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BT - Background: Noisy Implicit Feedback

Input: User—Item Interactions
1. Explicit Feedback (e.g., rating)
2. Implicit Feedback (e.g., clicks)

Large volume of implicit feedback alleviates the sparsity issue

Downside is that they are not as clean in reflecting the actual
user preference
e e.g., negative reviews, click with quick quit

Gap between implicit feedback and the actual satisfaction of
users due to the common existence of noisy interactions




Be*T + Background: Noisy Implicit Feedback

* Gap between implicit feedback and the actual satisfaction of
users due to the common existence of noisy interactions

Yyi. 1mplicit feedback
y,,;: actual user preference
Vui
0

Figure 1. lllustration of four different types of implicit interactions according
to the value of user satisfaction (y;,;) and implicit feedback (y,;).
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BIe™T -~ Background: Noisy Implicit Feedback

e Negative effects of false—positive interactions
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Identification of false-positive interactions: auxiliary information of post-interaction behaviors,

e.g., dwell time, rating score

Normal training: training NeuMF with false-positive interactions
Clean training: training NeuMF without false-positive interactions

Table 1: Results of the clean training and normal training
over NeuMF. #Drop denotes the relative performance drop
of normal training as compared to clean training.

Dataset Adressa Amazon-book
Metric Recall@20 NDCG@20 | Recall@20 NDCG@20
Clean training 0.4040 0.1963 0.0293 0.0159
Normal training 0.3159 0.1886 0.0265 0.0145
#Drop 21.81% 3.92% 9.56% 8.81%




BE™*T - Related work

1. Negative experience identification
* Predict false-positive interactions with additional user behaviors (e.g., dwell time

and gaze pattern) and auxiliary item features (e.g., textual description)

2. Incorporation of multi-behavior feedback
* Directly incorporate multi-behavior data into recommenders

* e.g., favorite and skip patterns

» Disadvantage
1. Sparsity issue of additional user behaviors
2. Need to collect user satisfaction for each interaction

» This work explores denoising implicit feedback for recommendation without using any
additional data
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BE*T - Preliminary

* False-positive interactions are harder to fit in the early training stages
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Figure 2. The trend of loss over true- and false-positive interactions
in Adressa during the normal training of NeuMF.
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K «
Ne*T Preliminary

False-positive interactions are harder to fit in the early training stages

Deep models fit easy samples first and then memorize the hard samples

True-positive
. False-positive
True-negative

|:| False-negative

Figure 3. Intuitive illustration of large loss of false-positive interactions.
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BMeXT - Method

* Adaptive Denoising Training
dynamically prunes the large-loss interactions during training

* Truncated Loss: truncate the loss values of large-loss interactions to 0 with a
dynamic threshold function

* Reweighted Loss: It adaptively assigns hard samples (i.e., the large-loss ones)
with smaller weights during training
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Be*T -+ Method

e Truncated Loss

0, LCE(“: i) >TAYyi =1

Lrce(u,i) =
Lce(u,i), otherwise,
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Figure 4: Illustration of T-CE loss for the observed user-item
interactions (i.e, samples labeled with ,; = 1). T; denotes
the iteration number and 7(T;) refers to the threshold
function. Note that the dash area indicates the effective loss
and the loss values larger than 7(T;) are truncated.
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Be*T ++ Method

* Truncated Loss
 We devise the threshold function as a drop rate function €(T) since loss values vary
across different datasets
* Drop rate function should have the following properties
a) upper bound
b) €(0)=0
c) increase smoothly
e Various functions
a) linear function
b) polynomial function
c) logarithm function
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B>T -+ Method

 Reweighted Loss
down-weight large-loss interactions, which is defined as

LR-CE(us i) = w(us i)LCE(U, i)

In this work, we employ exponential function to formulate the weight
function:

Fui) =92,

And two loss functions are instantiated on the cross-entropy loss.
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Be*T -+ Method

* Reweighted Loss
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Figure 5. lllustration of R-CE loss for Figure 6: The weight function with different
the observed positive interactions. parameters PB.
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BIE™T - Experiment

Dataset

* Dwell time < 10s as false-positive interactions in the test set
* Adressa

* Rating score [1-5] < 3 as false-positive interactions in the test set
 Amazon-book
* Yelp

Setting

* Training: data with false-positive interactions
* Testing: data without false-positive interactions

Recommenders

e GMF

* NeuMF

 CDAE: CDAE corrupts the observed interactions with random noises, and then employs a MLP model
to reconstruct the original interactions, partly increasing its anti-noise capability.

14
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MeXT Experiment

Table 3: Overall performance of three testing recommenders trained with ADT strategies and normal training over three
datasets. Note that Recall@K and NDCG@K are shorted as R@K and N@K to save space, respectively, and “RI” in the last
column denotes the relative improvement of ADT over normal training on average. The best results are highlighted in bold.

Dataset Adressa Amazon-book Yelp
Metric R@3 R@20 N@3 N@20 | R@50 R@100 N@50 N@100 | R@50 R@100 N@50 N@100| RI
GMF 0.0880 0.2141 0.0780 0.1237 | 0.0609 0.0949 0.0256 0.0331 | 0.0840 0.1339 0.0352 0.0465 -

GMF+T-CE 0.0892 0.2170 0.0790 0.1254 | 0.0707 0.1113 0.0292 0.0382 | 0.0871 0.1437 0.0359 0.0486 | 7.14%
GMF+R-CE 0.0891 0.2142 0.0765 0.1229 | 0.0682 0.1075 0.0275 0.0362 | 0.0861 0.1361 0.0366 0.0480 | 4.34%
NeuMF 0.1416 0.3159 0.1267 0.1886 | 0.0512 0.0829 0.0211 0.0282 | 0.0750 0.1226 0.0304 0.0411 -

NeuMF+T-CE | 0.1418 0.3106 0.1227 0.1840 | 0.0725 0.1158 0.0289 0.0385 | 0.0825 0.1396 0.0323 0.0451 | 15.62%
NeuMF+R-CE | 0.1414 0.3185 0.1266 0.1896 | 0.0628 0.1018 0.0248 0.0334 | 0.0788 0.1304 0.0320 0.0436 | 8.77%
CDAE 0.1394 0.3208 0.1168 0.1808 | 0.0989 0.1507 0.0414 0.0527 | 0.1112 0.1732 0.0471 0.0611 -

CDAE+T-CE |0.1406 0.3220 0.1176 0.1839 | 0.1088 0.1645 0.0454 0.0575 | 0.1165 0.1806 0.0504 0.0652 | 5.36%
CDAE+R-CE | 0.1388 0.3164 0.1200 0.1827 | 0.1022 0.1560 0.0424 0.0542 | 0.1161 0.1801 0.0488 0.0632 | 2.46%

Observations:

1. Our proposed strategy effectively improves the performance of three testing recommenders
over the clean testing set.

2. Truncated Loss performs better in most cases than Reweighted Loss.

3. The strategies achieve the bigger performance increase on NeuMF and GMF than CDAE.
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Be*T -~ Experiment
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Figure 7: Loss comparison of false-positive interactions between Normal
Training (a), Truncated Loss (b) and Reweighted Loss (c).
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BeXT -+ Experiment

0.75 0.20

Truncated Truncated
—— Random —— Random

0.50 [

Recall
Precision

0.25

0.05

0- 00 " 1 " 1 N 1 N 1 N 1 0 00 s | " 1 N 1 N 1 L 1
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000

' Training iteration Training iteration

Figure 8: Recall and precision of false-positive interactions over GMF
trained the Truncated Loss on Amazon-book.
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