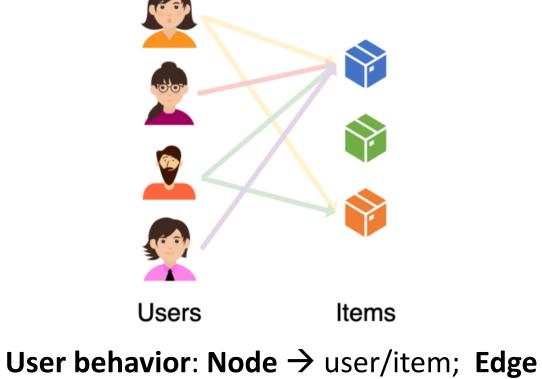


Should Graph Convolution Trust Neighbors? A Simple Causal Inference Method

Fuli Feng¹², Weiran Huang³, Xiangnan He⁴, Xin Xin⁵, Qifan Wang⁶, Tat-Seng Chua²
 ¹Sea-NExT Joint Lab, ²National University of Singapore, ³The Chinese University of Hong Kong
 ⁴University of Science and Technology of China, ⁵University of Glasgow, ⁶Google US
 fulifeng93@gmail.com

Graph & Applications in IR

Graph has become the default choice for relational data modeling in many IR applications.

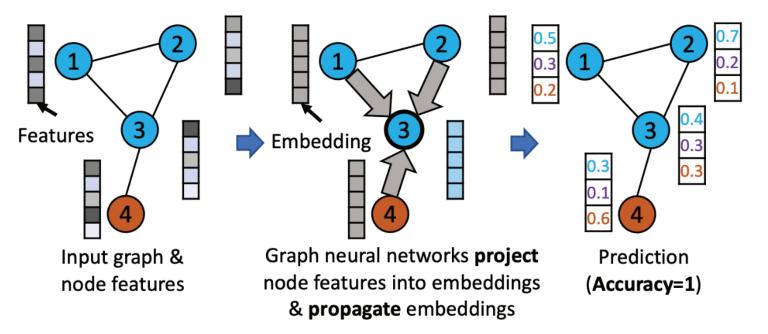


Social network: Node \rightarrow user; Edge \rightarrow following IR applications: user profiling, rumour detection, targeted advertising, etc.

→ click/buy IR applications: recommendation.

Graph Convolutional Network

Graph-based learning: leverage the graph structure to make better predictions.



 Node features are propagated over the graph structure.

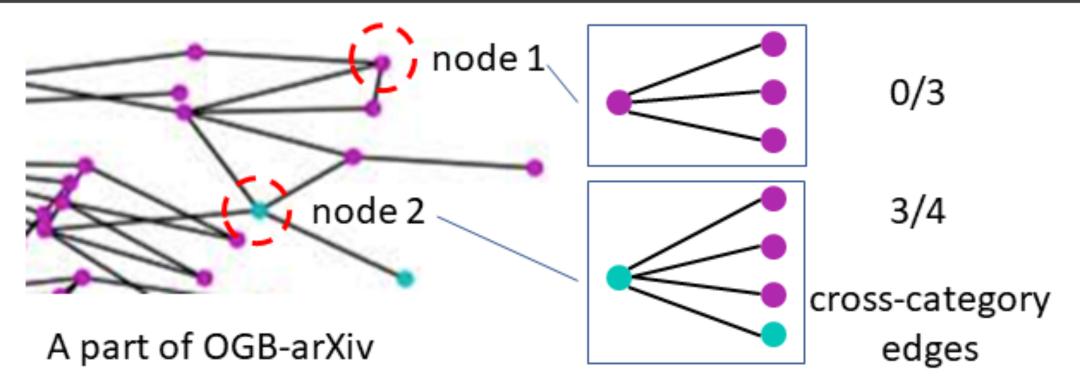
- Node 3 ← {Node 1, Node 2,
 Node 4} + Node 3
- Node prediction is made after the aggregation.

Graph Convolutional Network (GCN)

GCN is being increasingly used in IR applications, ranging from <u>search engines</u>, <u>recommender systems</u> to <u>question-answering systems</u>.

Feng, Fuli, et al. "Graph adversarial training: Dynamically regularizing based on graph structure." (2019).

Local Structure Discrepancy Issue



1) Should GCN always trust the neighbors?

- Node 1: Yes
- Node 2: No!

