λOpt: Learn to Regularize Recommender Models in Finer Levels

Yihong Chen¹, Bei Chen², Xiangnan He², Chen Gao³, Yong Li³, Jian-Guang Lou⁴, Yue Wang⁵

¹ Tsinghua University, ² Microsoft Research, ³ University of Science and Technology of China

Matrix Factorization for Recommendation

![Diagram of Matrix Factorization](image)

Figure 1: Conventional MF with Bayesian Personalized Ranking (BPR) criterion.

Regularization Tuning Headache

\[l = l(\Theta) + \lambda |\Theta|^2 \]

Regularized Loss

- Bob
- Model

\[l = l(\Theta) + \lambda |\Theta|^2 \]

Epoch

- AUC

- 0.85

- 0.60

- 0.45

Figure 2: The model can be highly sensitive to the choice of \(\lambda \).

Our Goal: Find the reasons behind the regularization tuning headache and design methods to automatically regularize recommender models within appropriate computation cost.

Why Hard to Tune the Recommender Models?

Hypothesis 1: Compromise on Regularization Granularity

![User and Item Frequency Distributions](image)

1. Dataset: Long-tailed user and item frequencies!

2. Model: Different latent dimension counts differently!

Figure 3: Due to the characteristics of the models and datasets, fine-grained regularization often works better.

Typically, we use grid-search or babysitting to determine \(\lambda \). In such cases, we set a global \(\lambda \) instead of fine-grained \(\lambda \) as it would otherwise take unaffordable effort or computation cost.

Hypothesis 2: Fixed Regularization Strength Throughout the Model Training Process

![Diagram of Regularization Tuning](image)

Figure 4: Compared to the fixed approach (left), adaptive regularization (right) can enjoy more efficient exploration in \(\lambda \) space.

How to Tackle the Regularization Tuning Problem for Recommender Models?

Based on the above hypotheses, we propose λOpt to learn to regularize recommender models in finer levels.

MF-BPR with Fine-grained Regularization

![Diagram of MF-BPR](image)

Figure 5: λOpt endows MF-BPR with fine-grained regularization.

Alternating Optimization

Regularization tuning can be regarded as a bi-level optimization problem

\[\min_{\Theta} \sum_{(u,i,j) \in S_{\text{V}}} l(u,i,j) + \min_{\Lambda} \sum_{(u,i,j) \in S_{\text{S}}} l(u,i,j) \Theta, \Lambda, \]

At iteration \(t \):

- Fix \(\Lambda \), Optimize \(\Theta \) to almost the same as conventional MF-BPR except that \(\lambda \) is fine-grained
- Fix \(\Theta \), Optimize \(\Lambda \) to find a \(\Lambda \) which achieves the smallest validation loss \(\lambda \)

Fix \(\Theta \), Optimize \(\Lambda \)

Taking a greedy perspective, we look for a \(\Lambda \) which can minimize the next-step validation loss

- If we keep using current \(\Lambda \) for next step, we would obtain \(\Theta_{t+1} \)
- Given \(\Theta_{t+1} \), our aim is \(\min_{\Lambda} l_s(\Theta_{t+1}) \)

But how to obtain \(\Theta_{t+1} \) without influencing the normal \(\Theta \) update? Simulate the MF update!

- Obtain the gradients by combining the non-regularized part and penalty part

\[\frac{\partial l_s}{\partial \Theta_{t+1}} = \frac{\partial l_s}{\partial \Theta_{t}} + \frac{\partial l_s}{\partial \Lambda} \]

Note that \(\Lambda \) is the only variable here.

- Simulate the operations that the MF optimizer would take

\[\Theta_{t+1} = f(\Theta_{t}, \Lambda_{t}) \]

To avoid obscure derivation of gradients introduced by the MF optimizer and fine-grained regularization, we rely on auto-differentiation to implement λOpt. That is, we first prepare the non-regularized gradients using a simulate forward & backwards on training set. Then we use a \(\Lambda \)-network (where the weights is \(\Lambda \)) to do all the aforementioned gradient combination, MF optimizer simulation, and computation of validation loss. After a forward & backward pass of \(\Lambda \)-network, we get the \(\Lambda \) for next step.

Results

![Performance Comparison Table](image)

Figure 6: λOpt: fix \(\Theta \), update \(\Lambda \).

Sparseness & Activeness

![Sparseness & Activeness Diagram](image)

Figure 7: λOpt addresses both the sparse and active users.

Analysis of \(\lambda \)-trajectory

![λ-trajectory Diagram](image)

(a) For users on Amazon Review
(b) For items on Amazon Review

Figure 8: λOpt generates different \(\lambda \)-trajectories for different users/items.