

A³NCF: An Adaptive Aspect Attention Model for Rating Prediction

Zhiyong Cheng¹, Ying Ding², Xiangnan He¹, Lei Zhu³, Xuemeng Song⁴, Mohan Kankanhalli⁴

- 1. National University of Singapore
- 2. Vipshop US Inc., USA
- 3. Shandong Normal University, China
- 4. Shandong University, China

19 July, IJCAI'18, Stockholm

MOTIVATION

• **Review-based recommendation**: review contains rich information about user preference and item features.

M. Chelliah &S. Sarkar, RecSys'17 tutorial

MOTIVATION

 Limitation: ignores the fact that "<u>a user may place different</u> importance to the various aspects of different items"

OUR MODEL - OVERVIEW

OUR MODEL – INPUT MODULE

- User/item identity: binary one-hot encoding
- Embedding layer ->identity representation

- User/item features: from the user/item's review
- Topic model -> topic distribution as features

OUR MODEL – TOPIC MODEL

Graphical representation of the topic model

- *K*: number of latent topics
- θ_u : user feature topic distribution of user *u*
- φ_i : item feature topic distribution of item *i*
- π_u : decide the current word w is drawn from θ_u or φ_i
- w: a word in the review
- *z:* the latent topic of the word *w*
- Assumption:
 - A sentence in a review fucoses on the same topic z
 - ✓ When written a sentence, a user could comment from his own preferences θ_u or from item's characteristics φ_u : userdependent parameter: π_u
- **Our model**: mimics the processing of writing a review sentence
- **Goa**l: Estimate θ_u and φ_i

OUR MODEL – FUSION MODULE

OUR MODEL – FUSION MODULE

- **Fusion**: embedded feature + review-based feature
 - ✓ Concatenation, addition, element-wise product
- **ReLu fully-connected layer:** further increasing the interaction between the two types of features

OUR MODEL – ATTENTION MODULE

- p_u : k-dimensional user feature
- *q_i*: *k*-dimensional item feature
- **Rating prediction:** inner product of *user-feature* and *item-feature*
- Attention weight vector $a_{u,i}$: introduce an attention weight $a_{u,i,k}$ to a factor k to indicate the importance of this factor of item i with respect to user u
 - For a user *u*, the importance weight of the factors are different with respect to each item *i*

$$F = a_{u,i} \odot (p_u \odot q_i)$$

F: *k*-dimensional feature \rightarrow rating prediction

OUR MODEL – ATTENTION MECHANISM

- How to estimate the attention weight
 - User preferences and item characteristics can be observed in reviews -> $heta_u$ and $oldsymbol{arphi}_i$
 - p_u and q_i are the fusion feature for the final prediction
 - Concatenation of the four feature: $\theta_u, \varphi_i, p_u, q_i$
- Attention mechanism:

$$\hat{a}_{u,i} = v^T ReLU(W_a[\theta_u; \varphi_i; p_u; q_i] + b_a)$$
$$a_{u,i,k} = \frac{exp(\hat{a}_{u,i,k})}{\sum_{j=1}^{K} exp(\hat{a}_{u,i,j})}$$

OUR MODEL – RATING PREDICTION

- The obtained feature is fed into fully connected layers (one layer in our experiments)
- Rating prediction: regression

$$z_{L} = \sigma_{L}(W_{L}(\sigma_{L-1}(W_{L-1}\cdots\sigma_{1}(W_{1}F+b_{1}))+b_{L-1})+b_{L}))$$

$$\hat{r}_{u,i} = \boldsymbol{W}\boldsymbol{z}_L + \boldsymbol{b}$$

EXPERIMENTAL SETUP

- Dataset: Five sub-datasets in the <u>Amazon product Review dataset</u> and The <u>Yelp Dataset 2017</u>
- **Setting**: training:validation:testing = 8:1:1
- Task: Rating prediction
- Metrics: RMSE (the smaller the better)

Datasets	# users	# items	# ratings	Sparsity
Baby	17,177	7,047	158,311	0.9987
Grocery	13,979	8,711	149,434	0.9988
Home & Kitchen	58,901	28,231	544,239	0.9997
Garden	1,672	962	13,077	0.9919
Sports	31,176	18,355	293,306	0.9995
Yelp2017	169,257	63,300	1,659,678	0.9998

EXPERIMENTAL SETUP - COMPETITORS

- **BMF:** Matrix factorization (MF) with biased terms
- **HFT:** Use *a linking function* to connect the latent factors in MF (ratings) and LDA (reviews)
- **RMR:** Mixture of Gaussian (ratings) +LDA (reviews)
- **RBLT:** Use *a linear combination* of the latent factors in MF (ratings) and LDA (reviews)
- **TransNet:** Neural networks on user and item reviews for rating prediction

PERFORMANCE COMPRASIONS

- All better than **BMF**: indicating the importance of reviews in preference modeling
- Review-based methods
 - are relative more stable than BMF with the increase of #factor;
 - can achieve relatively good performance with a small #factor
- A³NCF is the best; > RBLT (2.9% ↑) and > TransNet (2.2%↑), because it
 - applies more complicate interactions to integrate reviews and ratings via non-linear neural networks,
 - uses an attention mechanism to capture users' attention weights on different aspects of an item.

EFFECTS OF ASPCT ATTENTION

• Comparisons

- NCF: without review-based feature and attention mechanism
- ANCF: with <u>review-based feature</u> but without attention mechanism
- Results
 - ANCF > NCF: (1) the effectiveness of using reviews in recommendation; and (2) our model on integrating review and rating information
 - A³NCF > ANCF: (1) user's attentions are varied for different items; and (2) the effectiveness of our attention model

CONCLUSIONS

- Advocate the point that "<u>a user may place different attentions to</u> <u>different items</u>"
- Propose an attentive neural network to capture a user's attention weight for different items
- Conduct experiments on benchmarking dataset to demonstrate our viewpoints and the effectiveness of the proposed model

Thanks !

Homepage: https://sites.google.com/view/zycheng E-mail: zhiyong.cheng@nus.edu.sg or jason.zy.cheng@gmail.com