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Information-Overload Era

v Information-overload in Internet  
v Weibo：>0.5B posts/day

v Flickr: >0.3B images/day

v Taobao：>1B products

Effective/Efficient information filteringàRecommender System3

Content

Filtering

User



Recommender System

Ø Overview of Recommender System

Ø Stages
Ø Matching (collaborative filtering), ranking

Ø Scenarios
Ø Social, Sequential, Session, Bundle, KG-Based, etc.

Ø Objectives
Ø Accuracy, multi-behavior, diversity, explainability, fairness, etc.

4



Recommender System

Ø Stages
Ø Matching: recall items from all-item pool

Ø Collaborative-filtering models

Models: Collaborative 
Filtering Models

Feature-based 
Recommender Models

Matching Ranking

Stage 1 Stage 2

Hundreds Tens
All 

Products

Millions

user interaction history all other side infoData Sources: 
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Recommender System

Ø Collaborative filtering

1 0 0 1

0 1 0 0

1 1 0 0

1 0 0 1

0/1 Interaction matrix

users

items
5 - - 3

- 2 - -

4 1 - -

3 - - 3

Rating matrix

users

items

OR

• Implicit CF

• Application: e-commerce, ads, etc.

• Data: an interaction matrix 

• Task: estimate positive position

• Measurement: Ranking metrics

• Explicit CF

• Application: movie, POI, etc.

• Data: a rating matrix (e.g. 1-5)

• Task: estimate ratings on unknown positions

• Measurement: Regression metrics
6



Recommender System

Ø Stages
Ø Ranking: rank items from matching stage’s output

Ø Feature-based Recommender Models / CTR

Models: Collaborative 
Filtering Models

Feature-based 
Recommender Models

Matching Ranking

Stage 1 Stage 2

Hundreds Tens
All 

Products

Millions

user interaction history all other side infoData Sources: 
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Recommender System

Ø Feature-based Recommender Models
Ø Also known as Click-Through Rate Prediction

Ø Input: user/item attributes (ID can regarded as a 
kind of attribute)

Figure from:
Cheng, H. T et al. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep 
learning for recommender systems 8



Recommender System
Ø Scenario: social recommendation

Ø Definition: Improve recommendation with social network

Ø Social-trust assumption: friends tend to have similar interests

Ø Input: user interaction data + social relation data 

Ø Output: user-item interaction probability

Social Recommendation Traditional Social RecSys v.s Social E-Commerce RecSys, such as Pinduoduo

Figures are from:
Wu et al. DiffNet++: A Neural Influence and Interest Diffusion Network for Social Recommendation. TKDE 2020
Lin et al. Recommender Systems with Characterized Social Regularization. CIKM 2018 9



Recommender System

Ø Scenario: sequential recommendation
Ø Definition: predict user’s next interaction based on 

historical sequential interactions

Ø Input: user-item interactions at timestamps 𝑡!, 𝑡", … , 𝑡#
Ø Output: user-item interaction at timestamp 𝑡#$!

book necessity sportsport

?
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Recommender System

Ø Scenario: session-based recommendation
Ø Definition: predict next interaction based on anonymous 

short sequences

Ø Input: anonymous behavior sessions 

Ø Output: next interaction of a given session

ØDifference with Sequential Recommendation
Ø Anonymous (No user ID)

Ø Repetitive items in one session

Ø Shorter (as is collected in a short period)
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Recommender System

Ø Scenario: cross-domain recommendation
Ø Definition: recommendation with multi-domain datasets

Ø Improve the target domain’s performance with the auxiliary 
domain

Ø Input: user-item historical interactions in multiple domains

Ø Output: user-item interaction probability at target domain(s)

Ø Challenges
Ø Different user behaviors

Ø Different data distribution

Ø No overlapped user/item

12



Recommender System

Ø Scenario: bundle/list recommendation
Ø Definition: Recommend a bundle that is made with 

several items to user

Ø Input: user-item/bundle historical interactions

Ø Output: user-bundle interaction probability 

Suit BundleApp Bundle Game Bundle
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Recommender System

Ø Scenario: KG-based Recommendation
Ø Definition: Improve recommendation with KG

Ø Input: user-item interaction; knowledge graph

Ø Output: user-item interaction probability 

14



Recommender System

Ø Scenario: multi-behavior recommendation
ØIn today’s information systems, user can interact in multiple 

kinds of forms
ØClick, purchase, adding to cart, like, sharing, etc.

Ø Input:  user-item interaction on multiple behaviors

Ø Output: user-item interaction probability on target behavior(s)

?

15



Recommender System

Ø Objective: accuracy (the most important)
Ø Generally, it can be understood the whether the recommended 

items match with ground truth

Ø Top-K metrics
Ø Hit Ratio (HR), Recall, NDCG, MRR, etc.

Ø More metrics

Ø AUC, GAUC, LogLoss, etc.

Ø Most existing recommender systems are designed towards 
achieving high recommendation accuracy
Ø High accuracy → high CTR/CVR 

→ better user experience and higher business profit

16



Recommender System
Ø Objective: diversity

Ø Recommend diverse items to user while keeping high 
recommendation accuracy

Ø Motivation: only pursuing high accuracy 

→ the recommendation list become redundant

→ user can only be recommended certain categories of items

Ø Metrics (always defined on item category)
Ø Gini, entropy, coverage, etc.

Ø Accuracy should be also considered of course

accurate but redundant accurate and diverse 17



Recommender System

Ø Objective: explainability
Ø What to explain

ØTwo folds: explain 1) the model or 2) recommendation results

Ø How to explain the model 
Ø Design explainable model

Ø Such as attention modules, explicit feature-interaction, etc.

Ø How to explain the results
Ø User/Item-based explanation (CF effect / Social-trust)

Ø Textual explanation (such as key words in reviews)

Ø Knowledge-graph based explanation (via meta-path in KG)

18



Recommender System

Ø Objective: fairness
Ø Motivation: users’ demand on to be fairly treated by RecSys

Figure from Li et al. Personalized Counterfactual Fairness in Recommendation, SIGIR 202119



Recommender System

Ø Objective: privacy
ØWhen and where the privacy is highly concerned

Ø Data collection: recommender may be the attacker

Ø Data/model sharing: target company may be the attacker 

Ø Model/Results public-release: any third-party may be the attacker 

Ø Representative solutions
ØTransferring/sharing nosensitive model parameters

Ø Distributed machine learning model

Ø Sharing item-side information

Ø Data protection mechanism

Ø Data perturbations such as differential privacy-based ones

Ø Federated learning 20
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Graph Neural Networks

Ø A message-passing-framework perspective
Ø Node embedding updated by neighbors

Ø K-layer GNN access K-hop neighbors

Ø Named “Neighborhood propagation/aggregation”

ØRepresentative variants of GNN
Ø Spectral : GCN

Ø Spatial: GraphSage (GAT, etc.)

22



Graph Neural Networks

Ø Pro: Node feature + structural information
Ø Embeddings contain 1) own features 2) neighbors’ features

Ø Keys
Ø Where to deploy GNN layers

Ø Design of propagation/aggregation layer

Ø Depth of GNN layers

Ø Possible Cons
Ø Over-smoothing, computational cost, etc.

