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MOTIVATION

• Review-based recommendation: review contains rich information about user 

preference and item features. 
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MOTIVATION

• Limitation: ignores the fact that “a user may place different 

importance to the various aspects of different items”

– E.g., a fan of the famous NBA player “James Harden” is willing to 

purchase Adidas basketball shoes endorsed by this player; 

when purchasing other basketball shoes, he will carefully consider    

other factors, such as “comfortable” and “cushioning”.
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OUR MODEL - OVERVIEW

Input Feature Fusion Attention Prediction



OUR MODEL – INPUT MODULE

• User/item identity: binary one-hot encoding

• Embedding layer ->identity representation

• User/item features: from the user/item’s review

• Topic model -> topic distribution as features



OUR MODEL – TOPIC MODEL

• K: number of latent topics
• 𝜃𝑢: user feature – topic distribution of user u
• 𝜑𝑖: item feature – topic distribution of item i
• 𝜋𝑢: decide the current word w is drawn from 𝜃𝑢 or 

𝜑𝑖

• w: a word in the review
• z: the latent topic of the word w

Graphical representation of the topic model

• Assumption: 
✓ A sentence in a review fucoses on the same 

topic z
✓ When written a sentence, a user could 

comment from his own preferences 𝜃𝑢 or 
from item’s characteristics 𝜑𝑢 : user-
dependent parameter: 𝜋𝑢

• Our model: mimics the processing of writing a 
review sentence

• Goal: Estimate 𝜃𝑢 and 𝜑i



OUR MODEL – FUSION MODULE

Input Feature Fusion Attention Prediction



OUR MODEL – FUSION MODULE

• Fusion: embedded feature + review-based 
feature 
✓ Concatenation, addition, element-wise 

product

• ReLu fully-connected layer: further increasing 
the interaction between the two types of 
features



OUR MODEL – ATTENTION MODULE

• pu: k-dimensional user feature

• qi: k-dimensional item feature

• Rating prediction: inner product of user-feature and 
item-feature 

• Attention weight vector au,i : introduce an attention 
weight au,i,k to a factor k to indicate the importance 
of this factor of item i with respect to user u
➢ For a user u, the importance weight of the 

factors are different with respect to each item i

F: k-dimensional feature → rating prediction
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OUR MODEL – ATTENTION MECHANISM

• How to estimate the attention weight

• User preferences and item characteristics can 
be observed in reviews -> 𝜽𝒖 and 𝝋𝒊

• pu and qi are the fusion feature for the final 
prediction

• Concatenation of the four feature: 𝜽𝒖, 𝝋𝒊, pu, qi

• Attention mechanism:
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OUR MODEL – RATING PREDICTION

• The obtained feature is fed into fully connected 
layers  (one layer in our experiments)

• Rating prediction: regression 



EXPERIMENTAL SETUP

• Dataset: Five sub-datasets in the Amazon product Review dataset and The 
Yelp Dataset 2017

• Setting: training:validation:testing = 8:1:1

• Task: Rating prediction 

• Metrics: RMSE (the smaller the better)



EXPERIMENTAL SETUP - COMPETITORS

• BMF: Matrix factorization (MF) with biased terms

• HFT: Use a linking function to connect the latent factors in MF 
(ratings) and LDA (reviews) 

• RMR: Mixture of Gaussian (ratings) +LDA (reviews)

• RBLT: Use a linear combination of the latent factors in MF (ratings) 
and LDA (reviews)

• TransNet: Neural networks on user and item reviews for rating 
prediction



PERFORMANCE COMPRASIONS

• All better than BMF: indicating the importance of reviews in preference modeling

• Review-based methods 
– are relative more stable than BMF with the increase of #factor;

– can achieve relatively good performance with a small #factor

• A3NCF is the best; > RBLT (2.9% ↑) and > TransNet (2.2%↑), because it
– applies more complicate interactions to integrate reviews and ratings via non-linear neural networks, 

– uses an attention mechanism to capture users’ attention weights on different aspects of an item.



EFFECTS OF ASPCT ATTENTION

• Comparisons
– NCF: without review-based feature and attention mechanism

– ANCF: with review-based feature but without attention mechanism

• Results
– ANCF > NCF: (1) the effectiveness of using reviews in recommendation; and (2) our model on integrating 

review and rating information

– A3NCF > ANCF: (1) user’s attentions are varied for different items; and (2) the effectiveness of our 
attention model



CONCLUSIONS

• Advocate the point that “a user may place different attentions to 
different items”

• Propose an attentive neural network to capture a user’s attention 
weight for different items

• Conduct experiments on benchmarking dataset to demonstrate our 
viewpoints and the effectiveness of the proposed model
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