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« Recommendation has been widely applied in online services.
» Clicks are popular to indicate user preference.
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Clickbait Issue

v" Clicks have intrinsic bias and various issues.
v' Users tend to click the items with attractive exposure features.
» Also called attractiveness bias or caption bias.

« Exposure features: available features before clicking, e.g., headline and cover image.
- Content features: available features after clicking, e.g., video.

« Clickbait content: deceptive or misleading exposure features.
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Clickbait Issue

« Itis common that a user is “misled” to click an item by the attractive title/cover.
» Clickbait issue in recommendation: consequently, recommender model will recommend items with
attractive exposure features but disappointing content features frequently.
« Negative effect of clickbait issue:
« It is unfair to the items with high-quality video content.
» The unfairness severely hurts user’s trust and satisfaction on the recommender system.
« Exposure features (e.qg., title/cover) attract users while content features (e.g., video) are disappointing.
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(a) Browsing behaviors of users on Tiktok. (c) Ranking score of items.
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Counterfactual Recommendation (CR)

< Causal Graph £ E Exposure feature
« A causal graph to describe the causal relationships between I Y | T o fectme y
the features and user feedback. ¥ Predition score
« Exposure features and content features are fused into item T U T U
features.

(a) Conventional causal graph (b) The proposed causal graph

* A direct shortcut from exposure features to the prediction
score: an item can be recommended purely because of its

*

. . Yu,i*,e*
attractive title/cover. r
+ Reference situation denotes that the feature influence is null. :
t t u u
% NDE of exposure features on the prediction score (c) Counterfactual world (d) The reference situation

- Estimate the natural direct effect (NDE) in the counterfactual  Figure3: The causal graphs for conventional and counterfac-
) . . 7 . tual recommendations. * denotes the reference values.
world, which imagines what the prediction score would be if
the item had only the exposure features.
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Counterfactual Recommendation (CR) < >~ o o
l y YU,
< CR framework: T —’T T
1) Training: train a recommender to model the causal relations. > v YU, 1)
2) Inference:
a) Estimate NDE of Eon'Y. Yuie=YU=uI=iE=e)
b) TE - NDE for inference. = f(Yu,i» Yue)

< Implementation = Yu,i * 0(Yu,e)
1. Backbone models to implement the causal graph. Z I(Yuie Yui) + ax1(Yye, Vi), 0
2. Two recommender models: one for Y (U,I), another for Y(U,E).  (ui%,,)eD (10)

3. Afusion function f(-) to learn the scoring function:
Y(U,LE) = f(Y(U,I),Y(U,E)).

Yer = Yuie — Yuire = Yuie —|f (cus Yue)|= Yuie — cu * 0(Yye).

¢, is the expectation constants for user u.

¢ Training

N Optlmlze the recommenders with onIy clicks. l\:}/hat the pre)cc!/ctt/on score would be if the item had only

. . . e exposure jeatures.
* Multi-task training to learn the model parameters. .
Total effect Direct effect Indirect effect

< CRinference B *

1. NDE: estimate the prediction only based on exposure features. SR o e o o
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2. TE: original prediction based on all features.
3. CRinference: TE — NDE to reduce the direct effect of E on Y. ;
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Experimental settings

A model-agnostic framework. Base model: MMGCN (Wei et al. 2019).
« Datasets: Adressa (news) & Tiktok (micro-video).

« Evaluation: evaluate the performance by post-click feedback (e.g., rating).
* Metric: Precision@k, Recall@k, and NDCG@k.
 Baselines:
« Training without post-click feedback.
a) Normal Training (NT).
b) Only using Content Feature for Training (CFT).
c) Inverse Propensity Weighting (IPW). (Liang et al. 2019)
« Training with post-click feedback.
a) Cleaning Training (CT) which only uses the clicks end with likes as positive samples.

b) Negative Reweighting (NR) which leverages post-click feedback to reweight negative
samples. (Wen et al. 2019)

c) Re-Rank (RR) the recommendation list of NT by the like/click ratio.

