

λOpt: Learn to Regularize Recommender Models in Finer Levels

Yihong Chen[†], Bei Chen[‡], Xiangnan He^{*}, Chen Gao[†], Yong Li[†], Jian-Guang Lou[‡], Yue Wang[†]

[†] Tsinghua University, [‡] Microsoft Research, ^{*} University of Science and Technology of China

Matrix Factorization for Recommendation

Figure 4: Compared to the fixed approach (left), adaptive regularization (right) can enjoy more efficient exploration in λ space.

How to Tackle the Regularization Tuning **Problem for Recommender Models?**

Microsoft

Figure 6: λOPT : fix Θ , update Λ .

Figure 1: Conventional MF with Bayesian Personalized Ranking (BPR) criterion.

Regularization Tuning Headache

Figure 2: The model can be highly sensitive to the choice of λ .

Our Goal: Find the reasons behind the regularization tuning headache and design methods to automatically regularize recommender models within appropriate computation cost.

Why Hard to Tune the Recommender Models?

Based on the above hypotheses, we propose λO_{PT} to learn to regularize recommender models in finer levels.

MF-BPR with Fine-grained Regularization

Figure 5: λOPT endows MF-BPR with fine-grained regularization.

Alternating Optimization

Regularization tuning can be regarded as a bi-level optimization problem $l(\mathfrak{u}',\mathfrak{i}',\mathfrak{j}'|rgmin_{\Theta} \sum l(\mathfrak{u},\mathfrak{i},\mathfrak{j}|\Theta,\Lambda)),$ \min_{Λ} $(\mathfrak{u}',\mathfrak{i}',\mathfrak{j}')\in S_V$ $(u,i,j) \in S_T$

At iteration t,

Results

Performance Comparison

Method	Amazon Food Review					MovieLens 10M				
Methou	AUC	HR@50	HR@100	NDCG@50	NDCG@100	AUC	HR@50	HR@100	NDCG@50	NDCG@100
SGDA [26]	0.8130	0.1786	0.3857	0.1002	0.1413	0.9497	0.2401	0.3706	0.0715	0.0934
AMF [15]	0.8197	0.3541	0.4200	0.2646	0.2552	0.9495	0.2625	0.3847	0.0787	0.0985
NeuMF [16]	0.8103	0.3537	0.4127	0.2481	0.2218	0.9435	0.2524	0.3507	0.0760	0.0865
$MF-\lambda Fix$	0.8052	0.3482	0.4163	0.2251	0.2217	0.9497	0.2487	0.3779	0.0727	0.0943
ΜF-λΟρτ -D	0.8109	0.2134	0.3910	0.1292	0.1543	0.9501	0.2365	0.3556	0.0715	0.0909
-DU	0.8200	0.3694	0.4814	0.2049	0.2570	0.9554	0.2743	0.4109	0.0809	0.1031
-DI	0.8501	0.2966	0.4476	0.1642	0.2039	0.9516	0.2648	0.3952	0.0804	0.1013
-DUI	0.8743	0.4470	0.5251	0.2946	0.2920	0.9575	0.3027	0.4367	0.0942	0.1158

Sparseness & Activeness

Hypothesis 1: Compromise on Regularization Granularity

1. Dataset: Long-tailed user and item frequencies!

2. Model: Different latent dimension counts differently!

Figure 3: Due to the characteristics of the models and datasets, fine-grained regularization often works better.

Typically, we use grid-search or babbysitting to determine λ . In such cases, we set a global λ instead of fine-grained λ as it would otherwise take unaffordable effort or computation cost.

Hypothesis 2: Fixed Regularization Strength Throughout the Model Training Process

- Fix Λ , Optimize Θ -> almost the same as conventional MF-BPR except that λ is fine-grained
- Fix Θ , Optimize $\Lambda \rightarrow$ find a Λ which achieves the smallest validation loss

Fix Θ , **Optimize** Λ

Taking a greedy perspective, we look for Λ which can minimize the next-step validation loss

- If we keep using current Λ for next step, we would obtain Θ_{t+1}
- Given $\overline{\Theta}_{t+1}$, our aim is $\min_{\Lambda} l_{S_{V}}(\overline{\Theta}_{t+1})$

But how to obtain Θ_{t+1} without influencing the normal Θ update? Simulate the MF update!

1 Obtain the gradients by combining the non-regularized part and penalty part

$$\frac{\overline{\partial l_{S_T}}}{\partial \Theta_t} = \frac{\overline{\partial \tilde{l}_{S_T}}}{\partial \Theta_t} + \frac{\partial \Omega}{\Theta_t}.$$

Note that Λ is the only variable here.

Simulate the operations that the MF optimizer would take $\bar{\Theta}_{t+1} = f(\Theta_t, \frac{\partial \Theta_T}{\partial \Theta_t})$ where f denotes the MF update function.

To avoid obscure derivation of gradients introduced by the MF optimizer and finegrained regularization, we rely on auto-differentiation to implement λOPT . That is, we first prepare the non-regularized gradients using a simulate forward & backwards on training set. Then we use a Λ -network (where the weights is Λ) to do all the aforementioned gradient combination, MF optimizer simulation, and computation of validation loss. After a forward & backward pass of Λ -network, we get the Λ for next step.

Figure 7: λOPT addresses both the sparse and active users.

Analysis of λ -trajectory

(a) For users on Amazon Food Review (b) For items on Amazon Food Review

Figure 8: λOPT generates different λ -trajectories for different users/items.

25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Anchorage, Alaska