2) The distribution of cross-category edges is not consistent over nodes

- Distribution drift

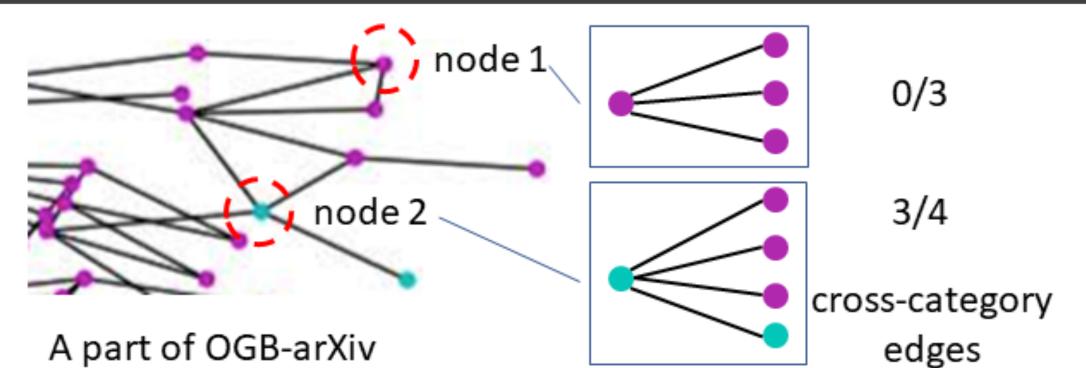
Existing Solutions

Model Training: Mitigate the impact of the discrepancy issue.

- Denoising
 - Edge classification: identify & remove the cross-category edges
 - Spectral filtering: filter out the high-frequency signal in the adjacency matrix
- Graph attention
 - Neighbor attention: adjust the contribution of neighbors
 - Hop/layer attention: adjust the contribution of neighbors at difference hops

1) Not easy to be trained well in practice; and 2) Hard to generalize well to testing nodes.

Handling Discrepancy During Model Inference



Existing method: One-pass inference, indiscriminate for Node 1 and Node 2. Our expectation: Node specific inference, trust neighbor less when making prediction for Node 2.

