ACD [12]	0.934	0.805	0.820	
Power+ [13]	0.934	-	0.820	
Graph-theoretic baselines				
SimRank	0.645	0.376	0.730	
PageRank	0.905	0.564	0.316	
Hybrid	0.946	0.593	0.748	
Proposed graph-theoretic fusion framework				
ITER+CliqueRank	0.927	0.764	0.890	

> Efficiency

	Restaurant	Product	Paper
Number of nodes in G_r	858	2173	1865
Number of edges in G_r	5,320	151,939	980,780
Total running time	1.1min	21.6min	24.2min
Running time for ITER	3sec	20sec	58sec
Speedup compared to RSS	1.3x	1.5x	60x

Effectiveness of Learned Term Weights

ground-truth score:
$$score(t) = \frac{\sum_{t \in r_i \land t \in r_j} I(r_i, r_j)}{P_t}$$

> Top-Ranked Terms in the Benchmark Datasets

Restaurant	coyote, chin's, 702/731-7547, 702/734-0410, 702/791-7111, 3645, 3400, gotham, 2880, arnie, seasons, 12, gramercy, chinois
Product	85w, trackpad, mirroring, magsafe, led-backlit, isight, dis- playport, 5400-rpm, spreadsheets, formulas, dramatically, compromising, multi-angle, 30p, 24mbps, diameter, s320, 7mm
Paper	thurn, wentzel, pachovicz, dzeroski, bloendorn, dze-roski, vafaic, kreusiger, kaufaman, pachowitz, re-ich, dzerowski, weldel, cmu-cd-91-197, jianping, jerzy, janusz, juergen, haleh, cmu-cs-91-197

Convergence of ITER

Effect of Reinforcement

	Restau	rant	Product		Paper	
Iteration	F1-score	Time	F1-score	Time	F1-score	Time
1	0.916	13	0.543	253	0.844	207
2	0.935	25	0.712	514	0.888	515
3	0.931	39	0.747	768	0.889	819
4	0.931	52	0.754	1027	0.890	1135
5	0.927	64	0.764	1296	0.890	1453

Conclusion

- We propose an unsupervised graph-theoretic framework for entity resolution.
- Two novel algorithms ITER and CliqueRank are proposed, one for term-based similarity and the other for topological confidence. These two components can reinforce each other.
- Experimental results on three benchmark datasets show that our algorithm is accurate

Codes are available at: https://github.com/uestc-db/Unsupervised-Entity-Resolution

Thank you! Q&A

