

Interpretable Fashion Matching using Rich Attributes

Xun Yang¹, Xiangnan He², Xiang Wang¹, Yunshan Ma¹, Fuli Feng¹, Meng Wang³, Tat-Seng Chua¹

¹ National University of Singapore
 ² University of Science and Technology of China
 ³ Hefei University of Technology

• 3 trillion USD, 2% of the world's GDP in FY 2018

* Statistics are from the State of Fashion 2018, BOF, McKinsey & Company

© Copyright NExT++. All Right Reserved.

Visual Fashion Computing

Fashion Matching

Modeling Fashion Compatibility

□ To determine whether a set of fashion items from different categories go well together

Complete the Look Scene-based Complementary Recommendation

Complete the Look

[kang et al. CVPR 2019]

- Core: <u>Modeling Fashion</u> Compatibility
- Fundamental technique to a variety of industry applications

© Copyright NExT++. All Right Reserved.

Existing Methods

Modeling Visual Compatibility

Traditional works on fashion compatibility primarily leverage <u>visual</u> <u>appearance</u> of items to model <u>visual compatibility</u> and perform matching in a latent visual space

• Similarity/metric Learning [Veit et al. ICCV 2015; Song et al. MM 2017; Lin et al. TKDE 2019]

Weaknesses:

- Improper compatibility transferring
- <u>Lack of interpretability</u>

Encourage compatible items to be much closer to each other than incompatible items in a latent space

Motivation

- □ The <u>rich attributes</u> associated with fashion items, which describe the <u>semantics</u> of items in a <u>human-interpretable</u> way, have been largely ignored.
- Our idea: injecting interpretability into the compatibility modeling of fashion items by leveraging rich attributes

Problem Formulation Interpretable Fashion Matching

□ Interpretable fashion matching

- Input: A corpus of fashion items with rich attributes and binary compatibility relationships $\{X, A, Y\}$
- Output: (1) A matching function $f: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, mapping a pair of items (x_i, x_j) to a compatibility score

(2) A set of attribute crosses (matching patterns) that reveals which attributes in x_i and x_j dominate this matching

?

Sandals

Red

Casual

Dating

Polyester

High-heels

Midi-dresses Short-sleeve V-neckline Summer Floral Viscose Natural-white Casual Beach

- ✓ <u>Compatibility score</u>: 0.8
- ✓ Attribute crosses_:
 - [Fullbody: Category=Midi-dresses]&[Footwear: Category=Sandals]
 - [Fullbody: Style=Casual]&[Footwear: Style=Casual]
 - [Fullbody: Pattern=Floral]&[Footwear: Color=Red]

•••••

□ Research questions:

- How to derive such self-interpretable attribute crosses from data?
- How to learn the semantic representation of attribute crosses?
- How to unify the strengths of attribute crosses and item images?

Attribute-based Interpretable Compatibility (AIC)

Attribute-baseded Interpretable Compatibility (AIC)

- Tree-based Decision Rule Extraction Module
- Attribute-based Decision Rule Embedding Module
- Visual-Rule Joint learning Module

- Contributions:
 - <u>Explicitly discover readable matching patterns from data</u>
 - Capture the semantics of rich attributes
 - o <u>Self-interpretable</u>

Attribute-based Interpretable Compatibility (AIC)

Tree-based Decision Rule Extraction

Decision Tree

- A path from the root to a leaf -> a <u>decision rule</u> which can be seen as a higher-order <u>attribute</u> <u>cross</u>
- Each leaf node corresponds to a decision rule, indexed by a unique rule ID

Boosted Tree model (Pretrained, GBDT)

- An ensemble of *T* decision trees
- Input: One-hot encoded categorical attributes of two items
- Output: *T* decision rules

 $r_{ij}^t: a_1^t \xrightarrow{s_1^t} a_2^t \xrightarrow{s_2^t} \cdots a_Z^t \xrightarrow{s_Z^t}$

Attribute-based Interpretable Compatibility (AIC)

Attribute-based Decision Rule Embedding

Existing solution [Wang et al. WWW 2018]: learn the ID embedding of each rule

- Weak Representation: Disregarding the semantics of each rule and cannot capture the semantic correlation between similar rules explicitly
- Poor Scalability: Its parameter size is directly proportional to the size of decision rules, easily leading to overfitting when the tree number is large

[Top: Material=Wool]&[Bottom: Material=Wool]&[Top: Category≠Blazers]

 $\ensuremath{\mathbb{C}}$ Copyright NExT++. All Right Reserved.