23
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Motivation: Why GNN are needed for RecSys

Ø High-order connectivity

Ø Supervision signal

Ø Structured data

2



Motivation: Why GNN are needed for RecSys
Ø High-order connectivity

Ø Recommender systems rely on capturing similarity
Ø User-user (User-CF), item-item (Item-CF), user-item (Model-CF)

Ø GNN extends similarity to high-orders
ØConnectivity among high-order neighbors

Ø Besides, data sparsity issue is well addressed

Figures are from:
Wang et al. Neural Graph Collaborative Filtering, SIGIR 2019

3



Motivation: Why GNN are needed for RecSys

Ø Supervision signal
Ø Users’ feedback can be sparse

ØSemi-supervised signal in GNN learning

Ø Users’ feedback can be various
ØWell handled by various-form graph (nodes and edges)

Figures are from:
Jin et al. Multi-behavior Recommendation with Graph Convolutional Networks, SIGIR 2020 4



Motivation: Why GNN are needed for RecSys
Ø Structured data

Ø The input of today’s recommender system is always structured
Ø Can be utilized to construct graph

Ø Learning from not only features but also structural information
ØStructural reveals implicit signals that cannot be learned by traditional 

works 

Ø GNN’s strong power to learn from graph-structured data

Figure from: 
Wang et al. KGAT: Knowledge Graph Attention Network for Recommendation, KDD 2019
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Ø Graph construction

Ø Message propagation and aggregation

Ø Model optimization

Challenges of GNN-based RecSys

6



Challenges of GNN-based RecSys

Ø Graph construction
Ø Node / edge definition

Ø Heterogeneous/Homogenous

Ø Distinguish more/less important, and even noisy data

Ø Handle graph scale to balance efficiency and utility
ØSampling, filtering, pruning, etc.

Ø Most importantly, the graph must match the key to the problem

Sequential Recommendation
Session-based Recommendation

Figure from: 
Chang et al. Sequential Recommendation with Graph Neural Networks, SIGIR 2021
Wu et al. Session-based Recommendation with Graph Neural Networks, AAAI 2019
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Ø Message propagation and aggregation
Ø How to propagate

Ø Neighbor set (uniform/attentional)

Ø Path/Width

Ø Propagation operations

Ø How to aggregate
Ø Utility & Efficiency

Ø Aggregation operations

Ø Propagate-aggregate Depth

Ø Model optimization
Ø Optimization goal / loss function / data sampling / others

Challenges of GNN-based RecSys

8
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• GNN for Collaborative Filtering
• Q1: Are GNNs suitable for CF?
• NGCF (SIGIR’2019)

• Q2: How to tailor GNNs for CF?
• LightGCN (SIGIR’2020)

• Q3: How to inject self-supervised learning into GNN-based CF?
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• Q2: How to tailor GNNs for KG-based Rec?
• KGIN (WWW’2021)



Q1: Are GNNs suitable for CF?
Recap Collaborative Filtering (CF)

• Collaborative Filtering
• Basic assumption: (behaviorally) similar users would have similar preferences on items

• Collaborative Signal à Behavioral Patterns of Users
• if 𝑢! and 𝑢" have interacted with the same items {𝑖!, 𝑖"}, 𝑢! is likely to have similar

preferences on other items {𝑖#}.

𝒖𝟏 Alice

𝒖𝟐 Annie

𝒖𝟑 Bob

𝒊𝟏 Shape of You

𝒊𝟐 I See Fire

𝒊𝟑 Castle on the Hill

𝒊𝟒 Skin

𝒊𝟓 Lose Yourself



Q1: Are GNNs suitable for CF?
Limitations of Current CF Models

Existing works are not sufficient to yield satisfactory embeddings for CF, due to the implicit
modeling of CF signals in Embedding function.

e.g., matrix factorization (MF)
• Representation Learning: present ID of

users and items as embedding vectors

• Interaction Modeling: inner product.

Representation Learning
• Mainly consider descriptive features (e.g., ID & attributes)
• Without encoding CF signal explicitly

Interaction Modeling
• Reconstruct user-item interactions, defining the objective function for model training
• Have to be well-designed to make up for the deficiency of suboptimal embeddings



Q1: Are GNNs suitable for CF?
Revisiting CF via High-Order Connectivity

High-order Connectivity from User-item Interactions
• Definition: the paths that reach 𝑢! from any node with the path length 𝑙 larger than 1.
• A natural way to encode collaborative signal in the interaction graph structure.

Why 𝑢!may like 𝑖#?
• 𝑢! ← 𝑖& ← 𝑢& ← 𝑖#
• 𝑢! ← 𝑖" ← 𝑢" ← 𝑖#



Q1: Are GNNs suitable for CF?
Modeling First-Order Connectivity

message passed from 𝑖 to 𝑢

message dependent 
on the neighbor

all neighbors of 𝑢self-connections

discount factor

Inspired by GNNs
1. Propagate embeddings recursively on the user-item graph
2. Construct information flows in the embedding space

Ø Information Aggregation

Ø Representation Update

Wang et al. Neural Graph Collaborative Filtering. SIGIR’2019



Q1: Are GNNs suitable for CF?
Modeling High-Order Connectivity

• Stack more embedding propagation layers to explore the high-order connectivity

• The collaborative signal like u1 ← i2 ← u2 ← i4 can be captured in the embedding 
propagation process.

• Collaborative signal can be injected into the representation learning process.

Wang et al. Neural Graph Collaborative Filtering. SIGIR’2019



Q1: Are GNNs suitable for CF?
Aggregating Multi-Grained Connectivity

Wang et al. Neural Graph Collaborative Filtering. SIGIR’2019

The representations at different layers
• emphasize the messages passed over 

different connections

• have different contributions in reflecting 
user preference



• NGCF consistently yields the best performance on all the datasets.

• This verifies the importance of capturing collaborative signal in embedding 
function.
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Q1: Are GNNs suitable for CF?
Experimental Results



Q2: How to tailor GNNs for CF?
Limitations of Directly Applying GNNs on CF

He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR’2020

GNNs NGCF
Original task Node classification Collaborative filtering
Input data Rich node features

• Attributes, text, image
data

Only node ID
• One-hot encoding

Feature
transformation

Distill useful information Generate ID embeddings

Neighborhood
aggregation

Pass messages from
neighbors to the egos

Pass messages from neighbors
to the egos

Nonlinear
activation

Enhance representation
ability

Negatively increases the 
difficulty for model training



Q2: How to tailor GNNs for CF?
Redundant Operations for CF

He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR’2020

• Removing feature transformation (NGCF-f)àconsistent improvement
• Removing nonlinear activation (NGCF-n) à hurt

• Removing nonlinear activation & feature transformation (NGCF-fn) à
significant improvements over NGCF!



Q2: How to tailor GNNs for CF?
Light Graph Convolution

He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR’2020

NGCF

• Graph Convolution Layer

• Layer Combination

• Matrix Form

LightGCN

• Light Graph Convolution Layer

• Layer Combination

• Matrix Form

Only simple weighted sum aggregator is remained
• No feature transformation
• No nonlinear activation
• No self connection



Q2: How to tailor GNNs for CF?
LightGCN

He et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR’2020

importance of the k-th layer embedding in 
constituting the final embedding

• Relation with SGC [2019]:
• By doing layer combination, LightGCN subsumes the effect of self-connection à no need to add 

self-connection in adjacency matrix.

• Relation with APPNP [2019]:
• By setting 𝛼! properly, LightGCN can recover APPNP à use a large K for long-range modeling with 

controllable oversmoothing.



Q2: How to tailor GNNs for CF?
Experimental Results

• LightGCN achieves significant improvements over the state-of-the-art
baselines à outstanding performance

• LightGCN-single (only uses the final layer’s output) performs better than
LightGCN on sparser datasets à can be further simplified.



