

Self-supervised Graph Learning for Recommendation

Xiang Wang

Fuli Feng

Liang Chen

Jianxun Lian Xing Xie

Jiancan Wu Xiangnan He

□ Background

□Model: SGL

DExperiments

Conclusion & Future Work

Recap GCN for CF

Abstract Paradigm

- Neighbor Aggregation
 - (1) Representation aggregation layers $\mathbf{Z}^{(l)} = H(\mathbf{Z}^{(l-1)}, \mathcal{G})$ $\mathbf{a}_{u}^{(l)} = f_{\text{aggregate}} \left(\{ \mathbf{z}_{i}^{(l-1)} | i \in \mathcal{N}_{u} \} \right),$

$$\mathbf{z}_{u}^{(l)} = f_{\text{combine}}(\mathbf{z}_{u}^{(l-1)}, \mathbf{a}_{u}^{(l)}),$$

Light Graph Convolution (LGC)

(2) Readout layer

$$\mathbf{z}_{u} = f_{\text{readout}}\left(\{\mathbf{z}_{u}^{(l)}|l = [0, \cdots, L]\}\right)$$

• Supervised Learning Loss

$$\mathcal{L}_{main} = \sum_{(u,i,j)\in O} -\log \sigma(\hat{y}_{ui} - \hat{y}_{uj}) \qquad \hat{y}_{ui} = \mathbf{z}_u^{\top} \mathbf{z}_i$$

He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020³

Limitations

Limitations in existing GCNs:

- Sparse Supervision Signal
 - The supervision signal comes from the observed interactions \rightarrow extremely sparse

Skewed Data Distribution

- Power-law distribution
- High-degree items exert larger impact on the representation learning

Noises in Interactions

Implicit feedback makes the learning more vulnerable to interaction noises

Self-supervised Learning

- Obtain "labels" from the data itself
- Predict part of the data from other parts

Augmentation on graph structure:

- The features of users and items are discrete
- Users and items in the graph are inherently connected and dependent on each other

Wu et al. Self-supervised Graph Learning for Recommendation. SIGIR 2021

Data Augmentations

$$Z_{1}^{(l)} = H(Z_{1}^{(l-1)}, s_{1}(\mathcal{G})), \quad Z_{2}^{(l)} = H(Z_{2}^{(l-1)}, s_{2}(\mathcal{G})), \quad s_{1}, s_{2} \sim \mathcal{S}$$

Node Dropout (ND)

 $s_1(\mathcal{G}) = (M' \odot \mathcal{V}, \mathcal{E}), \quad s_2(\mathcal{G}) = (M'' \odot \mathcal{V}, \mathcal{E}) \quad M', M'' \in \{0, 1\}^{|\mathcal{V}|}$

- Identify the influential nodes from differently augmented views
- Make the representation learning less sensitive to structure changes
- Edge Dropout (ED)

 $s_1(\mathcal{G}) = (\mathcal{V}, M' \odot \mathcal{E}), \quad s_2(\mathcal{G}) = (\mathcal{V}, M'' \odot \mathcal{E}) \quad M', M'' \in \{0, 1\}^{|\mathcal{E}|}$

- Capture the useful patterns of the local structures of a node
- Endow the representations more robustness against the presence of single interactions, especially the noisy interactions.
- Random Walk (RW)

$$s_1(\mathcal{G}) = (\mathcal{V}, M_1^{(l)} \odot \mathcal{E}), \quad s_2(\mathcal{G}) = (\mathcal{V}, M_2^{(l)} \odot \mathcal{E}) \quad M_1^{(l)}, M_2^{(l)} \in \{0, 1\}^{|\mathcal{E}|}$$

- constructing an individual subgraph for each node with random walk
- Layer-sensitive local structure

Contrastive Loss --- InfoNCE

- maximize the agreement of positive pairs
- minimize that of negative pairs

$$\begin{aligned} \mathcal{L}_{ssl}^{user} &= \sum_{u \in \mathcal{U}} -\log \frac{\exp(s(\mathbf{z}'_{u}, \mathbf{z}''_{u})/\tau)}{\sum_{v \in \mathcal{U}} \exp(s(\mathbf{z}'_{u}, \mathbf{z}''_{v})/\tau)} \\ \mathcal{L}_{ssl} &= \mathcal{L}_{ssl}^{user} + \mathcal{L}_{ssl}^{item} \end{aligned}$$