Attribute-based Interpretable Compatibility (AIC)

Attribute-based Decision Rule Embedding

Existing solution[Wang et al. WWW 2018]: learn the ID embedding of each rule (embedding look up operation)

- Weak Representation: Ignoring semantics of each rule (treat each rule independently, cannot explicitly capture the semantic correlation between similar rules)
- Poor Scalability: Its parameter size is directly proportional to the size of decision rules, leading to overfitting when the tree number is large
- Our Solution: learn <u>attribute-based rule embedding</u> by linearly modeling the attribute interactions into semantics-preserving rule embedding
 - Lower parameter size: Its parameter size is linear with the number of attributes
 - Fine-grained interpretability (e.g., second-order attribute crosses)

NEXT++

Attribute-based Interpretable Compatibility (AIC)

Visual-Rule Joint Modeling

- Learning visual embeddings of item images (pre-trained CNN)
- Reweighting decision rules with attention network

Experiment-Dataset

Attribute-based Interpretable Compatibility (AIC)

ata	<u>ata Source (Lookastic)</u>									
LOOKA	STIC		Q Sea	arch						Guest 🗸
Y WARDROBE	LOOKS SEARCH	INSPIRATION	SUGGESTIONS	FAVORITES	TRENDS	BRANDS	CELEBRITIES	OCCASIONS	CONTACT US	US (English) 🕶
men's Fashion	> Fashion for 20 ye	ear old women								
			Sance This sr to how	lals, Blac mart pairing	ck Lea of a navy	ther To	te Bag at and a whi	te shift dress	takes on differe	eather Heeled ent nuances according with black leather
		E	Na	vy Check Coa	at	White SI	hift Dress		her Heeled Idals	Black Leather Tote Bag
	V.	A. Barr	W	ell-m	atcł	ned	Outfit		n stree	t style

Data Source	(Lookastic)

Navy Check Coat White Shift Dress Black Leather Heeled Sandals Black Leather Tote Bag	 Coats Trenchcoats Pea Coats Duffle Coats Parkas 	 Tobacco Violet White White and black 	00000
Well-matched Outfits from street style images described by multiple item attributes			

CATEGORY

O Shirts O T-shirts O Sweaters O Blazers Dresses Outerwear

- Тор

Enter a category

COLOR

 Light blue 	Camouflage	O Canvas
O Mint	Check	O Crochet
 Multi colored 	Chevron	O Elastic
O Mustard	C Embellished	O Fur
Navy	 Embroidered 	O Leather
Olive	 Floral 	O Mesh
O Pink	O Fringe	O Satin
○ Red	O Gingham	O Sequin
 Tobacco 	 Herringbone 	O Silk
 Violet 	O Horizontal striped	O Suede
 White 	 Houndstooth 	O Velvet
O White and black	O Knit	

PATTERN

We also extract more item attributes using Visenze fashion tagging tool

https://www.visenze.com/automated-product-tagging

MATERIAL

Experiment-Baselines

Attribute-based Interpretable Compatibility (AIC)

Baselines

- **Siamese Nets**[31] (**SiaNet**). It measures the visual compatibility using ℓ_2 -normalized Euclidean distance. (**Image only**)
- **BPR-DAE**[29]. This work models the pairwise visual compatibility as the inner-product of item embeddings. (**Image only**)
- **TransNFCM**[34]. It is a state-of-the-art fashion matching method that uses category-level complementary relationships to refine the item-item compatibility. (**Image + coarse category**)
- **VBPR**[13]. It is a strong baseline for visually-aware user-item interaction modeling. It fuses visual information and ID embedding to enhance the item representation. (**Image + ID**)

