

Fast Scalable Supervised Hashing

Xin Luo¹, Liqiang Nie², Xiangnan He³ Ye Wu¹, Zhen-Duo Chen¹, Xin-Shun Xu¹

¹Lab of Machine Intelligence & Media Analysis, School of Software, Shandong University, China ²School of Computer Science and Technology,Shandong University, China ³National University of Singapore, Singapore

MIMA @ SDU

School of Software, Shandong University

ExperimentsFSSH deep

Outline

Introduction

Proposed Method

Conclusion & Future Work

Overall Objective Function

Out-of-Sample Extension

Optimization Algorithm

Introduction

Nearest Neighbor Search (NNS)

- Given a query point q, NNS returns the points <u>closest</u> (most <u>similar</u>) to q in the database.
- Underlying many <u>machine</u> <u>learning</u>, <u>information retrieval</u>, and <u>computer vision</u> problems.

School of Software, Shandong University

3

Challenges in large-scale data applications:

- Expensive storage cost
- Slow query speed
- data on the Internet increases explosively
- curse of dimensionality problem
- One popular solution is the hashing based approximate nearest neighbor (ANN) technique.

Introduction

Illustration comes from http://cs.nju.edu.cn/lwj/L2H.html

Similarity Preserving

Introduction

Illustration comes from http://cs.nju.edu.cn/lwj/L2H.html

advantages of hashing:
 fast query speed
 low storage cost

1	0	0	0	1	0	1	0
0	1	1	0	0	0	0	1
0	1	1	0	0	1	0	1

XOR Hamming distance

According whether to use semantic information:
 unsupervised hashing
 supervised hashing (better retrieval accuracy)

 We propose a novel supervised hashing method, named, Fast Scalable Supervised Hashing (FSSH).

MIMA

Two commonly used objective functions: $\| \mathbf{rS} - \mathbf{BB}^{\top} \|_{F}^{2} \qquad \| \mathbf{L} - \mathbf{GB} \|_{F}^{2}$ $s.t. \quad \mathbf{B} \in \{-1, 1\}^{n \times r} \qquad s.t. \quad \mathbf{B} \in \{-1, 1\}^{n \times r} \qquad (2)$

$\mathbf{S} \in \{-1,1\}^{n \times n}$	instance pairwise semantic similarity	$\mathbf{L} \in \{0,1\}^{n \times c}$	labels for n instances $\mathbf{L} = [\mathbf{l}_1, \mathbf{l}_2, \cdots, \mathbf{l}_n]$
$S_{ij} = 1$	instance i and instance j are semantically similar	$\mathbf{l}_{ik} = 1$	instance i is in class k
$S_{ij} = -1$	i and j are semantically dissimilar	$\mathbf{l}_{ik} = 0$	instance i is not in class k
$\mathbf{B} \in \{-1,1\}^{n \times r}$	r-bit binary hash codes for n instances	G	a projection from labels to hash codes
$\ \cdot\ _F$	Frobenius norm	С	the number of classes

MIMA

Two commonly used objective functions: $\| \mathbf{rS} - \mathbf{BB}^{\top} \|_{F}^{2} \qquad \| \mathbf{L} - \mathbf{GB} \|_{F}^{2}$ s.t. $\mathbf{B} \in \{-1, 1\}^{n \times r}$ (1) $s.t. \mathbf{B} \in \{-1, 1\}^{n \times r}$ (2)

complexity of **S** $O(n^2)$

limitations learn the hash codes bit by bit

$\mathbf{S} \in \{-1,1\}^{n \times n}$	instance pairwise semantic similarity	$\mathbf{L} \in \{0,1\}^{n \times c}$	labels for n instances $\mathbf{L} = [\mathbf{l}_1, \mathbf{l}_2, \cdots, \mathbf{l}_n]$
$S_{ij} = 1$	instance i and instance j are semantically similar	$\mathbf{l}_{ik} = 1$	instance i is in class k
$S_{ij} = -1$	i and j are semantically dissimilar	$\mathbf{l}_{ik} = 0$	instance i is not in class k
$\mathbf{B} \in \{-1,1\}^{n \times r}$	r-bit binary hash codes for n instances	G	a projection from hash codes to labels
$\ \cdot\ _F$	Frobenius norm	С	the number of classes

Proposed Method

Motivations:

- How to generate hash codes <u>fast</u>?
- How to make the model <u>scalable</u> to large-scale data?
- How to guarantee precise hash codes?

Proposed Method

Motivations:

- How to generate hash codes <u>fast</u>?
- How to make the model <u>scalable</u> to large-scale data?
- How to guarantee precise hash codes?