➤ Supervised Loss --- BPR

$$\mathcal{L}_{main} = \sum_{(u,i,j)\in\mathcal{O}} -\log\sigma\left(\hat{y}_{ui} - \hat{y}_{uj}\right)$$

► Multi-task Training

$$\mathcal{L} = \mathcal{L}_{main} + \lambda_1 \mathcal{L}_{ssl} + \lambda_2 \left\|\Theta\right\|_2^2$$

Hard Negative Mining

• Gradient of the self-supervised

$$\frac{\partial \mathcal{L}_{ssl}^{user}(u)}{\partial z_{u}^{'}} = \frac{1}{\tau \|z_{u}^{'}\|} \left\{ c(u) + \sum_{v \in \mathcal{U} \setminus \{u\}} c(v) \right\}$$

$$\frac{\tilde{\xi}_{0,0}}{\tilde{\xi}_{0,0}} = \frac{1}{\tau \|z_{u}^{'}\|} \left\{ c(u) + \sum_{v \in \mathcal{U} \setminus \{u\}} c(v) \right\}$$

$$P_{uv} = \frac{\exp(s_{u}^{'} T_{s_{v}^{'}/\tau})}{\sum_{v \in \mathcal{U}} \exp(s_{u}^{'} T_{s_{v}^{'}/\tau})}; s_{u}^{'} = \frac{z_{u}^{'}}{\|z_{u}^{'}\|} \text{ and } s_{u}^{''} = \frac{z_{u}^{''}}{\|z_{u}^{''}\|}$$

$$(a) g(x), \tau = 1$$

$$(b) g(x), \tau = 0.1$$

$$c(u) = \left(s_{u}^{''} - (s_{u}^{'} T_{s_{v}^{''}})s_{u}^{'}\right) (P_{uu} - 1),$$

$$c(v) = \left(s_{v}^{''} - (s_{u}^{'} T_{s_{v}^{''}})s_{u}^{'}\right) P_{uv},$$

$$Contribution from negative sample$$

$$L_{2} \text{ norm of } c(v) \quad \|c(v)\|_{2} \propto \sqrt{1 - (s_{u}^{'} T_{s_{v}^{''}})^{2}} \exp(s_{u}^{'} T_{s_{v}^{''}}/\tau)$$

$$g(x) = \sqrt{1 - x^{2}} \exp\left(\frac{x}{\tau}\right) \quad x \text{ is the cosine similarity between } s_{u}^{'} \text{ and } s_{v}^{''}$$

$$\left\{ \begin{array}{c} -1 \le x < 0 \\ 0 < x \le 1 \end{array} \right. \text{ Hard negative} \\ 0 < x \le 1 \end{array} \right. \text{ Hard negative} \xrightarrow{\Rightarrow \text{ offer much larger gradients to guide the optimization} \right\}$$

1.5₁

4000

Wu et al. Self-supervised Graph Learning for Recommendation. SIGIR 2021

Λ

Experiment Settings

- Datasets:
 - Yelp2018, Amazon-Book, Alibaba-iFashion
- Evaluation Metrics:
 - recall@20, ndcg@20
- **Dataset partition:** randomly select 80% data for training set, and 20% data for testing set.

Dataset	#Users	#Items	#Interactions	Density
Yelp2018	31,668	38,048	1,561,406	0.00130
Amazon-Book	52,643	91,599	2,984,108	0.00062
Alibaba-iFashion	300,000	81,614	1,607,813	0.00007

Table 2: Statistics of the datasets.

