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Accurate Recommender System
Quality of Service & Profit of the Service Provider



Factorization Machines (FM)
FM is a score prediction function for a (user, item) pair feature x.
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1,300,000 
users

174,000 
business

1,200,000 
attributes

here ! = 1,300,000+174,000+1,200,000 
= 2,674,000

On-device 
storage?

Computation 
cost?

Existing FM framework is not suitable for fast recommendation, 
especially for mobile users.



Discrete Factorization Machines

real-valued vectorbinary codes
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Solution with the Constraints
Observed score Binary codes

Balance Constraint: each bit should split the dataset evenly
De-Correlation Constraint: each bit should be as independent as possible

However, the hard constraints of zero-mean and orthogonality may 
not be satisfied in Hamming space!

Without any constraints Balanced De-correlated



Our DFM Formulation
Objective Function:

Binary Constraint:
Score Prediction Constraint Trade-off

Delegate Code 
Quality Constraint:

Balance
Constraint

De-correlation
Constraint



Our Solution: 
Alternating Optimization

Alternative Procedure
B-Subproblem

D-Subproblem

w-Subproblem



B-Subproblem for Binary Codes
Objective Function

for loop over n features

for loop over k bits



D-Subproblem for Code Delegate
Objective Function

Orthogonalization



w-Subproblem for Bias
Objective Function

It is the standard multivariate linear regression 
problem, use Coordinate Descent algorithm



Experiment Settings

• Datasets:

• Split: randomly split 50% training and 50% testing 
move items in the testing set that haven’t occurred in the training set to 
the training set.

• Evaluation Protocol: rank the testing items of a user and 
evaluate the ranked list with NDCG@K

Datasets #users #items #ratings Density
Yelp 13,679 12,922 640,143 0.36%

Amazon 35,151 33,195 1,732,060 0.15%



Compared to the state-of-the-art

• libFM: Factorization Machines with libFM [Rendle et al.,TIST’12]

original implementation of FM
• DCF: Discrete Collaborative Filtering [Zhang et al.,SIGIR’16]

CF+binarization+direct optimization
• DCMF: Discrete Content-aware Matrix Factorization          

[Lian et al.,KDD’17] 

CF+binarization+direct optimization+constraint
• BCCF: Binary Code learning for Collaborative Filtering 

[Zhou&Zha,KDD’12]

MF+binarization+two-stage optimization



Performance Comparison

In figure, we show the recommendation performance (NDCG@1 to NDCG@10) of DFM 
and the baseline methods on the two datasets. The code length varies from 8 to 64.



Efficiency Study

DFM is an operable solution for many large-scale Web service to 
reduce the computation cost of their recommender systems.

Efficiency comparison between DFM and libFM
regarding Testing Time Cost (TTC) on the two datasets.



Conclusion & Future Work

• We propose DFM to enable fast feature-based 
recommendation.
• We develop an efficient algorithm to address the 

challenging optimization problem of DFM.
• We will extend binary technique to neural 

recommender models such as Neural FM.



Q&A

Thank you.

https://github.com/hanliu95/DFM


