LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation

Xiangnan He
Kuan Deng
Yongdong Zhang

Xiang Wang
Yan Li
Meng Wang
Outline

- Background: NGCF
 - SIGIR 2019. Neural Graph Collaborative Filtering

- Model: LightGCN

- Fast Loss for LightGCN

- Conclusion & Future Work
Representation Learning in CF

Model Personal History as User Feature
- Integrate embeddings of historical items as user embeddings
- Or use autoencoders to generate user behaviors

Model Single User-Item Pairs
- Project each user/item ID into an embedding vector

Model Holistic Interaction Graph
- Apply embedding smooth constraints on connected nodes
- Perform embedding propagation via graph neural networks

Models:
- Hop-Rec [2018]
- GRMF [2015]
- GC-MC [2017]
- NGCF [2019]
- LightGCN [2020]
- MF [2009]
- BPRMF [2009]
- NCF [2017]
- CML [2017], LRML [2018]
- SVD++ [2008]
- FISM [2013]
- NAIS [2018], ...
- ACF [2017]
- Mult-VAE [2018]
- AutoRec [2015]
- CDAE [2016]

- GRMF [2015]
- GC-MC [2017]
- NGCF [2019]
- LightGCN [2020]
Recap: NGCF [Wang et al, SIGIR’19]

High-level Idea:

• Organize historical interactions as a user-item bipartite graph
• Capture CF signal via high-order connectivity
 • Definition: the paths that reach u_1 from any node with the path length l larger than 1.

• E.g., why u_1 may like i_4?
 • $u_1 \leftarrow i_2 \leftarrow u_2 \leftarrow i_4$
 • $u_1 \leftarrow i_3 \leftarrow u_3 \leftarrow i_4$

NGCF’s contribution: explicitly modeling high-order connectivity in representation space via GNN.
NGCF: First-order Connectivity Modeling

Embedding Propagation, inspired by GNNs

- Propagate embeddings recursively on the graph → high-order connectivity
- Construct information flows in the embedding space → embed CF signal

➢ First-order Propagation
 ➢ Message Construction: generate message from one neighbor

message passed from \(i \) to \(u \)
\[
\mathbf{m}_{u \leftarrow i} = \frac{1}{\sqrt{|\mathcal{N}_u| |\mathcal{N}_i|}} \left(W_1 \mathbf{e}_i + W_2 (\mathbf{e}_i \odot \mathbf{e}_u) \right)
\]

- Discount factor
- Make message dependent on the affinity,
- Pass more information to similar nodes

➢ Message Aggregation: update ego node’s representation by aggregating message from all neighbors

\[
e_u^{(1)} = \text{LeakyReLU} \left(\mathbf{m}_{u \leftarrow u} + \sum_{i \in \mathcal{N}_u} \mathbf{m}_{u \leftarrow i} \right)
\]

self-connections all neighbors of \(u \)
NGCF: Higher-order Connectivity Modeling

- Stack more embedding propagation layers to explore high-order connectivity

$$ e_u^{(l)} = \text{LeakyReLU} \left(m_u^{(l)} + \sum_{i \in N_u} m_i^{(l)} \right), $$

representation of u at the l-th layer

- The collaborative signal like $u_1 \leftarrow i_2 \leftarrow u_2 \leftarrow i_4$ can be captured in the embedding propagation process.

- **Final embedding:** concatenate the embedding from all layers
Our Argument

- Designs of NGCF are rather heavy and burdensome
 - Many operations are directly inherited from GCN without justification.

<table>
<thead>
<tr>
<th></th>
<th>GNNs</th>
<th>NGCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original task</td>
<td>Node classification</td>
<td>Collaborative filtering</td>
</tr>
<tr>
<td>Input data</td>
<td>Rich node features</td>
<td>Only node ID</td>
</tr>
<tr>
<td></td>
<td>• Attributes, text, image data</td>
<td>• One-hot encoding</td>
</tr>
<tr>
<td>Feature</td>
<td>Distill useful information</td>
<td>Generate ID embeddings</td>
</tr>
<tr>
<td>transformation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighborhood</td>
<td>Pass messages from neighbors</td>
<td>Pass messages from neighbors to the egos</td>
</tr>
<tr>
<td>aggregation</td>
<td>to the egos</td>
<td></td>
</tr>
<tr>
<td>Nonlinear</td>
<td>Enhance representation ability</td>
<td>Negatively increases the difficulty for model training</td>
</tr>
</tbody>
</table>
Empirical Evidence on Training Difficulty