Experiment Results

Dataset	Yelp2018		Amazon-Book		Alibaba-iFashion	
Method	Recall	NDCG	Recall	NDCG	Recall	NDCG
NGCF	0.0579	0.0477	0.0344	0.0263	0.1043	0.0486
LightGCN	0.0639	0.0525	0.0411	0.0315	0.1078	0.0507
Mult-VAE	0.0584	0.0450	0.0407	0.0315	0.1041	0.0497
DNN+SSL	0.0483	0.0382	0.0438	0.0337	0.0712	0.0325
SGL-ED	0.0675	0.0555	0.0478	0.0379	0.1126	0.0538
%Improv.	5.63%	5.71%	9.13%	12.46%	4.45%	6.11%
<i>p</i> -value	5.92e-8	1.89e-8	5.07e-10	3.63e-10	3.34e-8	4.68e-10

✓ SGL achieves significant improvements over the state-of-the-art baselines → outstanding performance

Experiment Results

• Performance comparison among different SGL implementations and LightGCN at different layers :

Datase		Yelp2018		Amazon-Book		Alibaba-iFashion	
#Layer	Method	Recall	NDCG	Recall	NDCG	Recall	NDCG
1 Layer	LightGCN	0.0631	0.0515	0.0384	0.0298	0.0990	0.0454
	SGL-ND	0.0643(+1.9%)	0.0529(+2.7%)	0.0432(+12.5%)	0.0334(+12.1%)	0.1133(+14.4%)	0.0539(+18.7%)
	SGL-ED	0.0637(+1.0%)	0.0526(+2.1%)	0.0451(+17.4%)	0.0353(+18.5%)	0.1125(+13.6%)	0.0536(+18.1%)
	SGL-RW	0.0637(+1.0%)	0.0526(+2.1%)	0.0451(+17.4%)	0.0353(+18.5%)	0.1125(+13.6%)	0.0536(+18.1%)
2 Layers	LightGCN	0.0622	0.0504	0.0411	0.0315	0.1066	0.0505
	SGL-ND	0.0658(+5.8%)	0.0538(+6.7%)	0.0427(+3.9%)	0.0335(+6.3%)	0.1106(+3.8%)	0.0526(+4.2%)
	SGL-ED	0.0668(+7.4%)	0.0549(+8.9%)	0.0468(+13.9%)	0.0371(+17.8%)	0.1091(+2.3%)	0.0520(+3.0%)
	SGL-RW	0.0644(+3.5%)	0.0530(+5.2%)	0.0453(+10.2%)	0.0358(+13.7%)	0.1091(+2.3%)	0.0521(+3.2%)
3 Layers	LightGCN	0.0639	0.0525	0.0410	0.0318	0.1078	0.0507
	SGL-ND	0.0644(+0.8%)	0.0528(+0.6%)	0.0440(+7.3%)	0.0346(+8.8%)	0.1126(4.5%)	0.0536(+5.7%)
	SGL-ED	0.0675(+5.6%)	0.0555(+5.7%)	0.0478(+16.6%)	0.0379(+19.2%)	0.1126(+4.5%)	0.0538(+6.1%)
	SGL-RW	0.0667(+4.4%)	0.0547(+4.2%)	0.0457(+11.5%)	0.0356(+12.0%)	0.1139(+5.7%)	0.0539(+6.3%)

• Training curves of SGL-ED and LightGCN :

- ✓ InfoNCE vs. BPR
- ✓ Hard negative mining

Benefits of SGL

• Long-tail Recommendation

• Robustness to Noisy Interactions

Study of SGL

• Effect of Temperature

• Effect of Negatives and Pretrain

Dataset	Yelp	2018	Amazon-Book		
Method	Recall	NDCG	Recall	NDCG	
SGL-ED-batch	0.0670	0.0549	0.0472	0.0374	
SGL-ED-merge	0.0671	0.0547	0.0464	0.0368	
SGL-pre	0.0653	0.0533	0.0429	0.0333	
SGL-ED	0.0675	0.0555	0.0478	0.0379	

Conclusion & Future Work

✓Conclusion

- A model-agnostic framework SGL to supplement the supervised recommendation task with self-supervised learning on user-item graph
- Devise three types of data augmentation from different aspects to construct the auxiliary contrastive task
- Prove in theory that SGL inherently encourages learning from hard negatives

✓ Future Work

- Explore new perspectives, such as counterfactual learning to identify influential data points
- Pre-training and fine-tuning in recommendation?
- Fulfill the potential of SSL to address the long-tail issue

Thanks & QA?

• The code is available at <u>https://github.com/wujcan/SGL</u>