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Why Cross-Domain Depression

Detection?

= Depression detection: a significant issue for human well-being
= Traditional psychological diagnosis: reliable but reactive
= Online detection via social media: success in Twitter, proactive

= Labeling of depressed users: questionnaire vs self-reported sentence pattern matching
(matching expressions like “I’'m diagnosed with depression” in user-generated content)

= In Twitter: a large well-labeled dataset [Shen et al., 2017]
= Replication in other platforms: cultural differences, insufficient data for model training

= Problem: can we utilize the multi-source datasets to enhance depression detection for

a certain platform?
€



Problem Formulation

* N:total number of users * Dg / Dy: datasets of the source / target domain

* M: dimensionality of feature vector D7: limited labeled in model training

X € RVN*M: faature matrix * Dy =D7r, UDry, Drp =1X711, Y711}, Dry = X710}
Nr = Npy + N7, Nprp L Npy

y € R": binary depression states of users

D = {X, y}. dataset of the social media  objective function f: {Dg, D71, Dry} = Vru

()



Dataset Construction

= Each sample includes : Table 2: Datasets. +(—) denotes (non-) depressed samples.

Dataset | Drp(+) Dr(—) | Ds(+) Ds(—)

Users 580 580 1,394 1,394
Tweets 45,461 30,920 | 290,886 | 1,119,466

- 4 weeks of tweets data + user profile

= Weibo dataset Dr:

- 580 depressed samples by self-report sentence pattern labeling

- "M [e@AnH [@EE IR TEIABEIHE I @1{2,3}(F | B O IMIS ST A R R H
B2 RREEBRIIREREIRA @] 12 B1E8] " A 1{0,5HPHE”

- 580 non-depressed samples that have no tweets containing “depress”.

= Twitter dataset Dg [Shen et al., 2017]:
= 1394 depressed samples & 1394 non-depressed samples




Feature Extraction

Dy 78 features (including 18 Dr-exclusive features).
* Dg: 60Fdabtitees in [Shen et al., 2017], including 60 features in common

Table 1: Summary of features, where #g and #7 denote the feature dimensionality of Twitter and Weibo, respectively.

Group Feature #s | #r1 Description
Emotional Word Count | 2 2 | The number of positive and negative emotional words.
Emoticon Count 3 3 | The number of positive, neutral and negative emoticons.
Pronoun Count 2 3 | The number of first-person singular / plural pronouns, and other personal pronouns.
Textual Punctuation Count 3 | The number of 3 typical punctuations(’.”, ’?’,°...).
Topic-Related 2 The number of words related to biology, body, health, death, society, money,
Word Count work and leisure.
Text Length 1 1 | The mean length of the tweet texts.
Saturation & Brightness | 4 | 4 | The mean value of saturation and brightness, and their contrasts.
Visual Warm/Clear Color 2 2 | Ratio of colors with hue in [30, 110] and colors with saturation < 0.7.
Five-Color Theme 15 | 15 | A combination of five dominant colors in HSV color space.
User Profile User Profile 2 | Gender and length of screen name. _ _
& Posting Twee_t Count 2 2 | The number_ of tweets Pubhshed in the certain 4 weeks and ever since.
Behaviour Tweeting Type | 2 | The proportion of original tweets and tweets with pictures.
Tweeting Time 24 | 24 | The proportion of tweets posted in each hour of the day.
Social Social Engagement 1 3 | The number of retweets, comments and mentions per tweet.
Interaction Follow & Favorites 3 4 | The number of followers, friends and favorites and proportion of bi-followers.




Data Analysis: [somerism

= One feature may follow distinctive integral distributions in different domains.
= unrelated to specific user groups (de-pressed / non-depressed users).

= Example: follower count

= The same value of feature might have different implications across domains

= Quite common in the dataset

= Normalization methods: min-max & z-score, unsatisfactory
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Data Analysis: Divergency

= Due to cultural differences, the same feature may have distinctive, or even opposite
implications on depression detection in different domains.

= Such features: referred to as divergent features
= Example: recent tweet count.

= may tremendously impact the validity of transfer methods.

