

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, Tat-Seng Chua

22 July 2019

© Copyright NExT++. All Right Reserved

Modern Recommendation Paradigm

Information Isolated Island Effect:

- Model each instance individually
- While overlooking **relations** among instances
- Might result in **suboptimal performance**:
 - features
 - Making inte

Making an i Limited Representation Ability

t only on its own

Suboptimal Model Capacity

The data is more **closely connected** than we might think!

Limited Representation Ability

Information Propagation along with the connections

Suboptimal Model Capacity

High-order connectivity complementary to user-item interactions

▶ Collaborative Filtering (CF)

- **Collaborative Filtering** (CF) is the most well-known technique for recommendation.
 - Homophily assumption: a user preference can be predicted from his/her similar users.
- Collaborative Signals -> Behavioral Similarity of users
 - if u_1 and u_3 have interacted with the same items $\{i_1, i_3\}, u_1$ is likely to have similar preferences on other items $\{i_4\}$.

High-order Connectivity from User-item Bipartite Graphs

SIGIR 2019

Why u_1 may like i_4 ?

Existing CF methods (e.g., MF, FISM, AutoRec) don't model highorder connectivity explicitly.

ĺ1

 i_2

- Embedding function only considers descriptive features (e.g., ID, attributes)

 u_1

User-item interactions are not considered

Our contribution: CF modeling with high-order connectivity via GNN.

- Definition: the paths that reach u_1 from any node with the path length l larger than 1.
- A natural way to encode collaborative signals

▶ ■ T++ Neural Graph Collaborative Filtering

Embedding Propagation, inspired by GNNs

- Propagate embeddings recursively on the graph
- Construct information flows in the embedding space
- First-order Propagation
 - Message Construction: generate message from one neighbor

Message Aggregation: update ego node's representation by aggregating message from all neighbors

$$\mathbf{e}_{u}^{(1)} = \text{LeakyReLU}\left(\mathbf{m}_{u \leftarrow u} + \sum_{i \in \mathcal{N}_{u}} \mathbf{m}_{u \leftarrow i}\right)$$

self-connections all neighbors of u

NEXT ++ Neural Graph Collaborative Filteri

High-order Propagation

We stack more embedding propagation layers to explore the high-order connectivity information.

$$\frac{\mathbf{e}_{u}^{(l)}}{\mathbf{e}_{u}^{(l)}} = \text{LeakyReLU}\Big(\mathbf{m}_{u \leftarrow u}^{(l)} + \sum_{i \in \mathcal{N}_{u}} \mathbf{m}_{u \leftarrow i}^{(l)}\Big),$$

representation of u at the l-th layer

- The collaborative signal like u1 ← i2 ← u2 ← i4 can be captured in the embedding propagation process.
- Collaborative signal can be injected into the representation learning process.

Next ++ Overall Framework

$$\mathbf{e}_{u}^{*} = \mathbf{e}_{u}^{(0)} \| \cdots \| \mathbf{e}_{u}^{(L)}$$
$$\mathbf{e}_{i}^{*} = \mathbf{e}_{i}^{(0)} \| \cdots \| \mathbf{e}_{i}^{(L)}$$
$$\hat{y}_{\text{NGCF}}(u, i) = \mathbf{e}_{u}^{* \top} \mathbf{e}_{i}^{*}$$

SIGIR

19

The representations at different layers

- emphasize the messages passed over different connections
- have different contributions in reflecting user preference

Datasets

• Gowalla, Amazon-Book, Yelp2018

Evaluation Metrics

recall@K, ndcg@K

Baselines

	Data for Embedding Function	Connectivity	Aggregation Type in GNNs	Jump Knowledge
MF	ID	-	-	-
NeuFM	ID	-	-	-
CMN	Personal History	First-order	-	-
HOP-Rec	Multi-hop Neighbors	High-order	-	-
PinSage	Collaborative Signals	Second-order	Concatenation	-
GC-MC	Collaborative Signals	First-order	Sum	-
NGCF	Collaborative Signals	High-order	Sum + Element-wise Product	Jump Knowledge

NEXT++ Overall Performance Comparison (1)

- NGCF consistently yields the best performance on all the datasets.
- This verifies the importance of capturing collaborative signal in embedding function.

NEXT ++ Overall Performance Comparison (2)

- NGCF and HOP-Rec consistently outperform all other baselines on most user groups.
- Exploiting high-order connectivity facilitates the representation learning for inactive users.
- It might be promising to solve the sparsity issue in recommender systems

▶ Effect of High-order Connectivity (1)

SIG

- Increasing the depth of NGCF substantially enhances the recommendation cases.
- User similarity and collaborative signal are carried by the second- and thirdorder connectivity, respectively.

▶ Effect of High-order Connectivity (2)

SIGIR 2019

- The points with the same colors (i.e., the items consumed by the same users) tend to form the clusters.
- The connectivities of users and items are well reflected in the embedding space, that is, they are embedded into the near part of the space.

Image: Conclusion & Future Work

Take-home messages

- Modeling high-order connectivity from user-item interactions is important for CF.
- We proposed a GNN model to do this in an end-to-end way.

Future Work

- Incorporating knowledge graph into NGCF [Wang et al. KDD'19]
- Automating NGCF, e.g., negative sampling, hyper-parameters
- Keep Human-in-the-loop: conversational recommendation

THANK YOU!

Neural Graph Collaborative Filtering, SIGIR2019; http://staff.ustc.edu.cn/~hexn/papers/sigir19-NGCF.pdf