Ø Sparse Supervision Signal
§ The observed interactions à extremely sparse (e.g., sparsity ≈ 99%)

Ø Skewed Data Distribution
§ Power-law distribution
§ High-degree items exert larger impact on the representation learning

Ø Noises in Interactions
§ Implicit feedback makes the learning more vulnerable to interaction noises

Q3: How to do self-supervised learning?
Common Issues in Recommendation



Q3: How to do self-supervised learning?
Self-supervised Contrastive Learning

CV: MoCo, SimCLR

NLP: BERT

Basic Idea:
1. Create auxiliary pre-text task for the

model from the input data itself
2. Learn the “extra supervision signal” from

the data
3. Pre-train the model on the pre-text task
4. Fine-tune the model on the main task of

interest



Q3: How to do self-supervised learning?
Graph Contrastive Learning

Pre-text task: Image self-discrimination
1. Positive instances

• Two augmented versions of the same image

2. Negative instances
• Two augmented versions of different images

3. Contrastive Learning
• Maximize the agreement of positives, as

compared to that of negatives

Pre-text task: Graph Self-discrimination
1. Positive instances

• Two augmented versions of the same graph

2. Negative instances
• Two augmented versions of different graphs

3. Contrastive Learning
• Maximize the agreement of positives, as

compared to that of negatives



Q3: How to do self-supervised learning?
Graph Augmentation for CF

u Node Dropout (ND)

• Identify the influential nodes from differently augmented views

u Edge Dropout (ED)

• Capture the useful patterns of the local structures of a node

uRandom Walk (RW)

• Layer-sensitive local structure
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Wu et al. Self-supervised Graph Learning for Recommendation. SIGIR’2021



Q3: How to do self-supervised learning?
Self-supervised Graph Learning (SGL)

Ø Contrastive Loss --- InfoNCE
• maximize the agreement of positive pairs
• minimize that of negative pairs

Ø Supervised Loss --- BPR
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Ø Pre-training/Fine-Tuning & Multi-task Training
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Wu et al. Self-supervised Graph Learning for Recommendation. SIGIR’2021



ü SGL achieves significant improvements 
over the state-of-the-art baselines à
outstanding performance

Wu et al. Self-supervised Graph Learning for Recommendation. SIGIR’2021

Q3: How to do self-supervised learning?
Experimental Results
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Q1: Are GNNs Suitable for KG-aware Rec?
CF + KG

Knowledge Graph (KG)
• Item-Item External Connections

𝑖"→
#! 𝑒"

• Background knowledge on items
• Rich semantics & Relations

User-Item Bipartite Graph
• User-Item Direct Interactions

𝑢"→
#" 𝑖"

Collaborative Knowledge Graph
• High-order connectivity between users and items

𝑢"→
#" 𝑖"→

#! 𝑒"
$#! 𝑖% è 𝑢"→

#" 𝑖%

• Narrow down search space
• Explore user interests reasonably
• Offer explanations
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Q1: Are GNNs Suitable for KG-aware Rec?
Limitations of Prior Studies

Existing works suffer from the limited model capacity, due to the suboptimal modeling of
high-order & attributed CF signals.

Supervised Learning-based Path-based Regularization-based
Knowledge Usage Item knowledge è a generic

feature vector
Connectivity è paths
connecting users & items

Graph structure è an
additional item
representations or loss

Relation Usage - To define meta-path Or
select qualified paths

To regularize the learning
of KG embeddings

Limitations • Fail to capture CF signals
• Ignore semantic &

structure information

• Require labor-intensive
feature engineering

• Have rather high
complexity

• Lack explicit modeling
of high-order
relations



Q1: Are GNNs Suitable for KG-aware Rec?
Attentive Embedding Propagation

𝒖𝟏 𝒖𝟐

𝒊𝟏
Shape of You
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ct 𝒓𝟏
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𝒆𝟏
Ed Sheeran

𝒆𝟐
÷ 𝒆𝟑

Pop

𝒆𝟒
Folk

𝒓𝟐
IsSongOf 𝒓𝟑

SungBy
𝒓𝟒

Genre

𝒓𝟓
Genre

Attentive Embedding Propagation, inspired by GNNs
• Propagate embeddings recursively on the graph

• Reveal the importance of a high-order connectivity
via relation-aware attentions

• Construct information flows in the embedding space

Wang et al. Kgat: Knowledge graph attention network for recommendation. KDD’2019



Q1: Are GNNs Suitable for KG-aware Rec?
Knowledge-aware Attention

Ø KGAT: Information Propagation
Ø Information Aggregation

Ø Knowledge-aware Attention

Ø Representation Update

𝒊𝟑

𝒖𝟐

𝒆𝟏
𝒆𝟑

𝒓𝟏

𝒓𝟐
𝒓𝟑

The messages accounting for
first-order connectivity

The set of triples, where the
target node is the head entity

Tail representation

decay factor on 
each propagation

the attention score is dependent on 
the distance of 𝑒* and 𝑒+ in 𝑟’s space

Similar to NGCFWang et al. Kgat: Knowledge graph attention network for recommendation. KDD’2019



Q1: Are GNNs Suitable for KG-aware Rec?
KGAT Framework

Similar to NGCF, the representations 
at different layers
• emphasize the messages passed 

over different connections
• have different contributions in 

reflecting user preference

Wang et al. Kgat: Knowledge 
graph attention network for 
recommendation. KDD’2019
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Q1: Are GNNs Suitable for KG-aware Rec?
Experimental Results

Wang et al. Kgat: Knowledge graph 
attention network for recommendation. 
KDD’2019



Q2: How to Tailor GNNs for KG-aware Rec?
Limitation on User Intents

© Copyright NExT++. All Right Reserved.

None considers user-item relations at a finer-grained level of intents:
• They only model one single relation between users & items, however, a user

generally has multiple intents to adopt items

Basic idea: Similar users have similar preferences on items.

Our idea: Conditioning on similar intents, similar users have
similar preferences on items.

However: Obscure intents would confound the modeling of
users’ behavioral similarity

• “director” & “star” à watch 𝑖& & 𝑖'
• “star” & “partner” à watch 𝑖(

Wang et al. Learning Intents behind 
Interactions with Knowledge Graph for 
Recommendation. WWW’2021



Q2: How to Tailor GNNs for KG-aware Rec?
Limitation on Relational Paths

Information aggregation schemes are mostly node-based:
• They only collect information from neighboring nodes, without differentiating

which paths it comes from.

© Copyright NExT++. All Right Reserved.

Node-based
• 1-hop: {𝑖&, 𝑖(}
• 2-hop: {𝑣&, 𝑣(, 𝑣)}
• 3-hop: {𝑣)}

Path-based
• Relation dependencies

(𝑝&, 𝑟(, 𝑟)) between 𝑣&
& 𝑣)

Basic idea: Node-based aggregation mixes information of
neighborhoods.

Our idea: Treating relational paths as an information channel
to conduct information propagation.

However: It fails to preserve the relation dependencies & 
sequencies carried by paths à Relational paths

Wang et al. Learning Intents behind 
Interactions with Knowledge Graph for 
Recommendation. WWW’2021



Q2: How to Tailor GNNs for KG-aware Rec?
Modeling of User Intents

Step 1. Representation Learning of Intents

• Motivation: Semantics of user intents can be expressed by KG relations.
• Idea: assign each intent with a distribution over KG relations à Use

attention strategy to create intent embedding

Intent embedding shared by all users

Attentive combination over
KG relation embeddings

Quantify importance of relation 𝑣)
to intent 𝑝

Wang et al. Learning Intents behind Interactions with Knowledge Graph for 
Recommendation. WWW’2021



Q2: How to Tailor GNNs for KG-aware Rec?
Modeling of User Intents

Step 2. Independence Modeling of Intents

• Motivation: Different intents should contain different & unique information.
• Idea: encourage the representations of intents to differ from each others à

Add independence regularization to intent embeddings

• Mutual Information

• Distance Correlation

Minimize the information amount
between any two different intents.

Minimize the associations of any
two different intents.Wang et al. Learning Intents behind Interactions with Knowledge Graph for 

Recommendation. WWW’2021



Q2: How to Tailor GNNs for KG-aware Rec?
Modeling of Relational Paths

Step 1. Aggregation over Intent Graph (IG)

• Motivation: IG contains rich collaborative information of users.
• Idea: users with similar intents would exhibit similar preference towards items

à Intent-aware aggregation for user-intent-item triplet (𝑢, 𝑝, 𝑖)

Element-wise product between
intent 𝑝 & historical item 𝑖.

Generate user-specific intent
representations

Wang et al. Learning Intents behind Interactions with Knowledge Graph for 
Recommendation. WWW’2021



Q2: How to Tailor GNNs for KG-aware Rec?
Modeling of Relational Paths

• Motivation: KG reflects content relatedness among items.
• Idea: each KG entity has different semantics in different relational contexts à

Relation-aware aggregation for item-relation-entity triplet (𝑖, 𝑟, 𝑣)

Element-wise product between
relation 𝑟 & connected entity 𝑣.