- Removing feature transformation (NGCF-f) \(\rightarrow\) decrease training loss
- Removing nonlinear activation (NGCF-n) \(\rightarrow\) increase training loss
- But, removing nonlinear activation & feature transformation (NGCF-fn) \(\rightarrow\) significantly decrease training loss
Empirical Evidence on Training Difficulty

- Removing feature transformation (NGCF-f) \rightarrow improve testing accuracy
- Removing nonlinear activation (NGCF-n) \rightarrow hurt testing accuracy
- Removing nonlinear activation & feature transformation (NGCF-fn) \rightarrow significantly improve testing accuracy
Light Graph Convolution

NGCF

- Graph Convolution Layer
 \[e_u^{(l)} = \text{LeakyReLU}(m_u^{(l)} + \sum_{i \in N_u} m_{u \leftarrow i}^{(l)}) \]
- Layer Combination
 \[e_u^* = e_u^{(0)} \parallel \cdots \parallel e_u^{(L)} \]
- Matrix Form
 \[E^{(l)} = \text{LeakyReLU}((\mathcal{L} + D)E^{(l-1)} + \mathcal{L}E^{(l-1)} \odot E^{(l-1)}) \]

LightGCN

- Light Graph Convolution Layer
 \[e_u^{(k+1)} = \sum_{i \in N_u} \frac{1}{\sqrt{|N_u|} \sqrt{|N_i|}} e_i^{(k)} \]
- Layer Combination
 \[e_u = \sum_{k=0}^{K} \alpha_k e_u^{(k)} \]
- Matrix Form
 \[E^{(k+1)} = (D^{-\frac{1}{2}} AD^{-\frac{1}{2}})E^{(k)} \]

Only simple weighted sum aggregator is remained
- No feature transformation
- No nonlinear activation
- No self connection

He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020
Overall Framework

Light Graph Convolution (LGC)

\[E = \alpha_0 E^{(0)} + \alpha_1 E^{(1)} + \alpha_2 E^{(2)} + \ldots + \alpha_K E^{(K)} \]

\[= \alpha_0 E^{(0)} + \alpha_1 \tilde{A} E^{(0)} + \alpha_2 \tilde{A}^2 E^{(0)} + \ldots + \alpha_K \tilde{A}^K E^{(0)} \]

importance of the k-th layer embedding in constituting the final embedding

He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020
Model Analysis

• Relation with \textbf{SGCN} [Wu et al. ICML 2019]:
 • By doing layer combination, LightGCN subsumes the effect of self-connection \(\Rightarrow\) \textbf{no need to add self-connection in adjacency matrix}.

\[
E^{(K)} = \binom{K}{0}E^{(0)} + \binom{K}{1}AE^{(0)} + \binom{K}{2}A^2E^{(0)} + \ldots + \binom{K}{K}A^KE^{(0)}.
\]

• Relation with \textbf{APPNP} [Klicpera et al. ICLR 2019]:
 • By setting \(\alpha_k\) properly, LightGCN can recover APPNP \(\Rightarrow\) \textbf{use a large} \(K\) \textbf{for long-range modeling with controllable oversmoothing}.

\[
E^{(K)} = \underbrace{\beta E^{(0)}}_{\text{base}} + \underbrace{\beta(1 - \beta)AE^{(0)}}_{\text{first order}} + \underbrace{\beta(1 - \beta)^2A^2E^{(0)}}_{\text{second order}} + \ldots + \underbrace{(1 - \beta)^K\tilde{A}^KE^{(0)}}_{\text{higher order}}.
\]
Experiment Settings

Datasets:

Gowalla, Yelp2018, Amazon-Book

Evaluation Metrics:

recall@20, ndcg@20

Dataset partition: randomly select 80% data for training set, and 20% data for testing set.

Table 2: Statistics of the experimented data.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>User #</th>
<th>Item #</th>
<th>Interaction #</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gowalla</td>
<td>29,858</td>
<td>40,981</td>
<td>1,027,370</td>
<td>0.00084</td>
</tr>
<tr>
<td>Yelp2018</td>
<td>31,668</td>
<td>38,048</td>
<td>1,561,406</td>
<td>0.00130</td>
</tr>
<tr>
<td>Amazon-Book</td>
<td>52,643</td>
<td>91,599</td>
<td>2,984,108</td>
<td>0.00062</td>
</tr>
</tbody>
</table>
Compared Methods

