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• Recommendation has been widely applied in online services.
• Clicks are popular to indicate user preference.

Background

E-commerce

Product & Ad
Recommendation

Social Networks

Friend & Post
Recommendation

Streaming Media

Image & Video
Recommendation

Forum

Post & Question
Recommendation
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Clickbait Issue

Background

ü Clicks have intrinsic bias and various issues.
ü Users tend to click the items with attractive exposure features.

• Also called attractiveness bias or caption bias.
• Exposure features: available features before clicking, e.g., headline and cover image.
• Content features: available features after clicking, e.g., video.
• Clickbait content: deceptive or misleading exposure features.

NASA, SpaceX launch 
astronauts from US soil.

SatisfactionItem 1
Click

Exposure features: title/cover Content features: video

CNN: UFO found in 
Denver, we are NOT alone.

Item 2

User 1 User 2 User 3 User 4

Satisfaction
Click

Inconsistent click and satisfactionInconsistent exposure and content features
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• It is common that a user is “misled” to click an item by the attractive title/cover.
• Clickbait issue in recommendation: consequently, recommender model will recommend items with

attractive exposure features but disappointing content features frequently.
• Negative effect of clickbait issue:

• It is unfair to the items with high-quality video content.
• The unfairness severely hurts user’s trust and satisfaction on the recommender system.

• Exposure features (e.g., title/cover) attract users while content features (e.g., video) are disappointing.

Clickbait Issue

Background
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Fig. Statistics of clicks and likes on Tiktok dataset. Partly show
the wide existence of clickbait issue.
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Counterfactual Recommendation (CR)
v Causal Graph

• A causal graph to describe the causal relationships between
the features and user feedback.

• Exposure features and content features are fused into item
features.

• A direct shortcut from exposure features to the prediction
score: an item can be recommended purely because of its
attractive title/cover.

• Reference situation denotes that the feature influence is null.

v NDE of exposure features on the prediction score
• Estimate the natural direct effect (NDE) in the counterfactual

world, which imagines what the prediction score would be if
the item had only the exposure features.

v CR inference:
• Reduce the direct effect of exposure features during

inference.

Method
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Counterfactual Recommendation (CR)
v CR framework:

1) Training: train a recommender to model the causal relations.
2) Inference:

a) Estimate NDE of E on Y.
b) TE - NDE for inference.

v Implementation
1. Backbone models to implement the causal graph.
2. Two recommender models: one for 𝑌(𝑈, 𝐼), another for 𝑌(𝑈, 𝐸).
3. A fusion function 𝑓(⋅) to learn the scoring function:

𝑌(𝑈, 𝐼, 𝐸) = 𝑓(𝑌(𝑈, 𝐼), 𝑌(𝑈, 𝐸)).

v Training
• Optimize the recommenders with only clicks.
• Multi-task training to learn the model parameters.

v CR inference
1. NDE: estimate the prediction only based on exposure features.
2. TE: original prediction based on all features.
3. CR inference: TE – NDE to reduce the direct effect of E on Y.

Method

What the prediction score would be if the item had only 
the exposure features.

𝑐! is the expectation constants for user 𝑢 .

Feature 
aggregation

Y(U, E)

Y(U, I)
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Experimental settings

• A model-agnostic framework. Base model: MMGCN (Wei et al. 2019).
• Datasets: Adressa (news) & Tiktok (micro-video).
• Evaluation: evaluate the performance by post-click feedback (e.g., rating).
• Metric: Precision@k, Recall@k, and NDCG@k.
• Baselines:

• Training without post-click feedback.
a) Normal Training (NT).
b) Only using Content Feature for Training (CFT).
c) Inverse Propensity Weighting (IPW). (Liang et al. 2019)

• Training with post-click feedback.
a) Cleaning Training (CT) which only uses the clicks end with likes as positive samples.
b) Negative Reweighting (NR) which leverages post-click feedback to reweight negative

samples. (Wen et al. 2019)
c) Re-Rank (RR) the recommendation list of NT by the like/click ratio.

• Liang et al. 2016. Causal inference for recommendation. In AUAI.
• Wen et al. 2019. Leveraging post-click feedback for content recommendations. In RecSys.
• Wei et al. 2019. MMGCN: Multi-modal Graph Convolution Network for Personalized Recommendation of Micro-video. In MM.

Experiments
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Overall Performance

• Observations:
• CFT and IPW perform worse than NT.
• Post-click feedback could be helpful based on the performance of RR.
• Proposed CR inference significantly recommends more satisfying items by mitigating clickbait issue.

w/ post-click
feedback

w/o post-click
feedback

Experiments
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In-depth Analysis

v Visualization of Recommendations w.r.t. Like/click Ratio.
• We leverage post-click feedback (e.g., ratings) to distinguish items: group by like/click ratio.
• Items with low like/click ratio are easy to have clickbait content.
• Proposed CR inference recommends less items with low like/click ratio, especially in [0, 0.4).

Experiments

Fig. Visualization of the averaged recommendation frequencies of items.
Note that items with low like/click ratios shouldn’t be recommended.
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In-depth Analysis

v Effect of Dataset Cleanness.
• Study how the effectiveness of CR is influenced by

the “cleanness” of the click data.

• Settings:
1) Rank the items by the like/click ratio, and discard

the items with high like/click ratios at a certain
proportion;

2) A larger discarding proportion leads to a dataset
with more clicks with dislikes.

• Observations:
• CR outperforms NT in all cases.
• CR is significantly helpful in the scenarios with

more noisy clicks.

Experiments

Fig. Performance comparison across the subsets of Adressa with
different discarding proportions. A larger proportion indicates a
higher percentage of the clicks that end with dislikes in the dataset.
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v Summary
• Introduce an important but under-explored issue in recommendation: clickbait issue.

• Inspect the causal relations among the exposure features, content features, and predictions.

• Propose a framework of counterfactual recommendation for mitigating clickbait issue.

v Future work
• A new task of mitigating the clickbait issue that deserves our exploration.

• Causality + Search/Recommendation:

• More comprehensive causal graphs with more fine-grained causal relations.

• Causal reasoning over causal graph to mitigate other intrinsic biases and issues, such as

causal intervention and counterfactual thinking.

Conclusion
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Thank you !
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