Recent tweet count of Recent post count of
0.2 non-depressed Twitter users 0.2 non-depressed Weibo users
~ Recent tweet count of ______Recent post count of
01| depressed Twitter users depressed Weibo users
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Methodology

DNN-FATC: A cross-domain Deep Neural Network model with Feature
Adaptive Transformation & Combination strategy
Input DNN-FATC model Output
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Feature Normalization & Alignment

(FNA)

* Targeted on isomerism

* Alinear transformation to fill the distributional gap
by minimizing the Bhattacharyya distance.

Xg = asXs +bs, XxXp=arxr+br,

0.3 - -
K [ IFollower count in Weibo
s.t. ag,ar,bg,br = argmin — mZ /D% D 0.2 Follower count in Twitter
as,ar,bs,br i—1
0.1
* Two more constraints:
0 - . .
ar Q(XT, 50) +br =0, 0 5 10 15
as [Q(xs,92) — Q(xs,q1)] =1 K =100,q1 =25,g2 =25and [ = 0.5

Minimize the distinction between the feature spaces

Train a DNN H based on Dg @



Divergent Feature Conversion (DFC)

Targeted on divergency
X5 = wixy, + Bi Xy —aXp 4Bl
Identify singular features: better performance is achieved with a; < 0

a*, 3% = argrgax F(Hs, {aX7y +81, yrr})

Complexity of enumeration:  O( (Jas| - |8:])Ms)

W an upper bound for times of enumeration.
In each iteration, traverse all features in a random sequence, determine «;, [;
orderly; record a”, f* for the best performance in W trials.

Extra constraint: a; € {—1,1}, B; = 0, centrosymmetric transformation
o. a threshold of performance improvement to avoid overfitting.




Feature Combination (FC)

Hidden 1 Hidden 2 Output
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Experimental Setup: Dataset

Ds: 2,788 samples (Twitter Dataset)
Dr: 1,160 samples (Weibo Dataset)
Dy 280 samples (=10% the size of D)
Dry-. 880 samples (for testing)



Experimental Setup: Compared

Methods

e Feature normalization methods: = Heterogeneous transfer learning methods:
MN: Min-Max Normalization ARC-t [Kulis, Saenko, and Darrell 2011]
ZN: Zero-Mean Normalization MMDT [Hoffman et al., 2013]
FNA: Feature Normalization & Alignment HFA [Li et al., 2014]

* Utilization of Dg and D:
Direct Learning (DL). Learning a DNN merely on Dy.
Direct Learning of Shared features (DL;). Learning a DNN on Dt with the shared features.
Direct Transfer (DT). Learning a DNN on D and directly applying it on Dr.
Back Propagation (BP). After H, is learned on Ds , retrain it on Dy, by back propagation.
Divergent Feature Conversion (DFC).

Feature Combination (FC). @



Experimental Results: Performance

Table 3: F1-measure of method combinations in DNN-FATC.

DL

DL

DT

BP

DFC

DFC+FC

MN

60.5+79

64.2452

34.34+12.1

61.2+69

66.6+1.6

67.4+45

ZN

68.2+48

70.1422

58.6+22

73.0+23

72.3+22

73.9+2.1

FNA

72.0+32

73.3+27

68.0+13

759418

77.6+1.1

78.5+1.2

Table 4: F1-measure of heterogeneous transfer methods.

FNA+DL

ARC-t

MMDT

HFA

DNN-FATC

73.342.7

73.7+1.1

73.9+18

75.1+028

78.5+12

FNA vs MN / ZN: effectiveness in reducing isomerism

FSC vs BP: effectiveness in handling divergency
DL vs DL, DFC+FC vs DFC: effectiveness of Dr-exclusive features, utilization method

Ds is useful to enhance detection in D and DNN-FATC best fits the assighnment. @
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Case Study: Depressive Behavior

Discovery
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Conclusion

Raised the problem of enhancing depression detection via social media with multi-
source datasets.

Proposed a cross-domain Deep Neural Network model with Feature Adaptive
Transformation & Combination strategy (DNN-FATC) to transfer the relevant
information across heterogeneous domains.

We expect the research to assist online depression detection for more countries,
and contribute to the well-being of more people.

Future work:
— Beyond binary classification: more fine-grained detection

— Further improve online detection by combining offline researches

©
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