

BiNE: Bipartite Network Embedding

ACM SIGIR 2018, July 8, Ann Arbor Michigan, U.S.A.

MingGao^{*}, Leihui Chen^{*}, Xiangnan He⁺, Aoying Zhou^{*}

*East China Normal University *National University of Singapore

Background

Network

A ubiquitous data structure to model the relationships between entities

Network embedding

- Crucial to obtain the representations for vertices
- Helpful to many applications, such as vertex labeling, link prediction, recommendation, and clustering, etc.

Homogeneous Network

- ✓ Social network
- ✓ Collaboration
 network
- ✓ Transportation network

✓ ...

Heterogeneous Network

- ✓ Item adoption
- ✓ Web visiting
- ✓ Question
 - answering

Drawbacks of Existing Works for Bipartite Networks

Homogeneous network embedding:

- Ignore type information of vertices (e.g., Node2vec, DeepWalk, etc.)
- Ignore key characteristic of bipartite network -- power-law distribution of vertex degrees

Heterogeneous network embedding:

MetaPath2vec [Dong et al, KDD'17] treats explicit and implicit relations as contributing equally

Outline

Background & Motivations Proposed Method Experiments and Results Conclusions

BiNE: Bipartite Network Embedding

Two Characteristics of BiNE

- Modeling the explicit and implicit relations simultaneously
- A biased and self-adaptive random walk generator

Modeling Explicit Relations (Observed links)

□ Original network space

The joint probability between vertices u_i and v_j is **defined** as:

$$P(i, j) = \frac{w_{ij}}{\sum_{e_{ij} \in E} w_{ij}}$$

Embedding space

The joint probability between vertices u_i and v_j is **estimated** as:

$$\hat{P}(i,j) = \frac{1}{1 + exp(-\vec{\mathbf{u}_i}^T \vec{\mathbf{v}_j})}$$

Preserving the local proximity

Minimizing the difference (KLdivergence) between the two distributions:

minimize
$$O_1 = KL(P||\hat{P}) = \sum_{e_{ij} \in E} P(i, j) \log(\frac{P(i, j)}{\hat{P}(i, j)})$$

$$\propto -\sum_{e_{ij} \in E} w_{ij} \log \hat{P}(i, j).$$

Modeling Implicit Relations (High-order relations)

Constructing Corpus of Vertex Sequences

Construct U-U and V-V networks

$$w_{ij}^U = \sum_{k \in V} w_{ik} w_{jk}; \quad w_{ij}^V = \sum_{k \in U} w_{ki} w_{kj}$$

- Run Self-adaptive random walker
- 1) # of walks starting from a vertex depends on its centrality score.
- 2) Length of a vertex sequence is controlled by a stop probability.
- Optimizing a point-wise classification loss to capture the high-order correlations

Capturing the High-order Relations

- Assumption: vertices frequently co-occurred in the same context of a sequence should be assigned to similar embeddings.
 - A. Taking corpus of users D^U as example, given a sequence S, ws(=2) and a vertex u_i:

$$S: \bigcup_{i} \bigcup$$

B. maximize
$$O_2 = \prod_{u_i \in S \land S \in D^U} \prod_{u_c \in C_S(u_i)} P(u_c | u_i).$$

 $maximize \ O_3 = \prod_{v_j \in S \land S \in D^V} \prod_{v_c \in C_S(v_j)} P(v_c | v_j).$

Sample High-quality and Diverse Negatives with Locality Sensitive Hashing (LSH)

 $P(u_c | u_i) = \frac{\exp\left(\vec{\mathbf{u}_i}^T \boldsymbol{\theta}_c\right)}{\sum_{k=1}^{|U|} \exp\left(\vec{\mathbf{u}_i}^T \boldsymbol{\theta}_k\right)}$

 $P(v_c | v_j) = \frac{\exp(\vec{\mathbf{v}_j}^T \, \boldsymbol{\vartheta}_c)}{\sum_{k=1}^{|V|} \exp(\vec{\mathbf{v}_i}^T \, \boldsymbol{\vartheta}_k)}$

С.

Joint Optimization

A joint optimization framework

Background & Motivations Proposed Method Experiments and Results Conclusions

Experimental Setting-up

□ Tasks

> Two tasks: link prediction (classification) & recommendation (ranking)

Datasets and Metrics

Task	Link Prediction			Reco	mmenda	tion	
Туре	undirected, unweighted		Π	undire	rected, weighted		
Metric	AUC-ROC,AUC-PR		Π	F1, ND	1, NDCG, MAP, MRR		
Name	Tencent	Wikipedia	Π	VisualizeUs	DBLP	MovieLens	
U	14,259	15,000	Π	6,000	6,001	<u>69,878</u>	
V	1,149	3,214	Π	3,355	1,308	10,677	
E	196,290	172,426	Γ	35,639	29,256	10,000,054	
Density	1.2%	0.4%	Γ	0.2%	0.4%	1.3%	