• LightGCN:
 • BPR optimizer, Uniform layer combination weights
 • Tuning L2 regularizer coefficient only.
• NGCF[Wang et al. SIGIR 2019]
 • Using the paper results
• Mult-VAE[Liang et al. WWW 2018]
 • Parameter setting: dropout ratio $\in \{0, 0.2, 0.5\}$, $\beta \in \{0.2, 0.4, 0.6, 0.8\}$
 • Model architecture: $600 \rightarrow 200 \rightarrow 600$
• GRMF[Rao et al. NIPS 2015]: smooth embeddings with Laplacian regularizer
 • Parameter setting: $\lambda_g \in \{1e^{-5}, 1e^{-4}, \ldots, 1e^{-1}\}$
Experiment Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Gowalla</th>
<th>Yelp2018</th>
<th>Amazon-Book</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>recall</td>
<td>ndcg</td>
<td>recall</td>
</tr>
<tr>
<td>Method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGCF</td>
<td>0.1570</td>
<td>0.1327</td>
<td>0.0579</td>
</tr>
<tr>
<td>Mult-VAE</td>
<td>0.1641</td>
<td>0.1335</td>
<td>0.0584</td>
</tr>
<tr>
<td>GRMF</td>
<td>0.1477</td>
<td>0.1205</td>
<td>0.0571</td>
</tr>
<tr>
<td>GRMF-norm</td>
<td>0.1557</td>
<td>0.1261</td>
<td>0.0561</td>
</tr>
<tr>
<td>LightGCN</td>
<td>0.1830</td>
<td>0.1554</td>
<td>0.0649</td>
</tr>
</tbody>
</table>

- LightGCN achieves significant improvements over the state-of-the-art baselines → **outstanding performance**

He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020
Experiment Results

• Performance comparison between NGCF and LightGCN at different layers:

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Gowalla</th>
<th>Yelp2018</th>
<th>Amazon-Book</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer #</td>
<td>Method</td>
<td>recall</td>
<td>ndcg</td>
</tr>
<tr>
<td>1 Layer</td>
<td>NGCF</td>
<td>0.1556</td>
<td>0.1315</td>
</tr>
<tr>
<td></td>
<td>LightGCN</td>
<td>0.1755(+12.79%)</td>
<td>0.1492(+13.46%)</td>
</tr>
<tr>
<td>2 Layers</td>
<td>NGCF</td>
<td>0.1547</td>
<td>0.1307</td>
</tr>
<tr>
<td></td>
<td>LightGCN</td>
<td>0.1777(+14.84%)</td>
<td>0.1524(+16.60%)</td>
</tr>
<tr>
<td>3 Layers</td>
<td>NGCF</td>
<td>0.1569</td>
<td>0.1327</td>
</tr>
<tr>
<td></td>
<td>LightGCN</td>
<td>0.1823(+16.19%)</td>
<td>0.1555(+17.18%)</td>
</tr>
<tr>
<td>4 Layers</td>
<td>NGCF</td>
<td>0.1570</td>
<td>0.1327</td>
</tr>
<tr>
<td></td>
<td>LightGCN</td>
<td>0.1830(+16.56%)</td>
<td>0.1550(+16.80%)</td>
</tr>
</tbody>
</table>

• Training curves of LightGCN and NGCF:
Experiment Results

- **LightGCN - single**: Only use the final layer’s output

- **LightGCN-single** performs better than LightGCN on sparser datasets → further simplified
- It implies that the layer combination weights are important to tune for datasets of different properties => better to learn automatically (future work)

He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020
Embedding Smoothness

- 2-layers Light Graph Convolution:
 \[e_u^{(2)} = \sum_{i \in N_u} \frac{1}{\sqrt{|N_u|} \sqrt{|N_i|}} e_i^{(1)} = \sum_{i \in N_u} \frac{1}{|N_i|} \sum_{v \in N_i} \frac{1}{\sqrt{|N_u|} \sqrt{|N_v|}} e_v^{(0)} \]

- Coefficient of \(e_v^{(0)} \): \(c_{v \rightarrow u} = \frac{1}{\sqrt{|N_u|} \sqrt{|N_v|}} \sum_{i \in N_u \cap N_v} \frac{1}{|N_i|} \).
 \[\rightarrow \text{similarity between user } u \text{ and user } v \]

- Definition of user smoothness of user embeddings:
 \[S_U = \sum_{u=1}^{M} \sum_{v=1}^{M} c_{v \rightarrow u} \left(\frac{e_u}{||e_u||^2} - \frac{e_v}{||e_v||^2} \right)^2, \]

- User and item smoothness between LightGCN-single and MF:

- LightGCN-single has lower smoothness than MF \(\rightarrow \text{ smoother embeddings are more suitable for recommendation} \)

He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020
Fast Loss

Inefficiency of BPR Loss

• Bayesian Personalized Ranking (BPR) is a widely-used pairwise loss to optimize recommender models.

