\r:l><>4ﬂ/

V

. KDD2019 Gramrakss

and Technology of China

Modeling Extreme Events In

Time Series Prediction

Daizong Ding ' MizZhang * Xudong Pan! MinYang! Xiangnan He ?

1. School of Computer Science, Fudan University
2. School of Data Science, University of Science and Technology of China



Background Problem Analysisé Proposed Model Extreme Value Loss Experimentsé Conclusion

Time Series Prediction
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Recurrent Neural Network

Test Results
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Underfitting Phenomenon
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Overfitting Phenomenon
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Extreme Events in Time Series Data
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Estimated Distribution of Labels C

A The optimization of deep neural network under probability perspective:
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A DNN will internally estimate the distribution of® according to the sampled data.
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Underfitting Phenomenon

A For those normal points, e.g.(,
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A Therefore model commonly lacks the ability of predicting extreme events
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Extreme Event Problem in DNN

Overfitting Phenomenon

A If we add weights of extreme events during the training
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A The estimated distribution is not accurate

A The performance on test data is poor
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Problem Analysis
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Motivation: Find the regularity Iinside
Irregular extreme events

According to previous research
A Extreme events in timeseries data often show some

Black Tuesday form of temporal regularity.
2t

Whpv\h\l\ A\M A Randomness of extreme events have limited degrees o
'. / YA freedom (DOF).
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The pattern of extreme events after a window could be

S&P 500 memorized
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Recalling Extreme Events in History

We propose to use Memory Network to recall
extreme events in history:

A Foreachtime step 6, we sampled windows.

A Forwindow 'Q we propose to use GRUto calculate

the featurei of the window.

A Meanwhile,we alsorecord the occurrenceof

extremeeventsry { phip} by setting threshold
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Memory Module previously atthe nexttime step of window Q



