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Recap GCN for CF
Abstract Paradigm

𝐙𝐙(𝒍𝒍) = 𝐻𝐻 𝒁𝒁(𝒍𝒍−𝟏𝟏),𝒢𝒢

• Neighbor Aggregation
(1) Representation aggregation layers

(2) Readout layer

• Supervised Learning Loss
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Limitations

Limitations in existing GCNs:
 Sparse Supervision Signal

 The supervision signal comes from the observed interactions  extremely sparse

 Skewed Data Distribution
 Power-law distribution
 High-degree items exert larger impact on the representation learning

 Noises in Interactions
 Implicit feedback makes the learning more vulnerable to interaction noises
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Self-supervised Learning
• Obtain “labels” from the data itself
• Predict part of the data from other parts

Data Augmentation

graph encoder

contrastive loss



SGL framework

Supervised 
Task

SSL Task
+

Augmentation on graph structure:
• The features of users and items are discrete
• Users and items in the graph are inherently connected and dependent on 

each other
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Data Augmentations

 Node Dropout (ND)

• Identify the influential nodes from differently augmented views
• Make the representation learning less sensitive to structure changes

 Edge Dropout (ED)

• Capture the useful patterns of the local structures of a node
• Endow the representations more robustness against the presence of single 

interactions, especially the noisy interactions.

 Random Walk (RW)

• constructing an individual subgraph for each node with random walk
• Layer-sensitive local structure
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Objective Function

Contrastive Loss --- InfoNCE
• maximize the agreement of positive pairs
• minimize that of negative pairs

Supervised Loss --- BPR
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Multi-task Training
2

1 2 2main sslλ λ= Θ+ +  

7



Hard Negative Mining
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• Gradient of the self-supervised

Contribution from negative sample

𝐿𝐿2 norm of 𝑐𝑐(𝑣𝑣)

𝑥𝑥 is the cosine similarity between 𝑠𝑠𝑢𝑢′ and 𝑠𝑠𝑣𝑣′′

�−1 ≤ 𝑥𝑥 < 0
0 < 𝑥𝑥 ≤ 1

Easy negative
Hard negative offer much larger gradients to guide the 

optimization
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Experiment Settings

• Datasets:
• Yelp2018, Amazon-Book, Alibaba-iFashion

• Evaluation Metrics:
• recall@20, ndcg@20

• Dataset partition: randomly select 80% data for 
training set, and 20% data for testing set.

Wu et al. Self-supervised Graph Learning for Recommendation. SIGIR 2021 9



Experiment Results

 SGL achieves significant improvements over the state-of-the-art 
baselines  outstanding performance
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Experiment Results
• Performance comparison among different SGL implementations and LightGCN at 

different layers :

• Training curves of SGL-ED and LightGCN :
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 InfoNCE vs. BPR
 Hard negative mining



Benefits of SGL
• Long-tail Recommendation

• Robustness to Noisy Interactions
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Study of SGL
• Effect of Temperature

• Effect of Negatives and Pretrain
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Conclusion & Future Work

Conclusion
• A model-agnostic framework SGL to supplement the supervised 

recommendation task with self-supervised learning on user-item graph

• Devise three types of data augmentation from different aspects to 
construct the auxiliary contrastive task

• Prove in theory that SGL inherently encourages learning from hard 
negatives

Future Work
• Explore new perspectives, such as counterfactual learning to identify 

influential data points

• Pre-training and fine-tuning in recommendation?

• Fulfill the potential of SSL to address the long-tail issue
14



• The code is available at https://github.com/wujcan/SGL

Thanks & QA?
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