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Matrix Factorization for Recommendation
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Figure 1: Conventional MF with Bayesian Personalized Ranking (BPR) criterion.

Regularization Tuning Headache
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Figure 2: The model can be highly sensitive to the choice of λ.

Our Goal: Find the reasons behind the regularization tuning headache and de-
sign methods to automatically regularize recommender models within appropriate
computation cost.

Why Hard to Tune the Recommender Models?

Hypothesis 1: Compromise on Regularization Granularity

2. Model: Different latent dimension counts differently!
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1. Dataset: Long-tailed user and item frequencies!

Figure 3: Due to the characteristics of the models and datasets, fine-grained regu-
larization often works better.

Typically, we use grid-search or babbysitting to determine λ. In such cases,
we set a global λ instead of fine-grained λ as it would otherwise take unaffordable
effort or computation cost.

Hypothesis 2: Fixed Regularization Strength Throughout
the Model Training Process
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Figure 4: Compared to the fixed approach (left), adaptive regularization (right) can
enjoy more efficient exploration in λ space.

How to Tackle the Regularization Tuning
Problem for Recommender Models?

Based on the above hypotheses, we propose λOpt to learn to regularize recom-
mender models in finer levels.

MF-BPR with Fine-grained Regularization
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Figure 5: λOpt endows MF-BPR with fine-grained regularization.

Alternating Optimization
Regularization tuning can be regarded as a bi-level optimization problem

min
Λ

∑
(u ′,i ′,j ′)∈SV

l(u ′, i ′, j ′| arg min
Θ

∑
(u,i,j)∈ST

l(u, i, j|Θ,Λ)),

At iteration t,
• Fix Λ, Optimize Θ -> almost the same as conventional MF-BPR except that
λ is fine-grained

• Fix Θ, Optimize Λ -> find a Λ which achieves the smallest validation loss

Fix Θ, Optimize Λ
Taking a greedy perspective, we look for Λ which can minimize the next-step
validation loss

• If we keep using current Λ for next step, we would obtain Θ̄t+1
• Given Θ̄t+1, our aim is minΛ lSV(Θ̄t+1)

But how to obtain Θ̄t+1 without influencing the normal Θ update? Simulate the
MF update!

1 Obtain the gradients by combining the non-regularized part and penalty part
∂lST
∂Θt

=
∂l̃ST
∂Θt

+
∂Ω

Θt
.

Note that Λ is the only variable here.
2 Simulate the operations that the MF optimizer would take
Θ̄t+1 = f(Θt,

∂lST
∂Θt

) where f denotes the MF update function.
To avoid obscure derivation of gradients introduced by the MF optimizer and fine-
grained regularization, we rely on auto-differentiation to implement λOpt. That is,
we first prepare the non-regularized gradients using a simulate forward & backwards
on training set. Then we use a Λ-network (where the weights is Λ) to do all the
aforementioned gradient combination, MF optimizer simulation, and computation
of validation loss. After a forward & backward pass of Λ-network, we get the Λ
for next step.
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Figure 6: λOpt: fix Θ, update Λ.

Results

Performance Comparison

Sparseness & Activeness

Figure 7: λOpt addresses both the sparse and active users.

Analysis of λ-trajectory

Figure 8: λOpt generates different λ-trajectories for different users/items.
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