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Modern Recommendation Paradigm

Interaction Modeling

User Profile
• ID, Age, Gender, …

Item Profile
• ID, Attributes …

Social Network
•User-User Relations

Knowledge Graph
• Item Knowledge

 𝑦𝑢𝑖

User Representation Learning Item Representation Learning

Pre-existing Features For An Interaction Instance

Representation Learning For An Interaction Instance

A Predictive Model

Information Isolated Island Effect:

• Model each instance individually
• While overlooking relations among instances
• Might result in suboptimal performance:

• Making an instance’s representation dependent only on its own
features

• Making interactions suffer from sparse issues

Limited Representation Ability

Suboptimal Model Capacity



One Solution:
Reorganizing Data into Graphs!

The data is more closely connected than we might think!

User-Item Interactions User/Item Profiles Knowledge Graph
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Limited Representation Ability

Suboptimal Model Capacity

Information Propagation along with the connections

High-order connectivity complementary to user-item
interactions



Collaborative Filtering (CF)

• Collaborative Filtering (CF) is the most well-known
technique for recommendation.
• Homophily assumption: a user preference can be predicted

from his/her similar users.

• Collaborative Signals -> Behavioral Similarity of users
• if 𝑢1 and 𝑢3 have interacted with the same items {𝑖1, 𝑖3}, 𝑢1

is likely to have similar preferences on other items {𝑖4}.

𝒖𝟏 Alice

𝒖𝟐 Annie

𝒖𝟑 Bob

𝒊𝟏 Shape of You

𝒊𝟐 I See Fire

𝒊𝟑 Castle on the Hill

𝒊𝟒 Skin

𝒊𝟓 Lose Yourself



Revisiting CF via
High-order Connectivity

High-order Connectivity from User-item Bipartite Graphs

Why 𝑢1 may like 𝑖4?

• 𝑢1 ← 𝑖2 ← 𝑢2 ← 𝑖4

• 𝑢1 ← 𝑖3 ← 𝑢3 ← 𝑖4

• Definition: the paths that reach 𝑢1 from any node with the path
length 𝑙 larger than 1.

• A natural way to encode collaborative signals

Existing CF methods (e.g., MF, FISM, AutoRec) don’t model high-
order connectivity explicitly.
- Embedding function only considers descriptive features (e.g., ID, attributes)
- User-item interactions are not considered

Our contribution: CF modeling with high-order connectivity via GNN.



Neural Graph Collaborative Filtering

Embedding Propagation, inspired by GNNs

• Propagate embeddings recursively on the graph

• Construct information flows in the embedding space

 First-order Propagation
 Message Construction: generate message from one neighbor

 Message Aggregation: update ego node’s representation by aggregating
message from all neighbors

message passed from 𝑖 to 𝑢

• message dependent on the affinity,
distinct from GCN, GraphSage, etc.

• Pass more information to similar nodes

all neighbors of 𝑢self-connections

discount factor



Neural Graph Collaborative Filtering

 High-order Propagation
 We stack more embedding propagation layers to explore the high-order

connectivity information.

representation of 𝑢 at the 𝑙-th layer

• The collaborative signal
like u1 ← i2 ← u2 ← i4
can be captured in the
embedding propagation
process.

• Collaborative signal can
be injected into the
representation learning
process.



Overall Framework

The representations at different 
layers
• emphasize the messages 

passed over different 
connections

• have different contributions 
in reflecting user preference



Experiments

Datasets

• Gowalla, Amazon-Book, Yelp2018

Evaluation Metrics

• recall@K, ndcg@K

Baselines
Data for Embedding
Function

Connectivity Aggregation Type in
GNNs

Jump Knowledge

MF ID - - -

NeuFM ID - - -

CMN Personal History First-order - -

HOP-Rec Multi-hop Neighbors High-order - -

PinSage Collaborative Signals Second-order Concatenation -

GC-MC Collaborative Signals First-order Sum -

NGCF Collaborative Signals High-order Sum + Element-wise
Product

Jump Knowledge



Overall Performance Comparison (1)

• NGCF consistently yields the best performance on all the datasets.

• This verifies the importance of capturing collaborative signal in embedding 
function.
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Overall Performance Comparison (2)

user groups with different group sparsity levels

• NGCF and HOP-Rec consistently outperform all other baselines on most user 
groups.

• Exploiting high-order connectivity facilitates the representation learning for 
inactive users.

• It might be promising to solve the sparsity issue in recommender systems



Effect of High-order Connectivity (1)

the number of embedding propagation layers {1,2,3,4}

• Increasing the depth of NGCF substantially enhances the recommendation 
cases.

• User similarity and collaborative signal are carried by the second- and third-
order connectivity, respectively.
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Effect of High-order Connectivity (2)

• The points with the same colors (i.e., the items consumed by the same users) 
tend to form the clusters.

• The connectivities of users and items are well reflected in the embedding 
space, that is, they are embedded into the near part of the space.



Conclusion & Future Work

Take-home messages
• Modeling high-order connectivity from user-item interactions is

important for CF.
• We proposed a GNN model to do this in an end-to-end way.

Future Work
• Incorporating knowledge graph into NGCF [Wang et al. KDD’19]
• Automating NGCF, e.g., negative sampling, hyper-parameters
• Keep Human-in-the-loop: conversational recommendation
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Neural Graph Collaborative Filtering, SIGIR2019;
http://staff.ustc.edu.cn/~hexn/papers/sigir19-NGCF.pdf

http://staff.ustc.edu.cn/~hexn/papers/sigir19-NGCF.pdf

