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MOTIVATION

* Review-based recommendation: review contains rich information about user

preference and item features.
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MOTIVATION

« Limitation: ignores the fact that "a user may place different
Importance to the various aspects of different items”
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OUR MODEL - OVERVIEW
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OUR MODEL - INPUT MODULE

/i|0 olola] ... |m| User Embedding\

Item Embedding

* User/item identity: binary one-hot encoding

* Embedding layer ->identity representation
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e User/item features: from the user/item’s review

* Topic model -> topic distribution as features
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OUR MODEL - TOPIC MODEL
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K: number of latent topics

0,,: user feature — topic distribution of user u

@;: item feature — topic distribution of item i

1. decide the current word w is drawn from 8,, or
Pi

w: a word in the review

z: the latent topic of the word w

@

Graphical representation of the topic model

Assumption:
v A sentence in a review fucoses on the same
topic z
v When written a sentence, a user could
comment from his own preferences 6,, or
from item’s characteristics ¢, : user-
dependent parameter: T,
Our model: mimics the processing of writing a
review sentence
Goal: Estimate 6,, and ¢;




OUR MODEL - FUSION MODULE
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OUR MODEL - FUSION MODULE

User Feature (6,)

Item Feature (¢;)

User Embedding

RelU

Iltem Embedding

RelU

Fusion: embedded feature + review-based
feature
v Concatenation, addition, element-wise
product

RelLu fully-connected layer: further increasing
the interaction between the two types of
features
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OUR MODEL - ATTENTION MODULE
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p,: k-dimensional user feature
q;: k-dimensional item feature

Rating prediction: inner product of user-feature and
item-feature

Attention weight vector a; : introduce an attention
weight @, ;, to a factor k to indicate the importance
of this factor of item | with respect to user u
» For a user u, the importance weight of the
factors are different with respect to each item |

F=a4;® (Pu®qi)

F: k-dimensional feature — rating prediction
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OUR MODEL - ATTENTION MECHANISM
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How to estimate the attention weight

e User preferences and item characteristics can
be observed in reviews -> 0,, and @;

* p,and g; are the fusion feature for the final
prediction

* Concatenation of the four feature: 8., @;, p,, 0;

Attention mechanism:

Qi = v ReLU (W, 04 Qi Pu:qi] + ba)

erp( Qi k)
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OUR MODEL - RATING PREDICTION

* The obtained feature is fed into fully connected
Regression | ¥ layers (one layer in our experiments)
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e Rating prediction: regression
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EXPERIMENTAL SETUP

e Dataset: Five sub-datasets in the Amazon product Review dataset and The
Yelp Dataset 2017

e Setting: training:validation:testing = 8:1:1
e Task: Rating prediction
e Metrics: RMSE (the smaller the better)

Datasets #users  #items  #ratings  Sparsity
Baby 17,177 7.047 158,311 0.9987
Grocery 13,979 8,711 149,434 0.9988
Home & Kitchen 58,901 28,231 544,239 0.9997
Garden 1,672 962 13,077 0.9919
Sports 31,176 18,355 293,306 0.9995

Yelp2017 169,257 63,300 1,659,678  0.9998




EXPERIMENTAL SETUP - COMPETITORS

e BMF: Matrix factorization (MF) with biased terms

e HFT: Use a linking function to connect the latent factors in MF
(ratings) and LDA (reviews)

e RMR: Mixture of Gaussian (ratings) +LDA (reviews)

e RBLT: Use a linear combination of the latent factors in MF (ratings)
and LDA (reviews)

e TransNet: Neural networks on user and item reviews for rating
prediction



PERFORMANCE COMPRASIONS
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e All better than BMF: indicating the importance of reviews in preference modeling

e Review-based methods
— are relative more stable than BMF with the increase of #factor;
— can achieve relatively good performance with a small #factor

e A3NCF is the best; > RBLT (2.9% T) and > TransNet (2.2%T), because it

— applies more complicate interactions to integrate reviews and ratings via non-linear neural networks,
— uses an attention mechanism to capture users’ attention weights on different aspects of an item.



1.17

1.15
2 1.13
= 111
1.09
1.07
1.05

EFFECTS OF ASPCT ATTENTION
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Comparisons
— NCF: without review-based feature and attention mechanism
— ANCEF: with review-based feature but without attention mechanism
Results

— ANCF > NCF: (1) the effectiveness of using reviews in recommendation; and (2) our model on integrating
review and rating information

— A3NCF > ANCF: (1) user’s attentions are varied for different items; and (2) the effectiveness of our
attention model



CONCLUSIONS

e Advocate the point that “a user may place different attentions to
different items”

e Propose an attentive neural network to capture a user’s attention
weight for different items

e Conduct experiments on benchmarking dataset to demonstrate our
viewpoints and the effectiveness of the proposed model
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