Research Questions

- RQ1 Performance of BiNE compared to representative baselines
- RQ2 Is the implicit relations helpful?
- RQ3 Effect of random walk generator

Baselines

Network embedding methods

- DeepWalk [Perozzi et al KDD 2014]
- ➢ LINE [Tang et al WWW 2015]
- Node2vec [Grover et al KDD 2016]
- Metapath2vec++ [Dong et al KDD 2017]

Link Prediction methods [Xia et al ASONAM 2012]

- JC (Jaccard coefficient)
- AA (Adamic/Adar)
- Katz (Katz index)
- PA (Preferential attachment)

Recommendation methods

- BPR [Rendle et al UAI 2009]
- RankALS [Takács et al Recsys 2012]
- FISMauc [Kabbur et al KDD 2013]

RQ1: Performance of Link Prediction

Table 3: Link prediction performance on Tencent and Wikipedia.

Algorithm	Tenc	ent	Wikipedia		
	AUC-ROC	AUC-PR	AUC-ROC	AUC-PR	
JC	51.49%	66.18%	63.90%	73.04%	
AA	50.63%	65.66%	87.37%	91.12%	
Katz	50.90%	65.06%	90.84%	92.42%	
<u>PA</u>	<u> </u>	<u>68.99%</u>	9 <u>0.71%</u>	<u>93.37%</u>	
DeepWalk	57.62%	71.32%	89.71%	91.20%	
LINE	59.68%	73.48%	91.62%	93.28%	
<u>Node2vec</u>	<u> </u>	72.62%	<u> </u>	91.23%	
Metapath2vec++	60.70%	73.69%	89.56%	91.72%	
BiNE	60.98%**	73.77%**	92.91%**	94.45%**	

** indicates that the improvements are statistically significant for p < 0.01 judged by paired t-test.

Observations:

- 1. Data-dependent
 - supervised manner is more advantageous.
- 2. Positive effect of modeling both explicit and implicit relations into the embedding process.
- 3. Effectiveness of modeling the explicit and implicit relations in different ways.

RQ2: Performance of Recommendation

Table 4: Performance comparison of Top-10 Recommendation on VisualizeUs, DBLP, and MovieLens.

Algorithm		Visua	lizeUs		DBLP			Movielens				
Aigorithin	F1@10	NDCG@10	MAP@10	DBLP MRR@10 F1@10 NDCG@10 MAP@10 MRR@10 13.71% 8.95% 18.38% 13.55% 22.25% 3.81% 7.62% 11.50% 7.52% 14.87% 16.67% 9.81% 13.77% 7.38% 14.51% 12.12% 8.50% 24.14% 19.71% 31.53% 14.99% 8.99% 14.41% 9.62% 17.13% 13.95% 8.54% 23.89% 19.44% 31.11% 13.54% 8.65% 25.14% 19.06% 31.97%	MRR@10	F1@10	NDCG@10	MAP@10	MRR@10			
BPR	6.22%	9.52%	5.51%	13.71%	8.95%	18.38%	13.55%	22.25%	8.03%	7.58%	2.23%	40.81%
RankALS	2.72%	3.29%	1.50%	3.81%	7.62%	11.50%	7.52%	14.87%	8.48%	7.95%	2.66%	38.93%
FISMauc	10.25%	15.46%	8.86%	16.67%	9.81%	13.77%	7.38%	14.51%	6.77%	6.13%	1.63%	34.04%
DeepWalk	<u>5.82%</u>	8.83%	4.28%	12.12%	8.50%	24.14%	19.71%	31.53%	3.73%	3.21%	0.90%	<u> </u>
LINE	9.62%	13.76%	7.81%	14.99%	8.99%	14.41%	9.62%	17.13%	6.91%	6.50%	1.74%	38.12%
Node2vec	6.73%	9.71%	6.25%	13.95%	8.54%	23.89%	19.44%	31.11%	4.16%	3.68%	1.05%	18.33%
Metapath2vec++	5.92%	8.96%	5.35%	13.54%	8.65%	25.14%	19.06%	31.97%	4.65%	4.39%	1.91%	16.60%
BiNE	13.63%**	24.50%**	16.46%**	34.23%**	11.37%**	26.19%**	20.47%**	33.36%**	9.14%**	9.02%**	3.01%**	45.95%**

** indicates that the improvements are statistically significant for p < 0.01 judged by paired t-test.

Observations:

- 1. Positive effect of considering information of weight
- 2. Importance of focusing on the higher-order proximities among vertices
- 3. Jointly training is superior to separately training + post-processing

Utility of Implicit Relations (RQ2)

Observation:

Modeling high-order implicit relations is effective to

complement with explicit

relation modeling.

Table 5: BiNE	with and	without	implicit	relations.

