Enhancing Stock Movement Prediction with Adversarial Training

Fuli Feng, Huimin Chen, Xiangnan He, Ji Ding, Maosong Sun & Tat-Seng Chua
fulifeng93@gmail.com
Stock Prediction

Alphabet Inc. (GOOGL)

Open 1,066.93
High 1,067.00
Low 1,027.03
Close 1,038.74
Volume 4.84M

% Change -11.82%

1,250.00
1,200.00
1,150.00
1,100.00
1,050.00
1,038.74
1,027.03
1,067.00
1,066.93
1,228.00
1,100.00
1,000.00

Apr 7 14 May 7 14 21

6/3/2019

© Co
Why Stock Prediction?

- Which one to buy?
 - All NASDAQ Securities
 - Exchange: NYSE

- When to sell?
 You may not have time, e.g., paper submission deadline.
DNNs, especially RNN [Zhang, KDD’17][Xu, ACL’18] are used to solve asset price prediction as a standard classification problem.

For each stock, on trading day t:

Historical prices \rightarrow Stock features

$$
\begin{bmatrix}
1197.5 & 1172.6 & \ldots & 1120.2 & 1105.6 \\
1199.3 & 1179.4 & \ldots & 1126.8 & 1113.4 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
1173.3 & 1166.5 & \ldots & 1121.4 & 1106.5
\end{bmatrix}
$$

X^t

$$
\hat{y}^{t+1}
$$
• Basic Model: *Attentive LSTM*

- LSTM layer captures sequential dependency and projects sequential inputs into hidden representations.
- Temporal attention layer adaptively aggregates hidden representations at different time-steps into \(e^s \).

On a benchmark dataset

Fit the training data 20 months since 2015 Jan.

Two months after the training period.
Stock Prediction with NN
Stochasticity of Stock Price Feature

Historical prices \rightarrow Stock features

\[
\begin{bmatrix}
1197.5 & 1172.6 \\
1199.3 & 1179.4 \\
\vdots & \vdots \\
1173.3 & 1166.5
\end{bmatrix}
\]

\[X^t \rightarrow +\]

Observing the price at a slightly different time (10:00 \rightarrow 10:01).

--- A new feature matrix
--- Different prediction (might wrong)

NN is sensitive to slight feature changes \rightarrow poor generalization ability
• **Basic Model: Attentive LSTM**

- LSTM layer captures sequential dependency and projects sequential inputs into hidden representations.

- Temporal attention layer adaptively aggregates hidden representations at different time-steps into e^s.
Stock Prediction with NN
Handling Stochasticity with Adversarial Training

- **Standard training**
 Updates model parameters to fit training data (*clean examples*)

- **Adversarial training**
 Additionally constructs *adversarial examples* via adding small *perturbations* to the input of clean examples, and encourages the model to correctly classify the adversarial examples.

- **Standard training (ideally)**
 Updates model parameters to fit *clean example* as well as all the other points.

- Features observed at a slightly different time.

Adversarial example, the point within the range that is hardest to be predicted as +
• Basic Model: *Attentive LSTM*
 - LSTM layer captures sequential dependency and projects sequential inputs into hidden representations.
 - Temporal attention layer adaptively aggregates hidden representations at different time-steps into e^s.

• Adversarial Training
 - Constructs *adversarial examples* via adding *perturbation* to latent representation e^s.
 - With an additional loss to encourage correct predictions for the adv. examples.
Stock Prediction with NN

Experiments

Experiment dataset: ACL18, a public dataset with 88 high-trade-volume-stocks in NASDAQ and NYSE [Xu, ACL’18].

Performance comparison: ALSTM is the basic model; LSTM is ALSTM removing attention; Adv-ALSTM is ALSTM with adv. training; StockNet is the SOTA using VAE.
- Significant improvements.

Table 1: Statistics of the dataset.

<table>
<thead>
<tr>
<th></th>
<th>Training</th>
<th>Validation</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Examples (+)</td>
<td>10,305</td>
<td>1,139</td>
<td>1,908</td>
</tr>
<tr>
<td>#Examples (-)</td>
<td>10,010</td>
<td>1,416</td>
<td>1,812</td>
</tr>
</tbody>
</table>

Table 2: Performance of the compared methods. RI denotes the relative improvement of Adv-ALSTM compared to the associated baseline.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Acc</th>
<th>RI</th>
<th>MCC</th>
<th>RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAND</td>
<td>50.89±</td>
<td>12.40%</td>
<td>-0.0023±</td>
<td>—</td>
</tr>
<tr>
<td>LSTM</td>
<td>53.18±5e-1</td>
<td>7.56%</td>
<td>0.0674±5e-3</td>
<td>120.03%</td>
</tr>
<tr>
<td>ALSTM</td>
<td>54.90±7e-1</td>
<td>4.02%</td>
<td>0.1043±7e-3</td>
<td>42.19%</td>
</tr>
<tr>
<td>StockNet</td>
<td>54.96±</td>
<td>4.08%</td>
<td>0.0165±</td>
<td>798.79%</td>
</tr>
<tr>
<td>Adv-ALSTM</td>
<td>57.20±</td>
<td>—</td>
<td>0.1483±</td>
<td>—</td>
</tr>
</tbody>
</table>

Distributions of classification confidences assigned by ALSTM and Adv-ALSTM for clean examples in validation and testing.
- Enforce margin.
Stock Prediction with NN
Conclusion and Future Work

Structured data
- Historical prices
- Domain knowledge

Unstructured data
- News reports
- Analyst reports

Stochasticity of historical price features should be considered.

Incorporating knowledge into the data driven learning model.

Fusion of traditional financial data and unstructured alternative data.

https://github.com/hennande/Adv-ALSTM
Thank You

Our research is supported by the National Research Foundation, Prime Minister’s Office of Singapore under its IRC@SG Funding Initiative.

For more info, please visit nextcenter.org
Stock Prediction with NN

Adversarial Training VS VAE

- **Bayesian Deep Learning**
 - Modeling historical prices as **stochastic variables** rather than static values.
 - [Xu, ACL’18] encodes historical prices with *Variational Autoencoder*.

- **Adversarial Training**
 - **Common training** updates model parameters to fit training data (*clean examples*), *i.e.*, make correct classifications.
 - **Adversarial training** additionally constructs *adversarial examples* via adding small *perturbations* to the input of clean examples, and encourages the model to correctly classify the *adversarial examples*.