- Neural Factorization Machines[23] (NFM). It is a state-of-theart embedding-based learning method that implicitly models higher-order feature interaction in a nonlinear way.We implement it by encoding all the item attributes and item images with embedding vectors. (Image + attributes)

- **TEM**[32]. It is a state-of-the-art embedding-based learning method that combines the strength of traditional embedding-based methods and the tree-based method, which learns the ID-based embedding to represent rule. (**Image + attributes**)

☐ <u>Metrics:</u>

- Mean Reciprocal Rank (MRR)
- Hit ratio at rank K (hit@K) (K=5, 10)
- Normalized Discounted Cumulative Gain at rank (ndcg@K) (K=5, 10)

State-of-the-art methods

Experiment-Results

Attribute-based Interpretable Compatibility (AIC)

Overall Comparison

Table 1: Overall Performance Comparison (%) with baseline methods. * and ** denote the statistical significance for $p_{value} < 0.05$ and $p_{value} < 0.01$, respectively, compared to the best baseline.

	Dataset	Lookastic-Men					Dataset Lookastic-Women							
	Methods	MRR	hit@5	hit@10	ndcg@5	ndcg@10	Methods	MRR	hit@5	hit@10	ndcg@5	ndcg@10		
	BPR-DAE	23.35	30.97	30.90	23.28	26.17	BPR-DAE	23.69	32.97	42.25	24.02	27.02		
1	Siamese	23.05	31.37	40.92	23.04	26.12	Siamese	24.00	33.71	44.23	24.25	27.65	Wit	hout
	TransNFCM	26.14	34.94	44.27	26.28	29.30	TransNFCM	29.88	41.01	51.08	30.70	33.96	! attri	butes
	<u>VBPR</u>	_28.32	36.83	45.40	<u>28.57</u>	<u>31.34</u>	VBPR	_29.46_	39.32	48.33	<u> </u>	32.98		
- i -	NFM	28.92	37.49	46.37	29.16	32.02	NFM	30.49	40.90	50.60	31.15	34.29	Ι \ Λ /	ith
	TEM	29.10	37.88	46.97	29.33	32.27	TEM	31.63	42.35	52.33	32.32	35.55		
l i l	AIC	30.74**	39.51**	48.23**	31.06**	33.88**	AIC	33.19**	43.83*	53.09**	33.94*	37.01**	attri	butes
	Rel. Impro.	5.6%	4.3%	2.6%	5.8%	4.9%	Rel. Impro.	4.9%	3.4%	1.4%	5.0%	4%		
Ours Exploiting rich attributes facilitates fashion matching AIC achieves the best performance Injecting semantics into the embeddings of decision rule brings higher accuracy (AIC vs. TEM) 										┮⋺₹				

Experiment-Results

Attribute-based Interpretable Compatibility (AIC)

Effects of Attribute-based Decision Rule Embedding

Table 2: Comparison (hit@5, ndcg@5, %) of the attributebased (AIC (Attri.)) and ID-based (AIC (ID)) rule embeddings.

TreeNum	Dataset	Looka	stic-Men	Lookastic-Women		
meenum	Methods	hit@5	ndcg@5	hit@5	ndcg@5	
T=1	AIC (Attri.)	37.16	28.92	42.05	32.22	
1=1	AIC (ID)	35.99	27.60	41.05	31.27	
T=5	AIC (Attri.)	39.34	30.88	43.66	33.80	
1-5	AIC (ID)	39.05	30.59	43.57	33.69	
T=10	AIC (Attri.)	39.51	31.06	43.83	33.94	
1=10	AIC (ID)	39.25	30.83	43.46	33.78	
T=50	AIC (Attri.)	39.32	30.77	43.81	33.97	
1-30	AIC (ID)	38.85	30.33	42.85	33.16	
T=100	AIC (Attri.)	39.45	30.90	43.87	34.06	
1-100	AIC (ID)	37.88	29.55	41.99	32.38	

Figure 5: Comparison (MRR (%)) of the attribute-based (AIC (Attri.)) and ID-based (AIC (ID)) rule embeddings.