Step 2. Aggregation over Knowledge Graph

Wang et al. Learning Intents behind Interactions with Knowledge Graph for 
Recommendation. WWW’2021



Q2: How to Tailor GNNs for KG-aware Rec?
KGIN Framework

Representation of item, which memorizes the relational signals
carried by the relational paths

• reflects the interactions among relations
• preserves the holistic semantics of paths

Knowledge Graph-based Intent Network (KGIN)

Wang et al. Learning Intents behind 
Interactions with Knowledge Graph for 
Recommendation. WWW’2021



Q2: How to Tailor GNNs for KG-aware Rec?
Experimental Results

• KGIN consistently yields the best performance on all three datasets.

• This verifies the importance of:
• Capturing collaborative signal in intent-aware interaction graphs;
• Preserving holistic semantics of paths;

• KGIN can better encode collaborative signals & item knowledge into user and 
item representations.
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• Background 
• Recommender System
• Graph Neural Network

•Motivations and Challenges of GNN-based RecSys

• Recent Advances of GNN-based RecSys

•Open Problems and Future Directions

Outline



Recent advances of GNN-based RecSys

• Social Recommendation
• Sequential Recommendation
• Session-based Recommendation
• KG-Based Recommendation
• Bundle Recommendation

• Accuracy
• Multi-behavior
• Diversity
• Explainability
• Fairness
• Privacy

• Matching (Collaborative Filtering)
• Ranking (Feature-based / CTR)

Stage Scenario

Objective

Recommender System

Price-aware recommendation with graph convolutional networks
Zheng, Y., Gao, C., He, X., Li, Y., & Jin, D. ICDE 2020

2



• The price factor, which directly determines whether a user is
willing to pay (WTP) for an item, is an important feature,
while different from other features

• Price and other features play orthogonal roles in user
decision making process

Background

33

Price

WTP

Other Features

Interest

Purchase



Background

44

• Attribute-aware Recommendation incorporates all kinds of
features into Collaborative Filtering (CF) to boost
recommendation accuracy

• Features:
• user feature
• item feature
• context feature

Youtube’s RS



Background

55

• Trivial idea: use existing attribute-aware RS to model price
• Most attribute-aware recommendation systems treat

different features equally
• Different features are captured in a generic and unified way
• e.g. FM, DeepFM, DLRM
• Features are usually fed into

the model as dense features,
sparse features, embedding
features

FB’s DLRM



• Implicit (unstated price awareness)
• Users seldomly speak out their preference or sensitivity

on item price explicitly
• The price awareness can only be implicitly inferred from

purchase history

• Complex (category-dependent influence)
• Price awareness or sensitivity is different across distinct

product categories
• e.g. a sport lover would have high tolerance on the price 

of a sport equipment, but not on alcoholic drinks. 

Challenges

66



• Purchase history as price-category heatmap of 3 randomly
selected users from an e-commerce dataset

Challenges

77

same price level

near price levels

far off price levels



Methodology: Our PUP Model

• Price-aware User Preference-modeling (PUP) 
• Input:
• Interaction Matrix 𝑅
• price of items 𝑝
• category of items 𝑐

• Output:
• estimated interaction probability given a user-item

pair (𝑢, 𝑖)
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Methodology: Our PUP Model

• two-branch solution
• global branch: price as a global effect representing

overall purchasing power (unrelated to category)
• category branch: category-dependent influence of 

price factor 

• Unified Graph Construction
• Graph Convolutional Encoder
• Pairwise-interaction Based Decoder
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Methodology: Our PUP Model

• Why we use GCN?

• Capture CF effect
• Learn robust representations for heterogeneous entities
• Model high-order similarity

𝑝!

𝑐!

𝑢!

𝑢"

𝑢#

𝑖!

𝑖"

𝑖#

𝑖$

𝑐"

𝑝"

𝑝#

10



Methodology: Our PUP Model

• Graph Construction
• Nodes: user, item, price, category
• Edges: user-item, item-price, item-category

• Price: we discretize price within each category using
uniform quantization 

𝑖

𝑐

𝑝

𝑢

11

challenge 1 addressed

challenge 2 addressed



Methodology: Our PUP Model

• Graph Convolutional Encoder
• Embedding Layer: transform one-hot feature to

embedding feature
• Graph Convolutional Layer: embedding propagation and

neighbor aggregation
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Methodology: Our PUP Model

• Pairwise-interaction Based Decoder
• Global branch:

𝑠! = 𝑒"!# 𝑒$! + 𝑒"!# 𝑒%! + 𝑒$!# 𝑒%!

• Category branch:
𝑠& = 𝑒"&# 𝑒%& + 𝑒"&# 𝑒&& + 𝑒&&# 𝑒%&

• Final prediction:
𝑠 = 𝑠! + 𝛼𝑠&

user’s interest and overall
purchasing power

user’s category-dependent
price awareness

balance between two aspects

13

challenge 2 addressed



Methodology: Our PUP Model

• Model training
• Semi-supervised graph encoder
• Encoding: learn expressive representations for all

kinds of nodes
• Decoding: only focus on reconstructing user-item

edges

• Loss function
• BPR:

𝐿 = /
(",$,))∈𝒪

− ln 𝜎 𝑠 𝑢, 𝑖 − 𝑠 𝑢, 𝑗 + 𝜆 Θ -

14



Experiments

15

• Datasets
• Two real-world datasets: restaurant and e-commerce

• Evaluation protocols:
• Top-K evaluation with two metrics Recall and NDCG.

• Baseline
• Non-personalized: ItemPop
• CF: BPR-MF (UAI2009), GC-MC (KDD2018 Deep 

Learning Day) , NGCF (SIGIR2019)
• Attribute-aware: FM (ICDM2010), DeepFM (IJCAI2017)
• Price-aware: PaDQ-CMF (SIGIR2014)

dataset #users #items #cate #price #interaction

Yelp restaurant 20637 18907 89 4 505785

Beibei 52767 39303 110 10 677065



Experiments

16

• Research questions
• RQ1: How does PUP perform compared with other

baseline methods ?
• RQ2: Could PUP recommend items which match users’

price awareness ?
• RQ3: Could price help recommendation system in cold

start scenarios ?



Experiments

1717

• Overall Comparison



Experiments

1818

• Observations

• Attribute-aware methods generally outperforms trivial CF
methods, e.g. FM & DeepFM vs BPR-MF. Incorporating
price into recommendation improves accuracy.



Experiments

1919

• Observations

• Models based on neural networks and graph neural
networks achieve better results than other models in
most cases. It is promising to introduce deep models,
especially GNN models into representation learning.



Experiments

2020

• Observations

• Our proposed PUP achieves the best performance. The 
improvements are statistically significant for p < 0.005.



Experiments

2121

• User study

• PUP successfully recommend items matching users’ price
awareness

non-sensitive

sensitive

housewares

toys

recommend
avg price

0.51

4.75

user 50432 user 30901

skirts

books

2.76

0.08
recommend
avg price

user 36035

high heels

2.86

makeup

0.30

user 12359

jeans

slipper

0.58

3.53

user



Experiments

2222

• Utilizing price to tackle cold-start problem
• Recommend items of unexplored categories
• CIR (Category Item Recommendation): recommend from

unexplored “positive” categories in the test set
• UCIR (Unexplored Category Item Recommendation):

recommend from all categories not explored in the
training set

• Example:
• All categories {A, B, C, D, E, F, G}
• Explored categories {A, B, C} in training set
• Explored category {E} in test set
• CIR: recommend from all items of category E
• UCIR: recommend from all items of category {D, E, F, G}



Experiments

2323

• Utilizing price to tackle cold-start problem

• Graph based methods outperform other methods: items
of cold-start categories are more reachable on the graph

• User’s price awareness could bridge the gap between
explored and cold-start categories



Conclusion

2424

• 1. We highlight the significance of incorporating price
into recommendation and analyze the two difficulties in
capturing price (unstated price awareness and category
dependent influence).

