

CFM: Convolutional Factorization Machines for Context-Aware Recommendation

¹Xin Xin, ²Bo Chen, ³Xiangnan He, et al.

¹School of Computing Science, University of Glasgow ²School of Software Engineering, Shanghai Jiao tong University ³School of Data Science, University of Science and Technology of China

Presented by Xin Xin@IJCAI19, Aug.16, 2019

Factorization Machines (FM)

• FM [Rendel et al., ICDM2010] is one of the most effective feature-based recommendation algorithms

Factorization Machines (FM)

- FM [Rendel et al., ICDM2010] is one of the most effective feature-based recommendation algorithms
- One/Multi-hot feature vectors as inputs
 - Encodes both item/user side information and context information

$$\underbrace{[0,0,0,1,0,0,0]}_{\text{weekday=Thursday}} \underbrace{[0,1,...,0]}_{\text{location=London}} \underbrace{[1,1,0,...,0]}_{\text{historical items (multi-hot)}}$$

Factorization Machines (FM)

- FM [Rendel et al., ICDM2010] is one of the most effective feature-based recommendation algorithms
- One/Multi-hot feature vectors as inputs
- Combines linear regression and second-order feature interaction

$$\hat{y}_{FM}(\mathbf{x}) = w_0 + \sum_{i=1}^{m} w_i x_i + \sum_{i=1}^{m} \sum_{j=i+1}^{m} x_i x_j \cdot \langle \mathbf{v}_i, \mathbf{v}_j \rangle$$
linear regression second-order feature interaction

Limitations of FM

- Inner product based feature interaction
 - Embedding dimensions are independent with each other

- There may be correlations between different dimensions
 [Zhang et al., SIGIR2014]
- Higher-order interaction & Non-linearity
 - NFM [He et al., SIGIR2017]
 - DeepFM [Guo et al., IJCAI2017]

Contributions

- Utilize an outer product-based interaction cube to represent feature interactions, which encodes both interaction signals and dimension correlations.
- Employ 3D CNN above the interaction cube to capture high-order interactions in an explicit way.
- Leverage an attention mechanism to perform feature pooling, reducing time complexity.

Convolutional Factorization Machines (CFM)

• Prediction rule:

$$\hat{y}_{CFM}\left(\mathbf{x}\right) = w_0 + \sum_{i=1}^{m} w_i x_i + g_{\theta}(\mathbf{x})$$

• Overall structure:

- Input and Embedding Layer
 sparse feature vectors==>embedding table lookup
- Attention pooling layer

- Input and Embedding Layer

 sparse feature vectors==>embedding table lookup
- Attention pooling layer

- softmax $\alpha_i = softmax(a_i) = \frac{exp(a_i)}{\sum_{x_{i'} \in \mathcal{X}_j} exp(a_{i'})}$
- weighted sum $\mathbf{e}_j = \sum_{x_i \in \mathcal{X}_j} \alpha_i \mathbf{v}_i$

• Interaction Cube

• 3D CNN

• Model Training

- Pair-wise ranking loss (BPR) [Rendle et al., UAI2009]

$$L = \sum -\ln \sigma(\hat{y}_{CFM}(\mathbf{x}^+) - \hat{y}_{CFM}(\mathbf{x}^-)),$$

- L2 regularization
- Drop-out

Experiments

- Research questions:
 - Does CFM model outperform state-of-the-art methods for top-k recommendation?
 - How do the special designs of CFM (i.e., interaction cube and 3DCNN) affect the model performance?
 - What's the effect of the attention-based feature pooling?
- Datasets:
 - Frappe
 - Last.fm
 - MovieLens
- Evaluation:
 - Leave-one-out
 - HR&NDCG

Dataset	#users	#items	#transactions	#fields
Frappe	957	4,082	96,203	10
Last.fm	1,000	20,301	214,574	4
MovieLens	6,040	3,665	939,809	4

Experiments

- Baselines:
 - PopRank: popularity-based recommendation
 - FM[Rendle et al., ICDM2010]: original FM with BPR loss
 - NFM[He et al., SIGIR17]: stacking MLP upon FM
 - DeepFM[Guo et al., IJCAI2017]: wide&deep+FM
 - ONCF[He et al., IJCAI2018]: outer product+MF

Experiments

• RQ1 (performance)

Frappe	PopRank	FM	DeepFM	NFM	ONCF	CFM
HR@10	0.3493	0.5486	0.6035	0.6197	0.6531	0.6720
NDCG@10	0.1898	0.3469	0.3765	0.3924	0.4320	0.4560
		-	-	-	-	
Last.fm	PopRank	FM	DeepFM	NFM	ONCF	CFM
HR@10	0.0023	0.2382	0.2612	0.2676	0.3208	0.3538
NDCG@10	0.0011	0.1374	0.1473	0.1488	0.1823	0.1948
		•	•	•	•	
Frappe	PopRank	FM	DeepFM	NFM	ONCF	CFM
HR@10	0.0235	0.0998	0.1170	0.1192	0.1110	0.1323
NDCG@10	0.0107	0.0452	0.0526	0.0553	0.0514	0.0627

- Deep structure helps to improve FM (DeepFM&NFM)
- CFM achieves the best performance

Results

• RQ2(model ablation)

Interaction cube & 3D CNN

3D architecture helps to improve performance

Results

- RQ3(feature pooling)
 - Effect of attention

Model	HR@10	HR@20	NG@10	NG@20
Max Mean CFM	0.1257 0.1291 0.1323	$\begin{array}{c} 0.2142 \\ 0.2212 \\ 0.2248 \end{array}$	$0.0591 \\ 0.0603 \\ 0.0627$	0.0813 0.0833 0.0858

Run time & performance

Indicator	FM	CFM	CFM-wfp
Time(min)	0.53	4.63	50.52
HR@10	0.0998	0.1323	0.1297
NG@10	0.0452	0.0627	0.0605

Attention pooing layer helps to improve both efficiency and effectiveness

Conclusion & Future Work

- CFM for feature-based recommendation
 - Outer product-based interaction cube
 - 3D CNN to explicitly learn high-order interactions
 - Attention-based feature pooling layer to reduce computational cost
- Future work
 - Improve efficiency
 - Residual learning

Reference

- [Rendle et al.,2010] Factorization machines. In ICDM.
- [Rendle et al.,2009] Bpr: Bayesian personalized ranking from implicit feedback. In UAI.
- [He, et al.,2017] Neural factorization machines for sparse predictive analytics. In SIGIR.
- [Guo et al.,2017] Deepfm: A factorization-machine based neural network for ctr prediction. In IJCAI.
- [He et al.,2018] Outer product-based neural collaborative filtering. In IJCAI.
- [Zhang et al.,2014] Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In SIGIR.

Thank you Q&A