Should Graph Convolution Trust Neighbors?
A Simple Causal Inference Method

Fuli Feng12, Weiran Huang3, Xiangnan He4, Xin Xin5, Qifan Wang6, Tat-Seng Chua2

1Sea-NExT Joint Lab, 2National University of Singapore, 3The Chinese University of Hong Kong
4University of Science and Technology of China, 5University of Glasgow, 6Google US

fulifeng93@gmail.com
Graph has become the default choice for relational data modeling in many IR applications.

Social network: Node \rightarrow user; Edge \rightarrow following

IR applications: user profiling, rumour detection, targeted advertising, etc.

User behavior: Node \rightarrow user/item; Edge \rightarrow click/buy

IR applications: recommendation.

Graph-based learning: leverage the graph structure to make better predictions.

- Node features are propagated over the graph structure.
- **Node 3** $\leftarrow \{\text{Node 1, Node 2, Node 4}\} + \text{Node 3}$
- Node prediction is made after the aggregation.

Graph Convolutional Network (GCN)

Graph Convolutional Network (GCN)

GCN is being increasingly used in IR applications, ranging from search engines, recommender systems to question-answering systems.

Local Structure Discrepancy Issue

1) Should GCN always trust the neighbors?
 - **Node 1**: Yes
 - **Node 2**: No!

2) The distribution of cross-category edges is not consistent over nodes
 - **Distribution drift**
Existing Solutions

Model Training: Mitigate the impact of the discrepancy issue.

- **Denoising**
 - Edge classification: identify & remove the cross-category edges
 - Spectral filtering: filter out the high-frequency signal in the adjacency matrix

- **Graph attention**
 - Neighbor attention: adjust the contribution of neighbors
 - Hop/layer attention: adjust the contribution of neighbors at difference hops

1) Not easy to be trained well in practice; and 2) Hard to generalize well to testing nodes.
Handling Discrepancy During Model Inference

Existing method:
One-pass inference, indiscriminate for Node 1 and Node 2.

Our expectation:
Node specific inference, trust neighbor less when making prediction for Node 2.

How does the neighbors affect the prediction?
Causal Effect & Causal Intervention

- **Causal Graph:**
 Graphical models used to encode assumptions about the data-generating process.

- **Intervention on X** [term: do(X=x)]
 Study specific causal relationships between X and the target variable.
 Randomized controlled trial.
 In graph: Cut off the paths that point into X

- **Causal Effect:**
 \[P(Y | \text{do}(X=x)) - P(Y | \text{do}(X=x_{ref})) \]
 measures the expected increase in Y as the treatment changes from \(X = x \) to \(X = x_{ref} \)

Causal GCN Inference Mechanism

A causal view of generating node prediction

Should GCN trust the neighbors?

- Unmeasured confounder
- Drift

Training a simple binary classifier (choice model) to make choice

\[\text{choose}(\hat{y}, \hat{y}^s) \]

Original Post intervention prediction prediction
Factors for Making Choice & Causal Uncertainty

Factors for making choice: prediction confidence, category transition, causal uncertainty.

- Causal effect of \mathcal{N}

 $e = f(x, \mathcal{N}(x) | \hat{\theta}) - f(x, do(N = \emptyset) | \hat{\theta})$,

 $= f(x, \mathcal{N}(x) | \hat{\theta}) - f(x, \emptyset | \hat{\theta})$,

 $= \hat{y} - \hat{y}^s$.

- Variance of causal effect

 $\nu = var(\{f(x, \mathcal{N}(x)_k | \hat{\theta}) | k \leq K\})$,

$\mathcal{N}(x)_k$ is a sample of the neighbors by randomly dropping edges.
A New Schema for Training GCN

Algorithm 1 Applying CGI to GCN

Input: Training data X, A, Y.

/* Training */

1. Optimize Equation (4), obtaining GCN ($\hat{\theta}$); \hfill \triangleright \text{GCN training}
2. Construct \mathcal{D}; \hfill \triangleright \text{Causal intervention}
3. Optimize Equation (10), obtaining choice model ($\hat{\eta}$); \hfill \triangleright \text{CGI training}
4. Return $\hat{\theta}$ and $\hat{\eta}$.