- > simultaneously update all bits of hash codes
- > avoid the direct use of large matrix **S**
- consider both semantic and visual information

Proposed Method

Overall Objective Function

$$\min_{\mathbf{B},\mathbf{G},\mathbf{W}} \| \mathbf{S} - (\phi(\mathbf{X})\mathbf{W})(\mathbf{LG})^{\top} \|_{F}^{2}$$

+ $\mu \| \mathbf{B} - \mathbf{LG} \|_{F}^{2} + \theta \| \mathbf{B} - (\phi(\mathbf{X})\mathbf{W}) \|_{F}^{2}$ (3)
s.t. $\mathbf{B} \in \{-1,1\}^{n \times r}$

- We present an iterative optimization algorithm, in which each iteration contains three steps, i.e., W Step,
 G Step, and B Step.
- More specifically,
 - W step: fix **G** and **B**, update **W**;
 - **G** step: fix **W** and **B**, update **G**;
 - **B** step: fix **W** and **G**, update **B**.

• W Step

$$\min_{\mathbf{W}} \| \mathbf{S} - (\phi(\mathbf{X})\mathbf{W})(\mathbf{LG})^{\top} \|_{F}^{2} + \theta \| \mathbf{B} - \phi(\mathbf{X})\mathbf{W} \|_{F}^{2}$$
(4)

setting the derivative regarding W to zero

Proposed Method - optimization

 $\mathbf{W} = (\phi(\mathbf{X})^{\top} \phi(\mathbf{X}))^{-1} (\phi(\mathbf{X})^{\top} \mathbf{S} \mathbf{L} \mathbf{G} + \theta \phi(\mathbf{X})^{\top} \mathbf{B}) (\mathbf{G}^{\top} \mathbf{L}^{\top} \mathbf{L} \mathbf{G} + \theta \mathbf{I}_{r \times r})^{-1}$ (5)

 $\min_{\mathbf{W}} \| \mathbf{S} - (\phi(\mathbf{X})\mathbf{W})(\mathbf{LG})^{\top} \|_{F}^{2} + \theta \| \mathbf{B} - \phi(\mathbf{X})\mathbf{W} \|_{F}^{2}$

W Step

MIMA

(4)

MIMA @ SDU

Proposed Method - optimization

W Step

$$\min_{\mathbf{W}} \| \mathbf{S} - (\phi(\mathbf{X})\mathbf{W})(\mathbf{LG})^{\top} \|_{F}^{2} + \theta \| \mathbf{B} - \phi(\mathbf{X})\mathbf{W} \|_{F}^{2} \quad (4)$$
setting the derivative regarding W to zero

$$\mathbf{W} = (\phi(\mathbf{X})^{\top}\phi(\mathbf{X}))^{-1}(\phi(\mathbf{X})^{\top}\mathbf{S}\mathbf{LG} + \theta\phi(\mathbf{X})^{\top}\mathbf{B})(\mathbf{G}^{\top}\mathbf{L}^{\top}\mathbf{LG} + \theta\mathbf{I}_{r\times r})^{-1} \quad (5)$$

MIMA W Step $\min_{\mathbf{W}} \| \mathbf{S} - (\phi(\mathbf{X})\mathbf{W})(\mathbf{LG})^{\top} \|_{F}^{2} + \theta \| \mathbf{B} - \phi(\mathbf{X})\mathbf{W} \|_{F}^{2}$ (4) setting the derivative regarding W to zero $\mathbf{W} = (\phi(\mathbf{X})^{\top} \phi(\mathbf{X}))^{-1} (\phi(\mathbf{X})^{\top} \mathbf{S} \mathbf{L} \mathbf{G} + \theta \phi(\mathbf{X})^{\top} \mathbf{B}) (\mathbf{G}^{\top} \mathbf{L}^{\top} \mathbf{L} \mathbf{G} + \theta \mathbf{I}_{r \times r})^{-1}$ (5) $\mathbf{W} = \mathbf{C}^{-1} (\mathbf{A}\mathbf{G} + \theta \phi(\mathbf{X})^{\top} \mathbf{B}) (\mathbf{G}^{\top} \mathbf{D}\mathbf{G} + \theta \mathbf{I}_{r \times r})^{-1}$ (6) where $\mathbf{A} = \phi(\mathbf{X})^{\top} \mathbf{S} \mathbf{L}$, $\mathbf{C} = \phi(\mathbf{X})^{\top} \phi(\mathbf{X})$, $\mathbf{D} = \mathbf{L}^{\top} \mathbf{L}$.