• 2. we propose a GCN-based method named PUP and 
adopt a two-branch structure which is specifically 
designed to separately model the global and category-
dependent effect of the price awareness 

• 3. Our proposed method could recommend items
matching users’ price awareness and alleviate the cold-
start problem when recommending items from
unexplored categories.



Recent advances of GNN-based RecSys

• Social Recommendation
• Sequential Recommendation
• Session-based Recommendation
• KG-based Recommendation
• Bundle Recommendation

• Accuracy
• Multi-behavior
• Diversity
• Explainability
• Fairness
• Privacy

• Matching (Collaborative Filtering)
• Ranking (Feature-based / CTR)

Stage Scenario

Objective

Recommender System

Sequential Recommendation with Graph Neural Networks. 
Chang, J., Gao, C., Zheng, Y., Hui, Y., Niu, Y., Song, Y., ... & Li, Y.  SIGIR 2021 25



Background

2626

§ What and why is sequential recommendation(SR)?

book necessity sportsport

few days few days few days

funny beauty delicacydelicacy

few minutes few minutes few minutes



Background

27

§ Sequential recommendation(SR) aims to leverage users’ 
historical behaviors to predict their next interaction.

§ The accumulation of user behaviors on e-commerce and
content platforms makes it become an important task.

improve user 
experience

predict users’ 
current interest

capture users’
general interest

increase business 
sales

enhance users’ 
current willingness

strengthen users’ 
loyalty

e-commerce

content 

LightGCN: Simplifying and Powering Graph 
Convolution Network for Recommendation

Xiangnan He
Kuan Deng
Yongdong Zhang

Yan LiXiang Wang Meng Wang



q Input: 
§ the interaction history 𝑥., 𝑥-, … 𝑥/ for 

each user
q Output: 

§ the probability that a user with interaction 
history 𝑥., 𝑥-, … 𝑥/ will interact with the 
target item 𝑥0 at the n + 1 −𝑡ℎ step

Problem Definition

2828

𝒙𝟑𝒙𝟏 𝒙𝟐 … 𝒙𝒏)𝟐 𝒙𝒏)𝟏 𝒙𝒏 𝒙𝒕

?



Related Work

2929

Traditional Recommendations:
• model user-item interaction in a 

static fashion.
NCF [WWW'17] 

LightGCN [SIGIR'20]

GRU4REC[ICLR'16]
Caser[WSDM'18] 
DIEN [AAAI'19]

PLASTIC [IJCAI'18]
SLi-Rec [IJCAI'19]

FPMC [WWW'10]
DIN [KDD'18] 

Mainstream methods in SR:
• leverage RNN/CNN to summarize 

the behavioral sequences.

Early efforts in SR:
• use designed rules or attention 

mechanism to assign weights.

Recent solutions in SR:
• jointly model long/short-term 

interests to avoid forgetting.



Limitations of Existing Work

3030

Traditional Recommendations:
• is only able to capture users’ 

generalized preferences.

Mainstream methods in SR:
• have short-term bottleneck due to 

vanishing gradient problem.

Early efforts in SR:
• are hard to learn the dynamic 

pattern of user interest.

Recent solutions in SR:
• are challenging  to divide and 

integrate long/short-term interest.

!!!" !# … !$%# !$%" !$

!!!" !# … !$%# !$%" !$

? ? ?

!!!" !# … !$%# !$%" !$

X

!!!" !# … !$%# !$%" !$

long-term interest ? short-term interest ?



1. User behaviors in long sequences reflect implicit and 
noisy preference signals. 
§ Users may interact with many items with implicit 

feedback, such as clicks and watches.
§ Unlike explicit feedback that can infer preferences, 

single ones cannot reflect user’s real interest.
§ Useless records will serve as noises in behavior 

history, worsening the modeling of real interests.

Challenges

3131

𝒙𝟑𝒙𝟏 𝒙𝟐 … 𝒙𝒏)𝟐 𝒙𝒏)𝟏 𝒙𝒏 𝒙𝒕

?
X X X X

useless noises useless noises



2. User preferences are always drifting over time due 
to their diversity. 
§ User preferences are changing due to their

diversity, no matter slow or fast.
§ Some preferences may be activated and some 

others may have been deactivated.
§ It is challenging to model how they change in the 

implicit and noisy history sequence.

Challenges

3232

𝒙𝟑𝒙𝟏 𝒙𝟐 … 𝒙𝒏)𝟐 𝒙𝒏)𝟏 𝒙𝒏 𝒙𝒕
X X

?

activated interest deactivated interest 



SURGE Model Framework
q Interest Graph Construction

Solve Challenge 1: by explicitly integrating and 
distinguishing different types of preferences

33
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Interest Fusion 
and Extraction

a) Cluster-aware attention
score of the target node

b) Query-aware attention 
score of the source node

c) Interest fusion via 
attentive propagation

d) Soft cluster assignment 
with regularizations

B. Interest-fusion Graph Convolutional Layer. C. Interest-extraction Graph Pooling Layer.

e) Interest extraction via
graph pooling

A. Interest Graph Construction. D. Prediction Layer.

Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h

0
2, . . . ,

~h0n }, ~h
0
i 2 R

d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a

Interest Graph Construction

Interest-fusion Graph 
Convolutional Layer

Interest-extraction 
Graph Pooling Layer

Prediction Layer



SURGE Model Framework
q Interest-fusion Graph Convolutional Layer

Solve Challenge 1: by strengthening important 
behaviors and weakening noise behaviors.
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Interest Fusion 
and Extraction

a) Cluster-aware attention
score of the target node

b) Query-aware attention 
score of the source node

c) Interest fusion via 
attentive propagation

d) Soft cluster assignment 
with regularizations

B. Interest-fusion Graph Convolutional Layer. C. Interest-extraction Graph Pooling Layer.

e) Interest extraction via
graph pooling

A. Interest Graph Construction. D. Prediction Layer.

Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h

0
2, . . . ,

~h0n }, ~h
0
i 2 R

d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a

Interest Graph Construction

Interest-fusion Graph 
Convolutional Layer

Interest-extraction 
Graph Pooling Layer

Prediction Layer



SURGE Model Framework
q Interest-extraction Graph Pooling Layer

Solve Challenge 2: by adaptively reserving 
dynamically-activated core preferences.
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Interest Fusion 
and Extraction

a) Cluster-aware attention
score of the target node

b) Query-aware attention 
score of the source node

c) Interest fusion via 
attentive propagation

d) Soft cluster assignment 
with regularizations

B. Interest-fusion Graph Convolutional Layer. C. Interest-extraction Graph Pooling Layer.

e) Interest extraction via
graph pooling

A. Interest Graph Construction. D. Prediction Layer.

Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h
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as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a
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Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h

0
2, . . . ,

~h0n }, ~h
0
i 2 R

d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a
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Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h
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d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a
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Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h
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d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a
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Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h
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d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a

Each interacted item is converted to
an vertex 𝒗 ∈ 𝑽 with |𝑽| = 𝒏

Trainable weight 𝒘 adaptively 
highlights different dimensions.

Multi-head metric increases the expressive 
power and stabilize the learning process.

Each edge 𝒊, 𝒋, 𝑨𝒊,𝒋 ∈ 𝑬 indicates 
whether item 𝒊 is related to item 𝒋.
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Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h
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d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a
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Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h

0
2, . . . ,

~h0n }, ~h
0
i 2 R

d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a

Each interacted item is converted to
an vertex 𝒗 ∈ 𝑽 with |𝑽| = 𝒏

𝑹𝒂𝒏𝒌 returns the value of the 𝜺𝒏𝟐-th 
largest value in the metric matrix M.

𝒏 is the number of nodes and 𝜺
controls the overall sparsity.

Each edge 𝒊, 𝒋, 𝑨𝒊,𝒋 ∈ 𝑬 indicates 
whether item 𝒊 is related to item 𝒋.

q A. Interest Graph Construction.



§ 1. Cluster-aware attention: 
• identifies whether the target node is the center of the cluster.