- AIC (Attri.) consistently outperforms AIC (ID) (Attributes vs. ID)
- AIC (Attri.) performs comparable to AIC (ID), when the tree number is 5 or 10
- AIC (ID) suffers from <u>overfitting</u> when the tree number is large

Experiment-Results

Attribute-based Interpretable Compatibility (AIC)

Effects of Attention Network

Effects of Visual-Rule Joint Modeling

 $f(\mathbf{x}_i, \mathbf{x}_j, \mathcal{A}_{ij}) = \mathbf{h}_1^T (\mathbf{x}_i \otimes \mathbf{x}_j) + \mathbf{h}_2^T \mathbf{r}_{ij} + \mathbf{h}_3^T ((\mathbf{x}_i + \mathbf{x}_j) \otimes \mathbf{r}_{ij})$

	Visual		Rule	Visual-	Rule		
Dataset	Lookastic-Men						
Methods	MRR	hit@5	hit@10	ndcg@5	ndcg@10		
AIC (Rule only)	18.90	25.17	34.11	18.37	21.25		
AIC (VRI only)	29.22	38.03	46.98	29.49	32.38		
AIC (without VRI)	30.38	39.13	47.92	30.68	33.52		
AIC (with VRI)	30.74	39.51	48.23	31.06	33.88		
Dataset	Lookastic-Women						
Methods	MRR	hit@5	hit@10	ndcg@5	ndcg@10		
AIC (Rule only)	23.40	30.97	39.82	23.30	26.16		
AIC (VRI only)	33.12	43.64	53.28	33.83	36.95		
AIC (without VRI)	32.73	43.19	52.62	33.43	36.49		
AIC (with VRI)	33.18	43.83	53.09	33.94	37.00		

- The attention mechanism consistently outperform <u>max-pooling</u> and <u>average-pooling</u>
- Some derived rules are invalid, thus degrading performance by simply aggregating the rule embedding

- If only using <u>Rule</u> (h2) term, AIC obtains poor accuracy
- If only using <u>VRI</u> (h3) term, AIC achieves comparable performance to (h1+h3)
- (h1+h2+h3) yields the best performance

17

Experiment

Attribute-based Interpretable Compatibility (AIC)

Conclusion

Deres Pros

- Injecting <u>semantics</u> into decision rules embedding based on rich attributes
- Modeling fashion compatibility in a <u>self-interpretable</u> framework

Cons

Hard to evaluate the **quality** of the derived matching patterns (data-driven)

G Future

- Jointly learning decision trees (attributes) and item embedding in a reinforcement learning (RL) manner (<u>To improve generalization ability</u>) or use fashion domain knowledge to guide the tree learning
- Extend to <u>personalized fashion recommendation</u> by modeling user attributes

THANK YOU

NExT research is supported by the National Research Foundation, Prime Minister's Office, Singapore under its IRC@SG Funding Initiative.

© Copyright NExT++. All Right Reserved.

References

- [1] Improving Outfit Recommendation with Co-supervision of Fashion Generation. Yujie Lin, Pengjie Ren, et al. WWW 2019
- [2] Enhancing Fashion Recommendation with Visual Compatibility Relationship. Ruiping Yin, Kan Li, et al. WWW 2019
- [3] Explainable Outfit Recommendation with Joint Outfit Matching and Comment Generation. Yujie Lin. IEEE TKDE 2019
- [4] Complete the Look: Scene-based Complementary Product Recommendation. WC Kang, Jure Leskovec, et al. CVPR 2019
- [5] Context-Aware Visual Compatibility Prediction. G Cucurull et al. CVPR 2019
- [6] Creating Capsule Wardrobes from Fashion Images. Wei-Lin Hsiao, Kristen Grauman. CVPR 2018
- [7] Learning Fashion Compatibility with Bidirectional LSTMs. Han et al. ACM MM 2017.
- [8] Learning Type-Aware Embeddings for Fashion Compatibility. MI Vasileva et al. ECCV 2018
- [9] Compatibility Family Learning for Item Recommendation and Generation. YS Shih et al. AAAI 2018.
- [10] Interpretable Partitioned Embedding for Customized Fashion Outfit Composition. Feng et al. ICMR 2018

