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Why Cross-Domain Depression 
Detection?

 Depression detection: a significant issue for human well-being

 Traditional psychological diagnosis: reliable but reactive

 Online detection via social media: success in Twitter, proactive

 Labeling of depressed users: questionnaire vs self-reported sentence pattern matching
(matching expressions like “I’m diagnosed with depression” in user-generated content)

 In Twitter: a large well-labeled dataset [Shen et al., 2017]

 Replication in other platforms: cultural differences, insufficient data for model training

 Problem: can we utilize the multi-source datasets to enhance depression detection for
a certain platform?
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Problem Formulation
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• 𝑁: total number of users

• 𝑀: dimensionality of feature vector

• 𝑿 ∈ ℝ𝑁×𝑀: feature matrix

• 𝒚 ∈ ℝ𝑁: binary depression states of users

• 𝒟 = 𝑿, 𝒚 : dataset of the social media

• 𝓓𝑺 / 𝓓𝑻: datasets of the source / target domain

• 𝓓𝑻: limited labeled in model training

• 𝒟𝑇 = 𝒟𝑇𝐿 ∪ 𝒟𝑇𝑈, 𝒟𝑇𝐿 = 𝑿𝑇𝐿 , 𝒚𝑇𝐿 , 𝒟𝑇𝑈 = 𝑿𝑇𝑈

。 𝑁𝑇 = 𝑁𝑇𝑈 +𝑁𝑇𝐿 , 𝑁𝑇𝐿 ≪ 𝑁𝑇𝑈

• objective function 𝒇： 𝓓𝑺, 𝓓𝑻𝑳, 𝓓𝑻𝑼 → 𝒚𝑻𝑼



Dataset Construction

 Each sample includes：

• 4 weeks of tweets data + user profile

 Weibo dataset 𝓓𝑻:

• 580 depressed samples by self-report sentence pattern labeling

• "^[^【@如]*[^【@怀疑想似像觉认能怕曾前@]{2,3}(我|自己)[^们会怀疑似觉想认早快怕
要易像点能曾前她他你家国的它没不@]*[诊患得有][^不点]{0,5}抑郁”

• 580 non-depressed samples that have no tweets containing “depress”.

 Twitter dataset 𝓓𝑺 [Shen et al., 2017]:

 1394 depressed samples & 1394 non-depressed samples
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Feature Extraction
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• 𝓓𝑻: 78 features

• 𝓓𝑺: 115 features in [Shen et al., 2017], including 60 features in common

• 𝓓𝑻: 78 features (including 18 𝒟𝑇-exclusive features).

• 𝓓𝑺: 60 features



Data Analysis: Isomerism 

 One feature may follow distinctive integral distributions in different domains.

 unrelated to specific user groups (de-pressed / non-depressed users).

 Example: follower count

 The same value of feature might have different implications across domains

 Quite common in the dataset

 Normalization methods: min-max & z-score, unsatisfactory

(Original) (min-max normalization) (z-score normalization)
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Data Analysis: Divergency

 Due to cultural differences, the same feature may have distinctive, or even opposite

implications on depression detection in different domains.

 Such features: referred to as divergent features

 Example: recent tweet count.

 may tremendously impact the validity of transfer methods.
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Methodology 

DNN-FATC: A cross-domain Deep Neural Network model with Feature
Adaptive Transformation & Combination strategy

 Based mainly on𝒟𝑆

 Shared features:

 Against isomerism

 Against divergency

 𝓓𝑻-exclusive features :

 Integrated in the end
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Feature Normalization & Alignment 
(FNA) 

• Two more constraints:

• Targeted on isomerism
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• A linear transformation to fill the distributional gap

by minimizing the Bhattacharyya distance.

• Minimize the distinction between the feature spaces 
• Train a DNN ℋ𝑆 based on𝒟𝑆



Divergent  Feature Conversion (DFC) 

 Targeted on divergency

• Identify singular features: better performance is achieved with 𝛼𝑖 < 0

• Complexity of enumeration:

• 𝑊: an upper bound for times of enumeration.
• In each iteration, traverse all features in a random sequence, determine 𝛼𝑖 , 𝛽𝑖

orderly; record 𝛼∗, 𝛽∗ for the best performance in W trials.

• Extra constraint: 𝛼𝑖 ∈ −1,1 , 𝛽𝑖 = 0, centrosymmetric transformation 

• 𝜎: a threshold of performance improvement to avoid overfitting. 
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Feature Combination (FC) 

ℋ𝑇: weights initialized to those of ℋ𝑠, trained on 𝒟𝑇𝐿 via back propagation
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Experimental Setup: Dataset

𝒟𝑆: 2,788 samples (Twitter Dataset)

𝒟𝑇: 1,160 samples (Weibo Dataset)

𝒟𝑇𝐿: 280 samples (≈10% the size of 𝒟𝑆)

𝒟𝑇𝑈: 880 samples (for testing)
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Experimental Setup: Compared
Methods

 Heterogeneous transfer learning methods:

ARC-t [Kulis, Saenko, and Darrell 2011]

MMDT [Hoffman et al., 2013]

HFA [Li et al., 2014]

• Feature normalization methods:

MN: Min-Max Normalization

ZN: Zero-Mean Normalization

FNA: Feature Normalization & Alignment

• Utilization of 𝒟𝑆 and 𝒟𝑇:

Direct Learning (DL). Learning a DNN merely on 𝒟𝑇.

Direct Learning of Shared features (DLS). Learning a DNN on 𝒟𝑇 with the shared features. 

Direct Transfer (DT). Learning a DNN on 𝒟𝑆 and directly applying it on 𝒟𝑇.

Back Propagation (BP). After ℋ𝑠 is learned on 𝒟𝑆 , retrain it on 𝒟𝑇𝐿 by back propagation. 

Divergent  Feature Conversion (DFC).

Feature Combination (FC). 12



Experimental Results: Performance
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FNA vs MN / ZN: effectiveness in reducing isomerism
FSC vs BP: effectiveness in handling divergency
DL vs DLS, DFC+FC vs DFC: effectiveness of 𝒟𝑇-exclusive features, utilization method
𝒟𝑆 is useful to enhance detection in 𝒟𝑇 and DNN-FATC best fits the assignment. 



Experimental Results: Further Analysis

• Data Scalability Analysis: • Feature Group Analysis:

14

• Aforesaid performance:
• Parameter Analysis: limited Impact on performance



Case Study: Depressive Behavior 
Discovery

• Depressive Behavior:

Tweet time

Gender

Linguistic pattern

Retweet count

• Divergent Features:

Tweet count

Image saturation

follower count

positive word count 15



Conclusion
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• Raised the problem of enhancing depression detection via social media with multi-
source datasets. 

• Proposed a cross-domain Deep Neural Network model with Feature Adaptive 
Transformation & Combination strategy (DNN-FATC) to transfer the relevant 
information across heterogeneous domains.

• We expect the research to assist online depression detection for more countries,
and contribute to the well-being of more people. 

• Future work:

– Beyond binary classification: more fine-grained detection

– Further improve online detection by combining offline researches



Thank you!
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