Methodology
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𝒌-hop neighborhood of the target node 𝒗𝒊
is the receptive field of the cluster 𝒄(𝒗𝒊).

a) Cluster-aware attention
score of the target node

The target node 𝒗𝒊 is regarded 
as a medoid of a cluster 𝒄(𝒗𝒊).
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Interest Fusion 
and Extraction

a) Cluster-aware attention
score of the target node

b) Query-aware attention 
score of the source node

c) Interest fusion via 
attentive propagation

d) Soft cluster assignment 
with regularizations

B. Interest-fusion Graph Convolutional Layer. C. Interest-extraction Graph Pooling Layer.

e) Interest extraction via
graph pooling

A. Interest Graph Construction. D. Prediction Layer.

Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h

0
2, . . . ,

~h0n }, ~h
0
i 2 R

d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a

Interest Graph Construction

Interest-fusion Graph 
Convolutional Layer

Interest-extraction 
Graph Pooling Layer

Prediction Layer

residual connection and a nonlinearity function � :
~h0i = �

⇣
Wa · Aggregate

⇣
Ei j ⇤ ~hj |j 2 Ni

⌘
+ ~hi
⌘
. (4)

Note that aggregation function can be a function such as Mean,
Sum, Max, GRU, etc. We use the simple sum function here and leave
other functions for future exploration. To stabilize the attention
mechanism’s learning process, we employ multi-head attention
similar to [25, 26]. Precisely, � independent attention mechanisms
execute the above transformation, and then their embeddings are
concatenated as the following output representation:

~h0i =

�

k
�=1

�

⇣
Wa

�
· Aggregate

⇣
E
�
i j ⇤

~hj |j 2 Ni
⌘
+ ~hi
⌘
, (5)

where k represents concatenation operation, E�i j are normalized
attention coe�cients obtained by the � -th attention head, andWa�

is the corresponding linear transformation’s weight matrix. It is
worth noting that the �nal returned output ~h0 will correspond to
�d
0 dimension embeddings (rather than d 0) for each node.

3.2.2 Cluster- and query-aware a�ention. To strengthen
important signals and weaken noise signals when integrating inter-
ests, we propose a cluster and query-aware attention mechanism.
We uses the attention coe�cients to redistribute weights on edge
information in the process of message passing. The attention mech-
anism considers the following two aspects.

Firstly, we assume that the target node �i ’s neighborhood will
form a cluster and regard the target node�i in the graph as amedoid
of a cluster c (�i ). We de�ne the k-hop neighborhood of the target
node �i as the receptive �eld of the cluster. The average value of all
nodes’ embedding in the cluster ~hic represents the cluster’s average
information. To identify whether the target node is the center of
the cluster, the target node embedding and its cluster embedding
are used to calculate the following attention score,

�i = Attentionc (Wc~hi k ~hic kWc~hi � ~hic ), (6)

where Wc is a transformation matrix, k is the concatenation op-
erator and � denotes the Hadamard product. In our experiments,
the attention mechanism Attentionc is a two-layers feedforward
neural network with the LeakyReLU as activation function.

Secondly, in order to serve the downstream dynamic pooling
method and learn the user interest’s independent evolution for
di�erent target interests, the correlation between the source node
embedding ~hj and the target item embedding ~ht should also be
considered. If the source node is more correlated with the query
item, its weight in the aggregation towards the target node will be
more signi�cant, and vice versa. Since only relevant behaviors can
play a role in the �nal prediction, we only keep relevant information,
and irrelevant information will be discarded during aggregation.

�j = Attentionq (Wq~hj k ~ht kWq~hj � ~ht ), (7)

where Wq is a transformation matrix, k is the concatenation op-
erator and � denotes the Hadamard product. In our experiments,
the attention mechanism Attentionq is a two-layers feedforward
neural network applying the LeakyReLU nonlinearity.

We follow the additive attention mechanism [1] to consider
the factors of cluster and query simultaneously. We sum the target
node’s cluster score and the source node’s query score as the update

weight of the source node j to the target node i . To make coe�cients
easily comparable across di�erent nodes, we employed the softmax
function to normalize them across all choices of j. The attention
coe�cients Ei j is computed as:

Ei j = so�maxj (�i + �j ) =
exp(�i + �j )P

k 2Ni exp(�i + �k )
, (8)

where neighborhood Ni of node i includes node i itself. In the
context of containing self-loop propagation (when j equals i), �i
controls how much information the target node can receive, and
�j controls how much information the source node can send.

3.3 Interest-extraction Graph Pooling Layer
The fusion of implicit interest signals to explicit interest signals is
completed by performing information aggregation on the interest
graph. In this section, we use the graph pooling method [17, 22, 37]
to further extract the fused information. Similar to the downsam-
pling of feature maps in Pooling in CNN, graph pooling aims to
downsize the graph reasonably. Through the coarsening of the con-
structed graph structure, loose interest is transformed into tight
interest and its distribution is maintained.

3.3.1 Interest extraction via graph pooling. To obtain the
pooled graph, a cluster assignment matrix is necessary [22, 37]. As-
suming that a soft cluster assignment matrix S 2 Rn⇥m exists, it can
pool node information into cluster information.m is a pre-de�ned
model hyperparameter that re�ects the degree of pooling, where
m < n. Given the node embeddings {~h01, ~h

0
2, . . . ,

~h0n } and the node
scores {�1,�2, . . . ,�n } of the raw graph, the cluster embeddings and
scores of the coarsened graph can be generated as follows,

{~h⇤1,
~h⇤2, . . . ,

~h⇤m } = S
T
{~h01,

~h02, . . . ,
~h0n }, (9)

{�
⇤
1 ,�
⇤
2 , . . . ,�

⇤
m } = S

T
{�1,�2, . . . ,�n }, (10)

where�i obtained by applying softmax on �i represents importance
score of the i-th node. Each row of assignment matrix S corresponds
to one of the n nodes, and each column corresponds to one of
them clusters. It provides a soft assignment of each node to the
corresponding cluster. Above equations aggregate node embeddings
and scores according to the cluster assignment S , thereby generating
new embedding and score for each of them clusters.

Next, we discuss how to learn di�erentiable soft clusters assign-
ment S for nodes. We use the GNN architecture[37] to generate the
assignment matrix. The probability matrix of the assignment map-
ping is obtained through standard message passing and the softmax
function, based on the adjacency matrix and the node embedding.

Si : = so�max
⇣
Wp · Aggregate

⇣
Ai j ⇤ ~h

0
j |j 2 Ni

⌘⌘
, (11)

where the output dimension of weight matrixWp corresponds to
the maximum number of clustersm. The softmax function is used
to obtain the probability of the i-th node being divided into one
ofm clusters. It is worth noting that we can obtain the adjacency
matrix A⇤ of the pooled graph by performing STAS , ensuring the
connectivity between clusters. Then, the repetition of the above
equations can perform multi-layer pooling to achieve hierarchical
compression of interest.

q B. Interest-fusion Graph Convolutional Layer



§ 1. Query-aware attention: 
• identifies interests’ independent evolution for different target item.

residual connection and a nonlinearity function � :
~h0i = �

⇣
Wa · Aggregate

⇣
Ei j ⇤ ~hj |j 2 Ni

⌘
+ ~hi
⌘
. (4)

Note that aggregation function can be a function such as Mean,
Sum, Max, GRU, etc. We use the simple sum function here and leave
other functions for future exploration. To stabilize the attention
mechanism’s learning process, we employ multi-head attention
similar to [25, 26]. Precisely, � independent attention mechanisms
execute the above transformation, and then their embeddings are
concatenated as the following output representation:

~h0i =

�

k
�=1

�

⇣
Wa

�
· Aggregate

⇣
E
�
i j ⇤

~hj |j 2 Ni
⌘
+ ~hi
⌘
, (5)

where k represents concatenation operation, E�i j are normalized
attention coe�cients obtained by the � -th attention head, andWa�

is the corresponding linear transformation’s weight matrix. It is
worth noting that the �nal returned output ~h0 will correspond to
�d
0 dimension embeddings (rather than d 0) for each node.