an intermediate term $\mathbf{A} \in \mathbb{R}^{m \times c}$

Proposed Method - optimization

m << n, c << n O(mc)

MIMA @ SDU

$\mathbf{A} = \mathbf{D}^{-1}(\mu \mathbf{L}^{\top} \mathbf{B} + \mathbf{A}^{\top} \mathbf{W})(\mathbf{W}^{\top} \mathbf{C} \mathbf{W} + \mu \mathbf{I}_{r \times r})^{-1}$ where $\mathbf{A} = \phi(\mathbf{X})^{\top} \mathbf{S} \mathbf{L}$, $\mathbf{C} = \phi(\mathbf{X})^{\top} \phi(\mathbf{X})$, $\mathbf{D} = \mathbf{L}^{\top} \mathbf{L}$.

 $\min_{\mathbf{C}} \| \mathbf{S} - (\phi(\mathbf{X})\mathbf{W})(\mathbf{L}\mathbf{G})^{\top} \|_{F}^{2} + \mu \| \mathbf{B} - \mathbf{L}\mathbf{G} \|_{F}^{2}$

 $\mathbf{G} = (\mathbf{L}^{\top}\mathbf{L})^{-1} (\boldsymbol{\mu}\mathbf{L}^{\top}\mathbf{B} + \mathbf{L}^{\top}\mathbf{S}^{\top}\boldsymbol{\phi}(\mathbf{X})\mathbf{W}) (\mathbf{W}^{\top}\boldsymbol{\phi}(\mathbf{X})^{\top}\boldsymbol{\phi}(\mathbf{X})\mathbf{W} + \boldsymbol{\mu}\mathbf{I}_{r\times r})^{-1}$ (8)

setting the derivative regarding W to zero

G Step

MIM

(7)

(9)

B Step

$$\min_{\mathbf{B}} \mu \| \mathbf{B} - \mathbf{L}\mathbf{G} \|_{F}^{2} + \theta \| \mathbf{B} - \phi(\mathbf{X})\mathbf{W} \|_{F}^{2} \qquad (10)$$

$$s.t. \ \mathbf{B} \in \{-1, 1\}^{n \times r}$$

Then, we transform the above equation into,

$$= (\mu + \theta) \| \mathbf{B} \|_{F}^{2} - 2\mu Tr(\mathbf{B}^{\top}\mathbf{L}\mathbf{G}) + \mu \| \mathbf{L}\mathbf{G} \|_{F}^{2} - 2\theta Tr(\mathbf{B}^{\top}\phi(\mathbf{X})\mathbf{W}) + \theta \| \phi(\mathbf{X})\mathbf{W} \|_{F}^{2}$$
(11)

where Tr() is the trace norm.

B Step

$$\min_{\mathbf{B}} \mu \| \mathbf{B} - \mathbf{L}\mathbf{G} \|_{F}^{2} + \theta \| \mathbf{B} - \phi(\mathbf{X})\mathbf{W} \|_{F}^{2}$$
(10)

$$s.t. \ \mathbf{B} \in \{-1, 1\}^{n \times r}$$

Then, we transform the above equation into,

$$= (\mu + \theta) \| \mathbf{B} \|_{F}^{2} - 2\mu Tr(\mathbf{B}^{\top} \mathbf{L} \mathbf{G}) + \mu \| \mathbf{L} \mathbf{G} \|_{F}^{2} - 2\theta Tr(\mathbf{B}^{\top} \phi(\mathbf{X}) \mathbf{W}) + \theta \| \phi(\mathbf{X}) \mathbf{W} \|_{F}^{2}$$
(11)

where Tr() is the trace norm.

constants

B Step

$$\min_{\mathbf{B}} -Tr \Big(\mathbf{B}^{\top} \big(\mu \mathbf{L} \mathbf{G} + \theta \phi(\mathbf{X}) \mathbf{W} \big) \Big)$$

s.t. $\mathbf{B} \in \{-1, 1\}^{n \times r}$ (12)

Thus, B can also be solved with a closed-form solution stated as follows,

$$\mathbf{B} = sgn(\mu \mathbf{L}\mathbf{G} + \theta\phi(\mathbf{X})\mathbf{W})$$
⁽¹³⁾

Algorithm 1 Optimization algorithm of FSSH.

Input: The label matrix $\mathbf{Y} \in \{0, 1\}^{n \times c}$, the intermediate term $\mathbf{A} = \phi(\mathbf{X})^{\top} \mathbf{SL}$ computed offline, the balance parameters μ and θ , iteration number *t* and the hash code length *r*.

1: Randomly initialize **W**, **G** and **B**.

