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Factorization	Machines	(FM)
• FM	[Rendel et	al.,	ICDM2010]	is	one	of	the	most	
effective	feature-based	recommendation	algorithms
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Factorization	Machines	(FM)
• FM	[Rendel et	al.,	ICDM2010]	is	one	of	the	most	
effective	feature-based	recommendation	algorithms

• One/Multi-hot	feature	vectors	as	inputs
– Encodes	both	item/user	side	information	and	context	
information	
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Factorization	Machines	(FM)
• FM	[Rendel et	al.,	ICDM2010]	is	one	of	the	most	
effective	feature-based	recommendation	algorithms

• One/Multi-hot	feature	vectors	as	inputs
• Combines	linear	regression	and	second-order	feature	
interaction
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Limitations	of	FM
• Inner	product	based	feature	interaction
– Embedding	dimensions	are	independent	with	each	other

– There	may	be	correlations	between	different	dimensions	
[Zhang	et	al.,	SIGIR2014]

• Higher-order	interaction	&	Non-linearity
– NFM	[He	et	al.,	SIGIR2017]
– DeepFM [Guo et	al.,	IJCAI2017]
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Inner	product ?



Contributions
• Utilize	an	outer	product-based	interaction	cube	to	
represent	feature	interactions,	which	encodes	both	
interaction	signals	and	dimension	correlations.

• Employ	3D	CNN	above	the	interaction	cube	to	
capture	high-order	interactions	in	an	explicit	way.

• Leverage	an	attention	mechanism	to	perform	feature	
pooling,	reducing	time	complexity.
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Convolutional	Factorization	Machines	(CFM)

• Prediction	rule:

• Overall	structure:
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CFM
• Input	and	Embedding	Layer
– sparse	feature	vectors==>embedding	table	lookup

• Attention	pooling	layer
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CFM
• Input	and	Embedding	Layer
– sparse	feature	vectors==>embedding	table	lookup

• Attention	pooling	layer

– attention	score

– softmax

– weighted	sum
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CFM
• Interaction	Cube

• 3D	CNN
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CFM
• Model	Training
– Pair-wise	ranking	loss	(BPR)	[Rendle et	al.,	UAI2009]

– L2	regularization
– Drop-out	

11



Experiments
• Research	questions:
– Does	CFM	model	outperform	state-of-the-art	methods	for	
top-k recommendation?

– How	do	the	special	designs	of	CFM	(i.e.,	interaction	cube	
and	3DCNN)	affect	the	model	performance?

– What’s	the	effect	of	the	attention-based	feature	pooling?
• Datasets:
– Frappe
– Last.fm
– MovieLens

• Evaluation:
– Leave-one-out
– HR&NDCG
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Experiments
• Baselines:
– PopRank:	popularity-based	recommendation
– FM[Rendle et	al.,	ICDM2010]:	original	FM	with	BPR	loss
– NFM[He	et	al.,	SIGIR17]:	stacking	MLP	upon	FM	
– DeepFM[Guo et	al.,	IJCAI2017]:	wide&deep+FM
– ONCF[He	et	al.,	IJCAI2018]:	outer	product+MF
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Experiments
• RQ1	(performance)

– Deep	structure	helps	to	improve	FM	(DeepFM&NFM)
– CFM	achieves	the	best	performance

Frappe PopRank FM DeepFM NFM ONCF CFM

HR@10 0.3493 0.5486 0.6035 0.6197 0.6531 0.6720

NDCG@10 0.1898 0.3469 0.3765 0.3924 0.4320 0.4560

Last.fm PopRank FM DeepFM NFM ONCF CFM

HR@10 0.0023 0.2382 0.2612 0.2676 0.3208 0.3538

NDCG@10 0.0011 0.1374 0.1473 0.1488 0.1823 0.1948

Frappe PopRank FM DeepFM NFM ONCF CFM

HR@10 0.0235 0.0998 0.1170 0.1192 0.1110 0.1323

NDCG@10 0.0107 0.0452 0.0526 0.0553 0.0514 0.0627
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Results
• RQ2(model	ablation)
– Interaction	cube	&	3D	CNN
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3D	architecture	helps	to	improve	performance



Results
• RQ3(feature	pooling)
– Effect	of	attention

– Run	time	&	performance
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Attention	pooing	layer	helps	to	improve	both	efficiency	and	effectiveness	



Conclusion	&	Future	Work
• CFM	for	feature-based	recommendation
– Outer product-based	interaction	cube
– 3D	CNN	to	explicitly	learn	high-order	interactions
– Attention-based	feature	pooling	layer	to	reduce	
computational	cost

• Future	work
– Improve	efficiency	
– Residual	learning	

17



Reference
• [Rendle et	al.,2010]	Factorization	machines.	In	ICDM.
• [Rendle et	al.,2009]	Bpr:	Bayesian	personalized	ranking	from	

implicit	feedback.	In	UAI.
• [He,	et	al.,2017]	Neural	factorization	machines	for	sparse	

predictive	analytics.	In	SIGIR.
• [Guo et	al.,2017] Deepfm:	A factorization-machine	based	

neural	network	for	ctr prediction.	In	IJCAI.
• [He	et	al.,2018]	Outer	product-based	neural	collaborative	

filtering.	In	IJCAI.
• [Zhang	et	al.,2014]	Explicit	factor	models	for	explainable	

recommendation	based	on	phrase-level	sentiment	analysis.	In	
SIGIR.

18



Thank	you
Q&A
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