3.2.2 Cluster- and query-aware a�ention. To strengthen
important signals and weaken noise signals when integrating inter-
ests, we propose a cluster and query-aware attention mechanism.
We uses the attention coe�cients to redistribute weights on edge
information in the process of message passing. The attention mech-
anism considers the following two aspects.

Firstly, we assume that the target node �i ’s neighborhood will
form a cluster and regard the target node�i in the graph as amedoid
of a cluster c (�i ). We de�ne the k-hop neighborhood of the target
node �i as the receptive �eld of the cluster. The average value of all
nodes’ embedding in the cluster ~hic represents the cluster’s average
information. To identify whether the target node is the center of
the cluster, the target node embedding and its cluster embedding
are used to calculate the following attention score,

�i = Attentionc (Wc~hi k ~hic kWc~hi � ~hic ), (6)

where Wc is a transformation matrix, k is the concatenation op-
erator and � denotes the Hadamard product. In our experiments,
the attention mechanism Attentionc is a two-layers feedforward
neural network with the LeakyReLU as activation function.

Secondly, in order to serve the downstream dynamic pooling
method and learn the user interest’s independent evolution for
di�erent target interests, the correlation between the source node
embedding ~hj and the target item embedding ~ht should also be
considered. If the source node is more correlated with the query
item, its weight in the aggregation towards the target node will be
more signi�cant, and vice versa. Since only relevant behaviors can
play a role in the �nal prediction, we only keep relevant information,
and irrelevant information will be discarded during aggregation.

�j = Attentionq (Wq~hj k ~ht kWq~hj � ~ht ), (7)

where Wq is a transformation matrix, k is the concatenation op-
erator and � denotes the Hadamard product. In our experiments,
the attention mechanism Attentionq is a two-layers feedforward
neural network applying the LeakyReLU nonlinearity.

We follow the additive attention mechanism [1] to consider
the factors of cluster and query simultaneously. We sum the target
node’s cluster score and the source node’s query score as the update

weight of the source node j to the target node i . To make coe�cients
easily comparable across di�erent nodes, we employed the softmax
function to normalize them across all choices of j. The attention
coe�cients Ei j is computed as:

Ei j = so�maxj (�i + �j ) =
exp(�i + �j )P

k 2Ni exp(�i + �k )
, (8)

where neighborhood Ni of node i includes node i itself. In the
context of containing self-loop propagation (when j equals i), �i
controls how much information the target node can receive, and
�j controls how much information the source node can send.

3.3 Interest-extraction Graph Pooling Layer
The fusion of implicit interest signals to explicit interest signals is
completed by performing information aggregation on the interest
graph. In this section, we use the graph pooling method [17, 22, 37]
to further extract the fused information. Similar to the downsam-
pling of feature maps in Pooling in CNN, graph pooling aims to
downsize the graph reasonably. Through the coarsening of the con-
structed graph structure, loose interest is transformed into tight
interest and its distribution is maintained.

3.3.1 Interest extraction via graph pooling. To obtain the
pooled graph, a cluster assignment matrix is necessary [22, 37]. As-
suming that a soft cluster assignment matrix S 2 Rn⇥m exists, it can
pool node information into cluster information.m is a pre-de�ned
model hyperparameter that re�ects the degree of pooling, where
m < n. Given the node embeddings {~h01, ~h

0
2, . . . ,

~h0n } and the node
scores {�1,�2, . . . ,�n } of the raw graph, the cluster embeddings and
scores of the coarsened graph can be generated as follows,

{~h⇤1,
~h⇤2, . . . ,

~h⇤m } = S
T
{~h01,

~h02, . . . ,
~h0n }, (9)

{�
⇤
1 ,�
⇤
2 , . . . ,�

⇤
m } = S

T
{�1,�2, . . . ,�n }, (10)

where�i obtained by applying softmax on �i represents importance
score of the i-th node. Each row of assignment matrix S corresponds
to one of the n nodes, and each column corresponds to one of
them clusters. It provides a soft assignment of each node to the
corresponding cluster. Above equations aggregate node embeddings
and scores according to the cluster assignment S , thereby generating
new embedding and score for each of them clusters.

Next, we discuss how to learn di�erentiable soft clusters assign-
ment S for nodes. We use the GNN architecture[37] to generate the
assignment matrix. The probability matrix of the assignment map-
ping is obtained through standard message passing and the softmax
function, based on the adjacency matrix and the node embedding.

Si : = so�max
⇣
Wp · Aggregate

⇣
Ai j ⇤ ~h

0
j |j 2 Ni

⌘⌘
, (11)

where the output dimension of weight matrixWp corresponds to
the maximum number of clustersm. The softmax function is used
to obtain the probability of the i-th node being divided into one
ofm clusters. It is worth noting that we can obtain the adjacency
matrix A⇤ of the pooled graph by performing STAS , ensuring the
connectivity between clusters. Then, the repetition of the above
equations can perform multi-layer pooling to achieve hierarchical
compression of interest.
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Irrelevant source node 𝒗𝒋 information 
will be discarded during aggregation.

a) Cluster-aware attention
score of the target node

b) Query-aware attention 
score of the source node

Only relevants with target item 𝒙𝒕
can play a role in the prediction.
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Interest Fusion 
and Extraction

a) Cluster-aware attention
score of the target node

b) Query-aware attention 
score of the source node

c) Interest fusion via 
attentive propagation

d) Soft cluster assignment 
with regularizations

B. Interest-fusion Graph Convolutional Layer. C. Interest-extraction Graph Pooling Layer.

e) Interest extraction via
graph pooling

A. Interest Graph Construction. D. Prediction Layer.

Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h

0
2, . . . ,

~h0n }, ~h
0
i 2 R

d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a

Interest Graph Construction

Interest-fusion Graph 
Convolutional Layer

Interest-extraction 
Graph Pooling Layer

Prediction Layer

q B. Interest-fusion Graph Convolutional Layer



§ 1. Cluster- and query-aware attention: 
• maps the importance of target node 𝑣! on it’s neighbor source node 𝑣".

residual connection and a nonlinearity function � :
~h0i = �

⇣
Wa · Aggregate

⇣
Ei j ⇤ ~hj |j 2 Ni

⌘
+ ~hi
⌘
. (4)

Note that aggregation function can be a function such as Mean,
Sum, Max, GRU, etc. We use the simple sum function here and leave
other functions for future exploration. To stabilize the attention
mechanism’s learning process, we employ multi-head attention
similar to [25, 26]. Precisely, � independent attention mechanisms
execute the above transformation, and then their embeddings are
concatenated as the following output representation:

~h0i =

�

k
�=1

�

⇣
Wa

�
· Aggregate

⇣
E
�
i j ⇤

~hj |j 2 Ni
⌘
+ ~hi
⌘
, (5)

where k represents concatenation operation, E�i j are normalized
attention coe�cients obtained by the � -th attention head, andWa�

is the corresponding linear transformation’s weight matrix. It is
worth noting that the �nal returned output ~h0 will correspond to
�d
0 dimension embeddings (rather than d 0) for each node.

3.2.2 Cluster- and query-aware a�ention. To strengthen
important signals and weaken noise signals when integrating inter-
ests, we propose a cluster and query-aware attention mechanism.
We uses the attention coe�cients to redistribute weights on edge
information in the process of message passing. The attention mech-
anism considers the following two aspects.

Firstly, we assume that the target node �i ’s neighborhood will
form a cluster and regard the target node�i in the graph as amedoid
of a cluster c (�i ). We de�ne the k-hop neighborhood of the target
node �i as the receptive �eld of the cluster. The average value of all
nodes’ embedding in the cluster ~hic represents the cluster’s average
information. To identify whether the target node is the center of
the cluster, the target node embedding and its cluster embedding
are used to calculate the following attention score,

�i = Attentionc (Wc~hi k ~hic kWc~hi � ~hic ), (6)

where Wc is a transformation matrix, k is the concatenation op-
erator and � denotes the Hadamard product. In our experiments,
the attention mechanism Attentionc is a two-layers feedforward
neural network with the LeakyReLU as activation function.

