

NEXT++ NUS-Tsinghua Centre for Extreme Search

A Joint Research Collaboration Between NUS & Tsinghua University

Enhancing Stock Movement Prediction with Adversarial Training

Fuli Feng, Huimin Chen, Xiangnan He, Ji Ding, Maosong Sun & Tat-Seng Chua fulifeng93@gmail.com

• Which one to buy?

• When to sell?

You may not have time, e.g., paper submission deadline.

Machine Learning for Stock Prediction Standard Classification

Prediction layer

Temporal attention

layer

LSTM layer

Feature mapping

layer

Machine Learning for Stock Prediction Training Neural Network (NN)

- Basic Model: Attentive LSTM
- LSTM layer captures sequential dependency and projects sequential inputs into hidden representations.
- Temporal attention layer adaptively aggregates hidden representations at different time-steps into *e^s*.

 h_2^s

 $m_2^{s'}$

٧^s

 h_3^s

 m_3^s

 x_3^s

Copyright NEXT++, All Right Reserved.

 h_1^s

 $m_1^{s'}$

Stock Prediction with NN Stochasticity of Stock Price Feature

NN is sensitive to slight feature changes ightarrow poor generalization ability

Stock Prediction with NN Stochasticity of Stock Price Feature

- Basic Model: Attentive LSTM
- LSTM layer captures sequential dependency and projects sequential inputs into hidden representations.
- Temporal attention layer adaptively aggregates hidden representations at different time-steps into *e^s*.

Stock Prediction with NN Handling Stochasticity with Adversarial Training

Standard training

Updates model parameters to fit training data (*clean examples*)

• Standard training (ideally)

Updates model parameters to fit *clean example* as well as all the other points.

- Adversarial training
 - Additionally constructs *adversarial examples* via adding small *perturbations* to the input of clean examples, and encourages the model to correctly classify the adversarial examples.

Adversarial example, the point within the range that is hardest to be predicted as +

Stock Prediction with NN **Adversarial Training**

- Basic Model: Attentive LSTM
- LSTM layer captures sequential dependency and projects sequential inputs into hidden representations.
- Temporal attention layer adaptively aggregates hidden representations at different time-steps into e^s .

- Adversarial Training
- Constructs adversarial examples via adding *perturbation* to latent representation e^s .
- With an additional loss to encourage correct predictions for the adv. examples.

Stock Prediction with NN Experiments

0.6

Experiment dataset: ACL18, a public dataset with 88 high-trade-volume-stocks in NASDAQ and NYSE [Xu, ACL'18].

Performance comparison: ALSTM is the basic model; LSTM is ALSTM removing attention; Adv-ALSTM is ALSTM with adv. training; StockNet is the SOTA using VAE. - Significant improvements. Table 1: Statistics of the dataset.

	Training	Validation	Testing
Duration	Jan-01-2014	Aug-01-2015	Oct-01-2015
	Jul-31-2015	Sep-30-2015	Dec-31-2015
#Examples (+)	10,305	1,139	1,908
#Examples (-)	10,010	1,416	1,812

Table 2: Performance of the compared methods. **RI** denotes the relativeimprovement of **Adv-ALSTM** compared to the associated baseline.

Methods	Acc	RI	MCC	RI
RAND	50.89±	12.40%	-0.0023±	
LSTM	53.18±5e-1	7.56%	0.0674±5e-3	120.03%
ALSTM	54.90±7e-1	4.02%	0.1043±7e-3	42.19%
StockNet	54.96±	4.08%	0.0165±	798.79%
Adv-ALSTM	57.20±		0.1483±	

0.6

Distributions of *classification confidences* assigned by **ALSTM** and **Adv-ALSTM** for clean examples in validation and testing. - Enforce margin.

Stock Prediction with NN Conclusion and Future Work

Structured data

Stochasticity of historical price features should be considered.

Historical prices

Incorporating knowledge into the data driven learning model.

Domain knowledge

Unstructured data

News reports

Analyst reports

Fusionoftraditionalfinancial data andunstructuredalternative data.

https://github.com/hennande/Adv-ALSTM

Thank You

Our research is supported by the National Research Foundation, Prime Minister's Office of Singapore under its IRC@SG Funding Initiative.

For more info, please visit nextcenter.org

Stock Prediction with NN Adversarial Training VS VAE

- Bayesian Deep Learning
- Modeling historical prices as stochastic variables rather than static values.
- [Xu, ACL'18] encodes historical prices with *Variational Autoencoder*.

- Adversarial Training
- Common training updates model parameters to fit training data (*clean examples*), *i.e.*, make correct classifications.
- Adversarial training additionally constructs
 adversarial examples via adding small
 perturbations to the input of clean
 examples, and encourages the model to
 correctly classify the adversarial examples.

© Copyright NExT++. All Right Reserved.