/* Testing */

5. Calculate $f(x, N(x)|\hat{\theta})$; \hfill \triangleright \text{Original prediction}

- Training for the choice model

- Two-pass GCN inference

- Choice model inference

6. Calculate $f(x, \emptyset|\theta)$; \hfill \triangleright \text{Post-intervention prediction}

 Calculate final classification with Equation (8);
EXP1: Semi-supervised Setting (Discrepancy)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>CiteSeer(10%)</th>
<th>CiteSeer(30%)</th>
<th>CiteSeer(50%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPNP</td>
<td>71.0%</td>
<td>64.4%</td>
<td>64.2%</td>
</tr>
<tr>
<td>APPNP_Self</td>
<td>65.1%</td>
<td>62.9%</td>
<td>64.3%</td>
</tr>
<tr>
<td>APPNP_CGI</td>
<td>71.8%</td>
<td>66.9%</td>
<td>68.6%</td>
</tr>
<tr>
<td>RI</td>
<td>1.1%</td>
<td>3.9%</td>
<td>7.2%</td>
</tr>
</tbody>
</table>

Table 1: Performance of APPNP’s original prediction, post-intervention prediction, and CGI prediction on the three synthetic datasets w.r.t. accuracy. RI means the relative improvement over APPNP achieved by APPNP_CGI.

- The causal GCN inference mechanism indeed mitigates the discrepancy issue.
- The relative improvement increases when facing more severe discrepancy.
EXP2: Semi-supervised Setting (Random Split)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Cora</th>
<th>Citeseer</th>
<th>Pubmed</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPNP</td>
<td>81.8%</td>
<td>72.6%</td>
<td>79.8%</td>
</tr>
<tr>
<td>APPNP_Self</td>
<td>69.3%</td>
<td>66.5%</td>
<td>75.9%</td>
</tr>
<tr>
<td>APPNP_Ensemble</td>
<td>78.0%</td>
<td>71.4%</td>
<td>79.2%</td>
</tr>
<tr>
<td>APPNP_CGI</td>
<td>82.3%</td>
<td>73.7%</td>
<td>81.0%</td>
</tr>
<tr>
<td>RI</td>
<td>5.5%</td>
<td>2.8%</td>
<td>2.3%</td>
</tr>
</tbody>
</table>

Table 2: Performance of APPNP with different inference mechanisms on three semi-supervised node classification datasets w.r.t. the classification accuracy. RI means the relative improvement of APPNP_CGI over APPNP_Ensemble.

- The causal GCN inference mechanism is effective in the conventional setting.
 - Insufficient labels: 20-shot per class
EXP3: Full supervised Setting

<table>
<thead>
<tr>
<th>RoBERTa (768)</th>
<th>JKNet</th>
<th>MLP</th>
<th>DAGNN</th>
<th>APPNP</th>
<th>APPNP_Self</th>
<th>APPNP_Ensemble</th>
<th>APPNP_CGI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75.59%</td>
<td>72.26%</td>
<td>74.93%</td>
<td>75.74%</td>
<td>73.43%</td>
<td>76.26%</td>
<td>76.52%</td>
</tr>
<tr>
<td></td>
<td>75.54%</td>
<td>72.26%</td>
<td>74.83%</td>
<td>75.61%</td>
<td>73.38%</td>
<td>75.86%</td>
<td>76.07%</td>
</tr>
</tbody>
</table>

Table 3: Performance comparison under full-supervised settings. We use bold font and underline to highlight the best and second best performance under each setting.

- The causal GCN inference mechanism is effective in the conventional setting.
 - Chronological split
EXP4: Causal Uncertainty

- The causal uncertainty reveals the correctness of a prediction
- Causal uncertainty is complementary to classification confidence
Conclusion & Future Work

- Solving the local structure discrepancy issue during GCN inference
- The one-pass model inference might be insufficient
- Incorporating causal intervention is beneficial
- More causal inference techniques, e.g., counterfactual inference
- Eliminating the bias in GCN, e.g., degree bias