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Zhang Munan, et al. “Inductive Matrix Completion based on Graph Neural Networks.” (2019) ICLR.

Graph has become the default choice for relational data modeling in many IR applications.

Social network: Node à user;  Edge à following 
IR applications: user profiling, rumour detection, 
targeted advertising, etc.

2

User behavior: Node à user/item; Edge
à click/buy 
IR applications: recommendation.

Graph & Applications in IR



Feng, Fuli, et al. "Graph adversarial training: Dynamically regularizing based on graph structure." (2019).

Graph-based learning: leverage the graph structure to make better predictions.

- Node features are propagated 
over the graph structure.

- Node 3 ß {Node 1, Node 2, 
Node 4} + Node 3

- Node prediction is made after 
the aggregation.
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Graph Convolutional Network (GCN)

GCN is being increasingly used in IR applications, ranging from search engines,
recommender systems to question-answering systems.

Graph Convolutional Network



Local Structure Discrepancy Issue
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1) Should GCN always trust 
the neighbors?
- Node 1: Yes
- Node 2: No!

2) The distribution of cross-category 
edges is not consistent over nodes
- Distribution drift 



Ø Denoising
Ø Edge classification: identify & remove the cross-category edges
Ø Spectral filtering: filter out the high-frequency signal in the adjacency matrix

Ø Graph attention
Ø Neighbor attention: adjust the contribution of neighbors 
Ø Hop/layer attention: adjust the contribution of neighbors at difference hops

Existing Solutions
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Model Training: Mitigate the impact of the discrepancy issue.

1) Not easy to be trained well in practice; and 2) Hard to generalize well to testing nodes.



Handling Discrepancy During Model Inference
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Existing method: 
One-pass inference, 
indiscriminate for Node 1 
and Node 2.

Our expectation: 
Node specific inference, trust
neighbor less when making
prediction for Node 2.

How does the neighbors 
affect the prediction



Causal Effect & Causal Intervention

Pearl, J., & Mackenzie, D. ”The book of why: the new science of cause and effect.” (2018).
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Ø Causal Graph:
Graphical models used to encode assumptions 
about the data-generating process.

Ø Intervention on X [ term: do(X=x) ]
Study specific causal relationships between X and 
the target variable.  
Randomized controlled trial.
In graph: Cut off the paths that point into X

Intervene X=x
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Ø Causal Effect:
P( Y| do(X=𝑥)) – P(Y | do(X=𝑥!"#))
measures the expected increase in Y as the treatment changes from 𝑋 = 𝑥 to X=𝑥!"#

Ø No causal effect 
from T to Y

Promoting chocolate
consumption leads to
more Nobel prizes?



Causal GCN Inference Mechanism

A causal view of generating node prediction

Training a simple binary classifier
(choice model) to make choice

Residual connection

Graph convolution

𝑐ℎ𝑜𝑜𝑠𝑒( '𝑦, '𝑦")
Original 

prediction
Post intervention 
prediction
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Ø Unmeasured confounder
H is the homophily of neighbors

Ø Drift 
𝒩 changes

Should GCN trust the neighbors?



Factors for Making Choice & Causal Uncertainty
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Factors for making choice: prediction confidence, category transition, causal uncertainty.

Ø Causal effect of 𝒩

Ø Variance of causal effect

𝒩(𝒙)# is a sample of the
neighbors by randomly
dropping edges



A New Schema for Training GCN
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- Training for the
choice model

- Two-pass GCN 
inference

- Choice model
inference



• The causal GCN inference mechanism indeed mitigates the discrepancy issue.
• The relative improvement increases when facing more severe discrepancy.
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EXP1: Semi-supervised Setting (Discrepancy)

Add 10/30/50% 
cross-category 
edges on 50% 
randomly selected 
nodes



• The causal GCN inference mechanism is effective in the conventional setting.
• Insufficient labels: 20-shot per class
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EXP2: Semi-supervised Setting (Random Split)



EXP3: Full supervised Setting
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• The causal GCN inference mechanism is effective in the conventional setting.
• Chronological split



EXP4: Causal Uncertainty
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• The causal uncertainty reveals the correctness of a prediction
• Causal uncertainty is complementary to classification confidence



Conclusion & Future Work

• Solving the local structure discrepancy issue during GCN inference

• The one-pass model inference might be insufficient

• Incorporating causal intervention is beneficial

• More causal inference techniques, e.g., counterfactual inference

• Eliminating the bias in GCN, e.g., degree bias
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