2: for iter = $1 \rightarrow t$ do

- 3: W step: Fix G and B, update W using Eq. (8).
- 4: **G step:** Fix **W** and **B**, update **G** using Eq. (10).
- 5: **B step:** Fix **W** and **G**, update **B** using Eq. (13).
- 6: **end for**

Output: W and B.

School of Software, Shandong University

Proposed Method -Out-of-Sample Extension

FSSH_os	simultaneously learns its hash functions and hash codes
FSSH_ts	uses linear regression as the hash function
FSSH_deep	adopts deep network as the hash function

Suppose X_{query} and B_{query} are the original features and corresponding hash codes of the queries.

FSSH_os

$$\mathbf{B}_{query} = sgn(\phi(\mathbf{X}_{query})\mathbf{W}) \tag{14}$$

Proposed Method -Out-of-Sample Extension

FSSH_ts

$$\| \mathbf{B} - \phi(\mathbf{X})\mathbf{P} \|_F^2 + \lambda_e \| \mathbf{P} \|_F^2$$
⁽¹⁵⁾

where λ_e is a balance parameter, $\| \mathbf{P} \|_F^2$ is the regularization term, and $\phi(\mathbf{X})$ is the RBF kernel features.

Then, the optimal **P** can be computed as,

$$\mathbf{P} = \left(\phi(\mathbf{X})^{\top}\phi(\mathbf{X}) + \lambda_e \mathbf{I}\right)^{-1}\phi(\mathbf{X})^{\top}\mathbf{B}$$
⁽¹⁶⁾

$$\mathbf{B}_{query} = sgn(\phi(\mathbf{X}_{query})\mathbf{P}) \tag{17}$$

School of Software, Shandong University

Experiments

- Datasets
 - MNIST
 - CIFAR-10
 - NUS-WIDE

```
000000000000000000
/ \ \ \ / 1 / 1 / 7 1 \ / / / |
222222222222222
66666
     6666666666
777
888888888
            8
         8
          8
          8
           8
999999999999999
            99
     MNIST
```

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

- Compared <u>supervised</u> methods
 - one-step hashing: KSH, SDH, FSDH.
 - <u>two-step</u> hashing: TSH, LFH, COSDISH.
- Evaluation Metrics (accuracy)
 - Mean Average Precision (MAP),
 - Top-N Precision curves,
 - Precision-Recall curves.
 - Time cost (efficiency)

Experiments - MAP results

CIFAR-10 **MNIST** NUS-WIDE Method 16 bits 32 bits 96 bits 16 bits 32 bits 96 bits 16 bits 32 bits 96 bits 64 bits 64 bits 64 bits KSH 0.2626 0.2897 0.3108 0.3185 0.8017 0.8233 0.8390 0.8400 0.3703 0.3728 0.3785 0.3786 SDH 0.3525 0.4135 0.8718 0.8873 0.4211 0.3788 0.3986 0.8958 0.8972 0.4113 0.4114 0.4135 **FSDH** 0.3284 0.3661 0.3986 0.4110 0.8562 0.8804 0.8907 0.8962 0.4052 0.4115 0.4155 0.4166 TSH 0.3202 0.3551 0.3711 0.3843 0.9007 0.9215 0.9281 0.9323 0.4424 0.4479 0.4555 0.4545 LFH 0.3803 0.5061 0.6133 0.6288 0.5564 0.7577 0.8593 0.8575 0.5767 0.5974 0.6042 0.6124 COSDISH 0.5737 0.8551 0.8754 0.6109 0.6310 0.6368 0.8818 0.8888 0.5719 0.5913 0.5916 0.6027 FSSH os 0.3896 0.5592 0.6760 0.9023 0.9480 0.9360 0.9311 0.4813 0.5255 0.5867 0.6029 0.6497 FSSH ts 0.6350 0.6829 0.7071 0.7108 0.9443 0.9649 0.9713 0.9721 0.5846 0.6060 0.6105 0.6225

- The best MAP values of each case are shown in boldface.
- One-step hashing: KSH, SDH, FSDH, and FSSH_os.
- Two-step hashing: TSH, LFH, COSDISH, and FSSH_ts.