• However, BPR randomly samples user-item interactions to form a mini-batch → failing to fully leverage parallel computing ability of GPU.

• BPR samples the interactions to form a mini-batch, and the data cannot form a well-structured matrix

<table>
<thead>
<tr>
<th></th>
<th>C++ (CPU)</th>
<th>TensorFlow (GPU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>time/epoch</td>
<td>1.1s</td>
<td>55s</td>
</tr>
</tbody>
</table>

• We run BPRMF with amazon-book dataset using C++ on CPU(i9 9000kf) and TensorFlow on GPU(2080Ti)
Fast Loss on LightGCN

\[
\sum \sum c_{ui}(y_{ui} - \hat{y}_{ui})^2
\]

- \(c_{ui} = \alpha, y_{ui} = 1; \) if u and i have interaction
- \(c_{ui} = 1, y_{ui} = 0; \) otherwise

All possible user-item pairs

Mathematical transformations

\[
\sum \sum [(\alpha - 1)\hat{y}_{ui}^2 - 2\alpha \hat{y}_{ui}] + \sum \sum \left(\sum \sum p_{us}p_{ut}(\sum q_{is}q_{it}) \right)
\]

Historical user-item pairs

The s-th term of user embedding \(e_u\)

The s-th entry of item embedding of \(e_i\).

Good Characteristics:

- Can support any model of inner product structure
- Time complexity is \(O(|R|d + |N|d^2)\).
- Linear to the number of observed interactions

He et al. Fast Matrix Factorization for Online Recommendation with Implicit Feedback. SIGIR 2016
Good Characteristics of Fast Loss

1. Distinct from BPR that samples interactions as a batch, Fast Loss samples **rows (users) as a batch**
 - The data of a batch is well-structured.

2. Adv: allow better use of the speed-up of GPU/CPU, and the computation is linear to #observations.

Fast-loss brings 2~3 magnitude speed-up compared with BPR

<table>
<thead>
<tr>
<th></th>
<th>BPR</th>
<th></th>
<th>Fast-loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t</td>
<td>N</td>
<td>T</td>
</tr>
<tr>
<td>Gowalla</td>
<td>65s</td>
<td>840</td>
<td>15.1h</td>
</tr>
<tr>
<td>Yelp2018</td>
<td>115s</td>
<td>520</td>
<td>16.6h</td>
</tr>
<tr>
<td>Amazon-book</td>
<td>435s</td>
<td>340</td>
<td>41.8h</td>
</tr>
</tbody>
</table>

Able to train GNN on 100K users and 10M interactions in single GPU in 1 hour
Recommendation Accuracy

- LightGCN optimized with Fast Loss can achieve comparable performance to that with BPR loss.
 - Which loss is better depends on the data characteristics
 - Fast Loss seems better on long-tail users/items (we are still exploring)

<table>
<thead>
<tr>
<th></th>
<th>BPR</th>
<th>Fast-loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>recall@20</td>
<td>NDCG@20</td>
</tr>
<tr>
<td>Gowalla</td>
<td>0.1823</td>
<td>0.1547</td>
</tr>
<tr>
<td>Yelp2018</td>
<td>0.0640</td>
<td>0.0531</td>
</tr>
<tr>
<td>Amazon-book</td>
<td>0.0416</td>
<td>0.0311</td>
</tr>
<tr>
<td>Amazon-office</td>
<td>0.0822</td>
<td>0.0413</td>
</tr>
<tr>
<td>Amazon-cellphone</td>
<td>0.0520</td>
<td>0.0234</td>
</tr>
</tbody>
</table>

Fast loss are better
Conclusion & Future Work

• Conclusion
 • Feature transformation and nonlinear activation increase the training difficulty and hurt the model accuracy
 • Smoother embeddings are more suitable for recommendation
 • Fast-loss brings comparable performance and great efficiency improvement compared with BPR

• Future work
 • Personalize the layer combination weights α_k
 • Streaming LightGCN for online industrial scenarios
THANK YOU!

Code(Tensorflow): https://github.com/kuandeng/LightGCN
Code(Pytorch): https://github.com/gusye1234/LightGCN-PyTorch