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Background: Noisy Implicit Feedback

• Input: User-Item Interactions
1. Explicit Feedback (e.g., rating)
2. Implicit Feedback (e.g., clicks)

• Large volume of implicit feedback alleviates the sparsity issue

• Downside is that they are not as clean in reflecting the actual 
user preference
• e.g., negative reviews, click with quick quit

• Gap between implicit feedback and the actual satisfaction of 
users due to the common existence of noisy interactions
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Background: Noisy Implicit Feedback

• Gap between implicit feedback and the actual satisfaction of 
users due to the common existence of noisy interactions

 𝑦𝑢𝑖: implicit feedback
𝑦𝑢𝑖
∗ : actual user preference

Figure 1. Illustration of four different types of implicit interactions according 
to the value of user satisfaction (𝑦𝑢𝑖

∗ ) and implicit feedback ( 𝑦𝑢𝑖).
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Background: Noisy Implicit Feedback

• Negative effects of false-positive interactions

• Identification of false-positive interactions: auxiliary information of post-interaction behaviors,
e.g., dwell time, rating score

• Normal training: training NeuMF with false-positive interactions
• Clean training: training NeuMF without false-positive interactions
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Related work

1. Negative experience identification
• Predict false-positive interactions with additional user behaviors (e.g., dwell time

and gaze pattern) and auxiliary item features (e.g., textual description)

2. Incorporation of multi-behavior feedback
• Directly incorporate multi-behavior data into recommenders
• e.g., favorite and skip patterns

 Disadvantage
1. Sparsity issue of additional user behaviors
2. Need to collect user satisfaction for each interaction

 This work explores denoising implicit feedback for recommendation without using any
additional data
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Preliminary

• False-positive interactions are harder to fit in the early training stages

Figure 2. The trend of loss over true- and false-positive interactions 
in Adressa during the normal training of NeuMF.
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Preliminary

• False-positive interactions are harder to fit in the early training stages

• Deep models fit easy samples first and then memorize the hard samples

Figure 3. Intuitive illustration of large loss of false-positive interactions.
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Method

• Adaptive Denoising Training
dynamically prunes the large-loss interactions during training

• Truncated Loss: truncate the loss values of large-loss interactions to 0 with a
dynamic threshold function

• Reweighted Loss: It adaptively assigns hard samples (i.e., the large-loss ones)
with smaller weights during training
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Method

• Truncated Loss
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Method

• Truncated Loss
• We devise the threshold function as a drop rate function ϵ(T) since loss values vary 

across different datasets
• Drop rate function should have the following properties

a) upper bound
b) ϵ(0) = 0
c) increase smoothly

• Various functions
a) linear function
b) polynomial function
c) logarithm function
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Method

• Reweighted Loss
down-weight large-loss interactions, which is defined as

In this work, we employ exponential function to formulate the weight
function:

And two loss functions are instantiated on the cross-entropy loss.
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Method

• Reweighted Loss

Figure 5. Illustration of R-CE loss for 
the observed positive interactions.

Figure 6: The weight function with different
parameters β.
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Experiment

Dataset
• Dwell time < 10s as false-positive interactions in the test set

• Adressa
• Rating score [1-5] < 3 as false-positive interactions in the test set

• Amazon-book
• Yelp

Setting
• Training: data with false-positive interactions
• Testing: data without false-positive interactions

Recommenders
• GMF
• NeuMF
• CDAE: CDAE corrupts the observed interactions with random noises, and then employs a MLP model 

to reconstruct the original interactions, partly increasing its anti-noise capability.
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Experiment

Observations:
1. Our proposed strategy effectively improves the performance of three testing recommenders 

over the clean testing set.
2. Truncated Loss performs better in most cases than Reweighted Loss.
3. The strategies achieve the bigger performance increase on NeuMF and GMF than CDAE.
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Experiment

Figure 7: Loss comparison of false-positive interactions between Normal 
Training (a), Truncated Loss (b) and Reweighted Loss (c).
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Experiment

Figure 8: Recall and precision of false-positive interactions over GMF 
trained the Truncated Loss on Amazon-book.
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