How does the neighbors affect the prediction

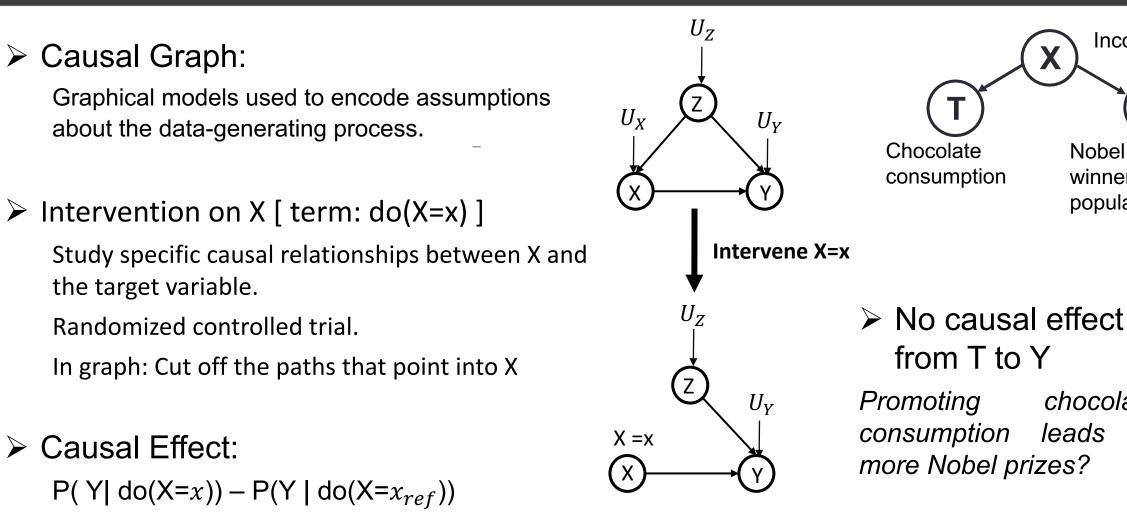
Causal Effect & Causal Intervention

Income

Nobel prize

population

winners over



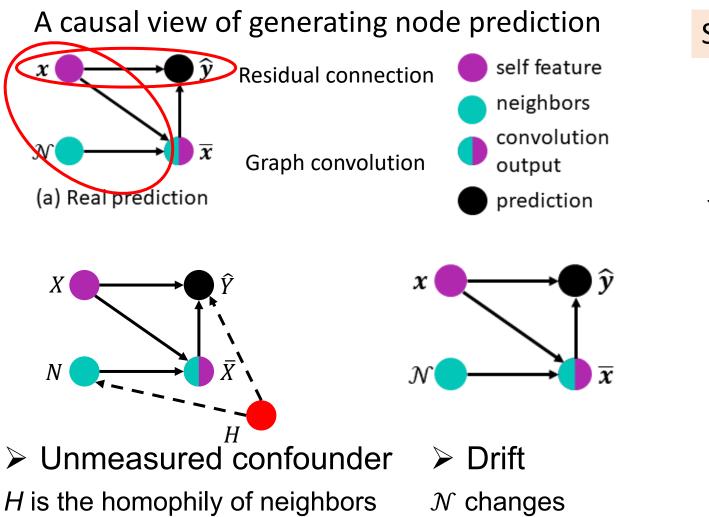
measures the expected increase in Y as the treatment changes from X = x to $X = x_{ref}$

chocolate

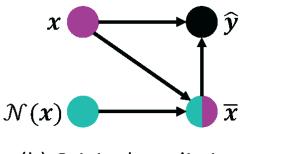
to

leads

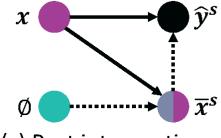
Causal GCN Inference Mechanism



Should GCN trust the neighbors?



(b) Original prediction



(c) Post intervention prediction

 $choose(\hat{y}, \hat{y}^s)$ Original Post intervention prediction prediction

Training a simple binary classifier (choice model) to make choice

Factors for Making Choice & Causal Uncertainty

Factors for making choice: prediction confidence, category transition, causal uncertainty.

	Ч	0.19	0.00	0.01	0.00	0.00	0.03	0.00	0.04	0.00	0.02
	7	0.00	0.22	0.00	0.00	0.06	0.01	0.01	0.00	0.05	0.00
	m	0.00	0.00	0.64	0.00	0.01	0.01	0.00	0.00	0.00	0.03
Jory	4	0.00	0.00	0.00	0.26	0.06	0.02	0.04	0.01	0.03	0.00
Category	ы	0.00	0.01	0.01	0.02	0.54	0.02	0.00	0.00	0.03	0.01
Q Q	9	0.00	0.00	0.01	0.01	0.02	0.45	0.00	0.00	0.04	0.01
Node	~	0.00	0.00	0.00	0.07	0.02	0.01	0.28	0.00	0.01	0.00
	ω	0.07	0.00	0.02	0.02	0.00	0.06	0.00	0.25	0.01	0.01
	ი	0.00	0.00	0.00	0.01	0.02	0.03	0.00	0.00	0.49	0.00
	10	0.00	0.00	0.04	0.00	0.01	0.01	0.00	0.00	0.00	0.53
1 2 3 4 5 6 7 8 9 1 Node Category								10			

0.6 > Causal effect of
$$\mathcal{N}$$

0.5 $e = f(x, \mathcal{N}(x) | \hat{\theta}) - f(x, do(N = \emptyset) | \hat{\theta}),$
0.4 $= f(x, \mathcal{N}(x) | \hat{\theta}) - f(x, \emptyset | \hat{\theta}),$
0.4 $= \hat{y} - \hat{y}^{s}.$
0.3 > Variance of causal effect
0.2 $v = var(\{f(x, \mathcal{N}(x)_{k} | \hat{\theta}) | k \leq K\}),$
0.1

 $\mathcal{N}(\mathbf{x})_k$ is a sample of the neighbors by randomly dropping edges

		gorithm 1 Applying CGI to GCN		
	-	put: Training data X, A, Y. /* Training */		
	Training for the 2: choice model 3:	Optimize Equation (4), obtaining GCN ($\hat{\theta}$); Construct \mathcal{D} ; Optimize Equation (10), obtaining choice mode Return $\hat{\theta}$ and $\hat{\eta}$.		 GCN training usal intervention CGI training
_		/* Testing */ Calculate $f(\mathbf{x}, \mathcal{N}(\mathbf{x}) \hat{\boldsymbol{\theta}})$; Calculate $f(\mathbf{x}, \boldsymbol{\theta} \hat{\boldsymbol{\theta}})$; \triangleright Post-i Calculate final classification with Equation	interve	riginal prediction ention prediction