	Without	Implicit	With Implicit		
	Relat	tions	Relat	tions	
	Liı	n			
Dataset AUC-ROC AUC-PR		AUC-ROC	AUC-PR		
Tencent	59.78%	73.05%	60.98%**	73.77%**	
WikiPedia	91.47%	93.73%	92.91%**	94.45%**	
	Rec	ommendati	n		
Dataset	MAP@10	MRR@10	MAP@10	MRR@10	
VisualizeUS	7.91%	15.65%	16.46%**	34.23%**	
DBLP	20.20%	32.95%	20.47%**	33.36%**	
MovieLens	2.86%	43.98%	3.01%**	45.95%**	

** indicates that the improvements are statistically significant for p < 0.01 judged by paired t-test.

Random Walk Generator (RQ3)

Table 6: BiNE with different random walk generators.

	Uniform	Random	Biased and	Self-adaptive
	Walk Ge	nerator	Random Wa	lk Generator
	Li	n		
Dataset	AUC-ROC	AUC-ROC	AUC-PR	
Tencent	59.75%	73.06%	60.98%**	73.77%**
WikiPedia	88.77%	91.91%	92.91%**	94.45%**
	Re	commendati	on	
Dataset	MAP@10	MRR@10	MAP@10	MRR@10
VisualizeUS	15.93%	33.66%	16.46%**	34.23%**
DBLP	11.79%	23.41%	20.47%**	33.66%**
MovieLens	2.91%	46.12%	3.04%**	46.20%**

** indicates that the improvements are statistically significant for p < 0.01 judged by paired t-test.

Observation:

The **biased and self-adaptive** random walk generator contributes to learning better vertex embeddings.

Random Walk Generator (RQ3)

Observation:

The **biased and self-adaptive** random walk generator contributes to learning better vertex embeddings.

Case Study

Figure 6: Visualization of authors in DBLP. Color of a vertex indicates the research fields of the authors (red: "computer science theory", blue: "artificial intelligence"). BiNE' is the version of BiNE – without implicit relations.

Conclusions

Conclusions

- Propose a dedicated approach for embedding bipartite networks
- Jointly model both the explicit relations and higher-order implicit relations
- Extensive experiments on several tasks of link prediction, recommendation, and visualization

□ Future work

- Extend our BiNE method to model auxiliary side info
- Investigate how to efficiently refresh embeddings for dynamic bipartite networks
- Network embedding + adversarial training

Acknowledgments

■Ming Gao (高明) (East China Normal University)

■ Leihui Chen (陈雷慧)

(East China Normal University)

□ Aoying Zhou (周傲英) (East China Normal University)

National Natural Science Foundation of China

● **華東師 紀大學** 出版社 基础教育分社

re Government Senice Excelence Mini Singa

National Research Foundation, Prime Minister's Office, Singapore

Thank You for Your Attention

Code available:

Negative Sampling

Optimizing a point-wise classification loss

 $\succ p(u_c|u_i)$ can be approximate as:

$$p(u_c, N_S^{ns}(u_i)|u_i) = \prod_{z \in \{u_c\} \cup N_S^{ns}(u_i)} P(z|u_i)$$

$$P(z|u_i) = \begin{cases} \sigma(\vec{u_i}^T \vec{\theta_z}), & \text{if } z \text{ is a context of } u_i \\ 1 - \sigma(\vec{u_i}^T \vec{\theta_z}), & z \in N_S^{ns}(u_i) \end{cases}$$
 LSH-based

> Following the similar formulations, we can get the counterparts for the conditional probability $p(z|v_i)$

LSH-based Negative Sampling

LSH-based negative sampling method

> For a center vertex u_i , high-quality negatives should be the vertices that are **dissimilar** from u_i

	Frequency-based or popularity-based sampling	LSH-based negative sampling	
Strategy	High frequency objects		
Word Embedding	Useless words	Dissimilar objects	
Network Embedding	Popular items or active users		

Experimental Results

□ Performance of BiNE with different negative sampling strategies.

TABLE 8: BiNE with different negative sampling strategies.

	Frequenc Negative S	y-based Sampling	LSH-based Negative Sampling		
	Lin	າ			
Dataset	AUC-ROC AUC-PR		AUC-ROC	AUC-PR	
Tencent	60.80%	73.64%	60.98%	73.77%	
WikiPedia	92.21%	94.12%	92.91%	94.45%	
	Reco	ommendati	n		
Dataset MAP@10		MRR@10	MAP@10	MRR@10	
VisualizeUS	9.10%	19.72%	16.46%**	32.93%**	
DBLP	20.46%	32.93%	20.47%	33.93%**	
MovieLens	3.01%	45.86%	3.01%	45.95%	

** indicates that the improvements are statistically significant for p < 0.01 judged by paired t-test.

Observations:

- 1. Two methods show roughly equivalent performance in most case.
- 2. However, there are situations (see VisualizeUS) in which LSHbased sampling method uses dissimilar information obtained from user behavior data can generate more reasonable negative samples