» Liang et al. 2016. Causal inference for recommendation. In AUAI.
+ Wen et al. 2019. Leveraging post-click feedback for content recommendations. In RecSys.
+ Weietal 2019. MMGCN: Multi-modal Graph Convolution Network for Personalized Recommendation of Micro-video. In MM.
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Overall Performance

Table 2: Top-K recommendation performance of compared methods on Tiktok and Adressa. ZImprove. denotes the relative
performance improvement of CR over NT. The best results are highlighted in bold. Stars and underlines denote the best results
of the baselines with and without using additional post-click feedback during training, respectively.

Dataset Tiktok Adressa
Metric | P@10 R@10 N@10 | P@20 R@20 N@20 | P@10 R@10 N@10 | P@20 R@20 N@20
NT [50] 0.0256 0.0357 0.0333 0.0231 0.0635 0.0430 0.0501 0.0975 0.0817 0.0415 0.1612 0.1059
w/o post-cliok{ CFT [50] 0.0253 0.0356 0.0339 0.0226 0.0628 0.0437 0.0482 0.0942 0.0780 0.0405 0.1573 0.1021
feedback IPW [27] | 0.0230 0.0334 0.0314 | 0.0210 0.0582  0.0406 | 0.0419 0.0804  0.0663 | 0.0361 0.1378  0.0883
_ CT [50] 0.0217 0.0295 0.0294 0.0194 0.0520 0.0372 0.0493 0.0951 0.0799 0.0418* 0.1611 0.1051
]Yé’e Fégsatéi"‘?k { NR [51] | 0.0239 0.0346 0.0329 | 0.0216 0.0605 0.0424 | 0.0499  0.0970 0.0814 | 0.0415 0.1610  0.1058
RR 0.0264* 0.0383* 0.0367* | 0.0231* 0.0635* 0.0430* | 0.0521* 0.1007* 0.0831" | 0.0415 0.1612* 0.1059*
CR 0.0269 0.0393 0.0370 | 0.0242 0.0683 0.0476 | 0.0532 0.1045 0.0878 | 0.0439 0.1712 0.1133
%Improve. | 5.08% 10.08% 11.11% | 4.76% 7.56% 10.70% | 6.19% 7.18% 7.47% 5.78% 6.20% 6.99%

* Observations:
e CFT and IPW perform worse than NT.
* Post-click feedback could be helpful based on the performance of RR.

* Proposed CR inference significantly recommends more satisfying items by mitigating clickbait issue.
8
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In-depth Analysis

*» Visualization of Recommendations w.r.t. Like/click Ratio.
* We leverage post-click feedback (e.g., ratings) to distinguish items: group by like/click ratio.

* Items with low like/click ratio are easy to have clickbait content.
* Proposed CR inference recommends less items with low like/click ratio, especially in [0, 0.4).
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Fig. Visualization of the averaged recommendation frequencies of items.
Note that items with low like/click ratios shouldn’t be recommended.
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In-depth Analysis

+» Effect of Dataset Cleanness.

e Study how the effectiveness of CR is influenced by o . 15%
the “cleanness” of the click data. m—NT 5
0.21 = CR -
Q +—Relative Improvement p 10% §
* Settings: Qo g
1) Rank the items by the like/click ratio, and discard S 0.5 - s% 2
the items with high like/click ratios at a certain 0.12 e
X

proportion; e E u . o5
2) A larger discarding proportion leads to a dataset 0 02 04 06 08
with more clicks with dislikes.

Proportion of discarded samples

Fig. Performance comparison across the subsets of Adressa with
. different discarding proportions. A larger proportion indicates a
* Observations: higher percentage of the clicks that end with dislikes in the dataset.

*  CR outperforms NT in all cases.
* CR is significantly helpful in the scenarios with
more noisy clicks.

10
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“ Summary
* Introduce an important but under-explored issue in recommendation: clickbait issue.
* Inspect the causal relations among the exposure features, content features, and predictions.

* Propose a framework of counterfactual recommendation for mitigating clickbait issue.

“* Future work
* A new task of mitigating the clickbait issue that deserves our exploration.

« Causality + Search/Recommendation:
» More comprehensive causal graphs with more fine-grained causal relations.
« Causal reasoning over causal graph to mitigate other intrinsic biases and issues, such as

causal intervention and counterfactual thinking.

11
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