EXP1: Semi-supervised Setting (Discrepancy)

	Dataset	Citeseer(10%)	Citeseer(30%)	Citeseer(50%)		
	APPNP	71.0%	64.4%	64.2%		
Add 10/30/50%	APPNP_Self	65.1%	62.9%	64.3%		
cross-category	APPNP_CGI	71.8%	66.9%	68.6%		
edges on 50%	RI	1.1%	3.9%	7.2%		
randomly selected	Table 1: Performance of APPNP's original prediction, post-					
nodes	intervention prediction, and CGI prediction on the three					
synthetic datasets w.r.t. accuracy. RI means the relative						

improvement over APPNP achieved by APPNP_CGI.

- The causal GCN inference mechanism indeed mitigates the discrepancy issue.
- The relative improvement increases when facing more severe discrepancy.

EXP2: Semi-supervised Setting (Random Split)

Dataset	Cora	Citeseer	Pubmed
APPNP	81.8%	72.6%	79.8%
APPNP_Self	69.3%	66.5%	75.9%
APPNP_Ensemble	78.0%	71.4%	79.2%
APPNP_CGI	82.3%	73.7%	81.0%
RI	5.5%	2.8%	2.3%

Table 2: Performance of APPNP with different inference mechanisms on three semi-supervised node classification datasets *w.r.t.* the classification accuracy. RI means the relative improvement of APPNP_CGI over APPNP_Ensemble.

- The causal GCN inference mechanism is effective in the conventional setting.
 - Insufficient labels: 20-shot per class

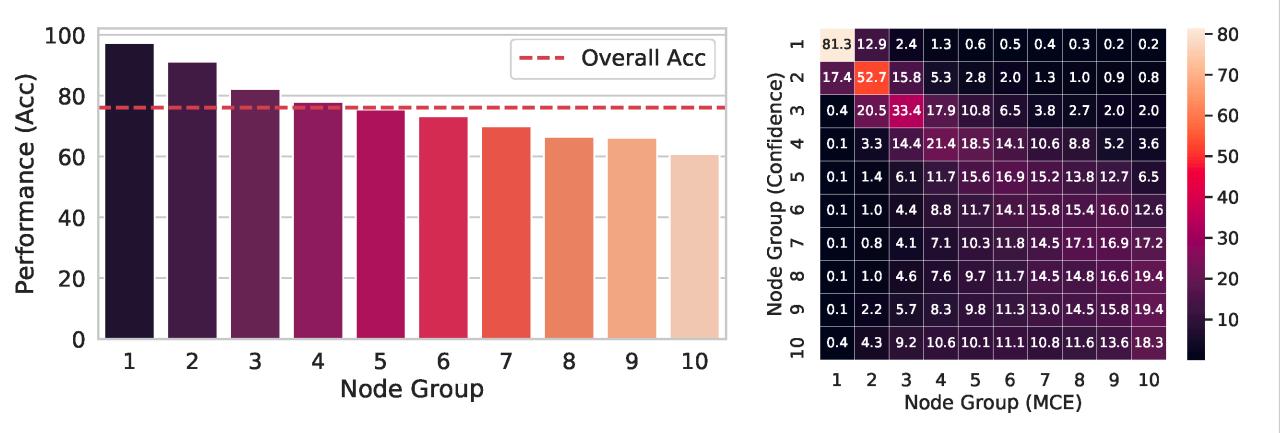
EXP3: Full supervised Setting

	JKNet	75.59%	75.54%
	MLP	72.26%	72.26%
RoBERTa	DAGNN	74.93%	74.83%
(768)	APPNP	75.74%	75.61%
	APPNP_Self	73.43%	73.38%
	APPNP_Ensemble	76.26%	75.86%
	APPNP_CGI	76.52%	76.07%

Table 3: Performance comparison under full-supervised settings. We use bold font and underline to highlight the best and second best performance under each setting.

- The causal GCN inference mechanism is effective in the conventional setting.
 - Chronological split

EXP4: Causal Uncertainty



- The causal uncertainty reveals the correctness of a prediction
- Causal uncertainty is complementary to classification confidence

- Solving the local structure discrepancy issue during GCN inference
- The one-pass model inference might be insufficient
- Incorporating causal intervention is beneficial

- More causal inference techniques, e.g., counterfactual inference
- Eliminating the bias in GCN, e.g., degree bias