MIMA @ SDU

0.4

Recall

(4) CIFAR-10 precision-recall

0.6

School of Software, Shandong University

0.8

SDH

TSH

I EH

COSDIS

SSH os

FSSH ts

FSDH

Experiments - curves

0.7

0.6

0.9

0.8

0.7

0.6

0.3

0.2

0.1

0 L 0

0.2

Drecision 0.5 0.4

(1) CIFAR-10 top-N precision

2000

(2) MNIST top-N precision

0.9

0.8

0.7

0.6

0.5

0.3

0.2

0.1

0

0.2

0.4

0.6

Recall

(5) MNIST precision-recall

9.0 Brecision 9.0 Precision

KS⊦

SDH

FSDF

TSH

LFH

0.8

COSDISH

ESSH os FSSH ts

0.6 Precision 0.5 KSH SDH FSDH 0.4 TSH LFH COSDISE ESSH os - FSSH_ts 0.35 0 400 800 1200 1600 2000 Ν

0.75

(3) NUS-WIDE top-N precision

(6) NUS-WIDE precision-recall

Experiments - time

	CIFAR-10					MNIST						
Method	Trainin	Training Time (second)		Test Time (millisecond)		Training Time (second)			Test Time (millisecond)			
	16 bits	32 bits	64 bits	16 bits	32 bits	64 bits	16 bits	32 bits	64 bits	16 bits	32 bits	64 bits
KSH	111.31	235.29	359.24	2.57	3.91	5.33	169.80	302.47	480.94	5.20	5.69	7.75
SDH	8.96	25.16	83.80	2.62	3.74	5.35	15.74	71.82	141.27	3.90	6.47	7.21
FSDH	6.25	6.62	6.87	2.60	3.80	5.78	9.01	9.20	9.88	4.08	5.82	7.03
TSH	105.37	206.98	340.37	2.56	4.02	6.06	173.20	343.73	483.02	4.33	5.41	7.68
LFH	4.06	7.80	13.79	2.28	3.57	5.74	7.44	12.19	18.41	2.88	4.33	5.93
COSDISH	15.99	78.99	189.59	2.45	3.89	5.54	20.88	104.08	224.01	2.75	4.19	5.65
FSSH_os	2.98	3.40	3.88	2.32	3.62	5.68	5.06	5.20	5.23	4.19	5.80	7.06
FSSH_ts	4.10	4.85	5.19	2.52	3.89	5.70	5.55	5.78	6.72	2.81	4.23	6.56

Method	NUS-WIDE (193K)						
Method	16 bits	32 bits	64 bits	96 bits			
SDH	25.13	77.28	262.03	680.86			
FSDH	17.91	19.14	20.42	26.90			
LFH	16.45	19.96	28.17	37.35			
COSDISH	14.06	54.22	227.01	512.14			
FSSH_os	9.78	10.35	11.98	14.61			
FSSH_ts	13.71	14.09	15.51	15.53			

- The numbers of training images on CIFAR-10 and MNIST are 59,000 and 69,000, respectively.
- Only 2,000 samples are used for training KSH and TSH due to their large complexity.

FSSH_deep is one two-step variant of FSSH:

- 1st STEP: We use <u>features which are extracted by an off</u>-<u>the-shelf deep network</u>.
- 2nd STEP: We adopt <u>CNN-F</u> network as the hash function. (We train the network by solving a multi-label classi cation problem.)
- Compared deep hashing methods include DSRH, DSCH, DRSCH, DPSH, VDSH, DTSH, and DSDH.

FSSH_deep - MAP results

Method	CIFAR-10					
Methou	24 bits	32 bits	48 bits			
DSRH	0.611	0.617	618			
DSCH	0.613	0.617	0.620			
DRSCH	0.622	0.629	0.631			
DPSH	0.781	0.795	0.807			
VDSH	0.848	0.844	0.845			
DTSH	0.923	0.925	0.926			
DSDH	0.940	0.939	0.939			
FSSH_deep	0.878	0.862	0.883			

- All baselines are <u>end-to-end</u> methods.
- FSSH_deep is **not** <u>end-to-end</u>.
- For a fair comparison, the results of baselines are directly reported from previous works.

Conclusion & Future Work

- MIMA
- We propose a novel supervised hashing method named Fast Scalable Supervised Hashing.
 - FSSH can be trained extremely <u>fast</u>.
 - FSSH is <u>scalable</u> to large-scale data.
 - FSSH generates <u>precise</u> hash codes.
- Three variants of FSSH are further proposed:
 - two shallow variants, i.e., FSSH_os and FSSH_ts
 - one deep variant, i.e., FSSH_deep

Conclusion & Future Work

Extensive experiments are conducted on three benchmark datasets. Experimental results shows the superiority of FSSH.

In future, we plan to realize our proposed FSSH method in an <u>end-to-end</u> deep version to boost its performance.

MIMA Group

Thank You!

Any Question?

Codes are available at: https://lcbwlx.wixsite.com/fssh

MIMA @ SDU

School of Software, Shandong University