Secondly, in order to serve the downstream dynamic pooling
method and learn the user interest’s independent evolution for
di�erent target interests, the correlation between the source node
embedding ~hj and the target item embedding ~ht should also be
considered. If the source node is more correlated with the query
item, its weight in the aggregation towards the target node will be
more signi�cant, and vice versa. Since only relevant behaviors can
play a role in the �nal prediction, we only keep relevant information,
and irrelevant information will be discarded during aggregation.

�j = Attentionq (Wq~hj k ~ht kWq~hj � ~ht ), (7)

where Wq is a transformation matrix, k is the concatenation op-
erator and � denotes the Hadamard product. In our experiments,
the attention mechanism Attentionq is a two-layers feedforward
neural network applying the LeakyReLU nonlinearity.

We follow the additive attention mechanism [1] to consider
the factors of cluster and query simultaneously. We sum the target
node’s cluster score and the source node’s query score as the update

weight of the source node j to the target node i . To make coe�cients
easily comparable across di�erent nodes, we employed the softmax
function to normalize them across all choices of j. The attention
coe�cients Ei j is computed as:

Ei j = so�maxj (�i + �j ) =
exp(�i + �j )P

k 2Ni exp(�i + �k )
, (8)

where neighborhood Ni of node i includes node i itself. In the
context of containing self-loop propagation (when j equals i), �i
controls how much information the target node can receive, and
�j controls how much information the source node can send.

3.3 Interest-extraction Graph Pooling Layer
The fusion of implicit interest signals to explicit interest signals is
completed by performing information aggregation on the interest
graph. In this section, we use the graph pooling method [17, 22, 37]
to further extract the fused information. Similar to the downsam-
pling of feature maps in Pooling in CNN, graph pooling aims to
downsize the graph reasonably. Through the coarsening of the con-
structed graph structure, loose interest is transformed into tight
interest and its distribution is maintained.

3.3.1 Interest extraction via graph pooling. To obtain the
pooled graph, a cluster assignment matrix is necessary [22, 37]. As-
suming that a soft cluster assignment matrix S 2 Rn⇥m exists, it can
pool node information into cluster information.m is a pre-de�ned
model hyperparameter that re�ects the degree of pooling, where
m < n. Given the node embeddings {~h01, ~h

0
2, . . . ,

~h0n } and the node
scores {�1,�2, . . . ,�n } of the raw graph, the cluster embeddings and
scores of the coarsened graph can be generated as follows,

{~h⇤1,
~h⇤2, . . . ,

~h⇤m } = S
T
{~h01,

~h02, . . . ,
~h0n }, (9)

{�
⇤
1 ,�
⇤
2 , . . . ,�

⇤
m } = S

T
{�1,�2, . . . ,�n }, (10)

where�i obtained by applying softmax on �i represents importance
score of the i-th node. Each row of assignment matrix S corresponds
to one of the n nodes, and each column corresponds to one of
them clusters. It provides a soft assignment of each node to the
corresponding cluster. Above equations aggregate node embeddings
and scores according to the cluster assignment S , thereby generating
new embedding and score for each of them clusters.

Next, we discuss how to learn di�erentiable soft clusters assign-
ment S for nodes. We use the GNN architecture[37] to generate the
assignment matrix. The probability matrix of the assignment map-
ping is obtained through standard message passing and the softmax
function, based on the adjacency matrix and the node embedding.

Si : = so�max
⇣
Wp · Aggregate

⇣
Ai j ⇤ ~h

0
j |j 2 Ni

⌘⌘
, (11)

where the output dimension of weight matrixWp corresponds to
the maximum number of clustersm. The softmax function is used
to obtain the probability of the i-th node being divided into one
ofm clusters. It is worth noting that we can obtain the adjacency
matrix A⇤ of the pooled graph by performing STAS , ensuring the
connectivity between clusters. Then, the repetition of the above
equations can perform multi-layer pooling to achieve hierarchical
compression of interest.

Methodology
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𝜷𝒋 controls how much information 
the source node 𝒗𝒋 can send.

a) Cluster-aware attention
score of the target node

b) Query-aware attention 
score of the source node

c) Interest fusion via 
attentive propagation

𝜶𝒊 controls how much information 
the target node 𝒗𝒊 can receive.
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Interest Fusion 
and Extraction

a) Cluster-aware attention
score of the target node

b) Query-aware attention 
score of the source node

c) Interest fusion via 
attentive propagation

d) Soft cluster assignment 
with regularizations

B. Interest-fusion Graph Convolutional Layer. C. Interest-extraction Graph Pooling Layer.

e) Interest extraction via
graph pooling

A. Interest Graph Construction. D. Prediction Layer.

Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h

0
2, . . . ,

~h0n }, ~h
0
i 2 R

d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a
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§ 1. Interest fusion via graph attentive convolution: 
• refines output embeddings by gathering weak signals to strong ones.

residual connection and a nonlinearity function � :
~h0i = �

⇣
Wa · Aggregate

⇣
Ei j ⇤ ~hj |j 2 Ni

⌘
+ ~hi
⌘
. (4)

Note that aggregation function can be a function such as Mean,
Sum, Max, GRU, etc. We use the simple sum function here and leave
other functions for future exploration. To stabilize the attention
mechanism’s learning process, we employ multi-head attention
similar to [25, 26]. Precisely, � independent attention mechanisms
execute the above transformation, and then their embeddings are
concatenated as the following output representation:

~h0i =

�

k
�=1

�

⇣
Wa

�
· Aggregate

⇣
E
�
i j ⇤

~hj |j 2 Ni
⌘
+ ~hi
⌘
, (5)

where k represents concatenation operation, E�i j are normalized
attention coe�cients obtained by the � -th attention head, andWa�

is the corresponding linear transformation’s weight matrix. It is
worth noting that the �nal returned output ~h0 will correspond to
�d
0 dimension embeddings (rather than d 0) for each node.

3.2.2 Cluster- and query-aware a�ention. To strengthen
important signals and weaken noise signals when integrating inter-
ests, we propose a cluster and query-aware attention mechanism.
We uses the attention coe�cients to redistribute weights on edge
information in the process of message passing. The attention mech-
anism considers the following two aspects.

Firstly, we assume that the target node �i ’s neighborhood will
form a cluster and regard the target node�i in the graph as amedoid
of a cluster c (�i ). We de�ne the k-hop neighborhood of the target
node �i as the receptive �eld of the cluster. The average value of all
nodes’ embedding in the cluster ~hic represents the cluster’s average
information. To identify whether the target node is the center of
the cluster, the target node embedding and its cluster embedding
are used to calculate the following attention score,

�i = Attentionc (Wc~hi k ~hic kWc~hi � ~hic ), (6)

where Wc is a transformation matrix, k is the concatenation op-
erator and � denotes the Hadamard product. In our experiments,
the attention mechanism Attentionc is a two-layers feedforward
neural network with the LeakyReLU as activation function.

Secondly, in order to serve the downstream dynamic pooling
method and learn the user interest’s independent evolution for
di�erent target interests, the correlation between the source node
embedding ~hj and the target item embedding ~ht should also be
considered. If the source node is more correlated with the query
item, its weight in the aggregation towards the target node will be
more signi�cant, and vice versa. Since only relevant behaviors can
play a role in the �nal prediction, we only keep relevant information,
and irrelevant information will be discarded during aggregation.

�j = Attentionq (Wq~hj k ~ht kWq~hj � ~ht ), (7)

where Wq is a transformation matrix, k is the concatenation op-
erator and � denotes the Hadamard product. In our experiments,
the attention mechanism Attentionq is a two-layers feedforward
neural network applying the LeakyReLU nonlinearity.

We follow the additive attention mechanism [1] to consider
the factors of cluster and query simultaneously. We sum the target
node’s cluster score and the source node’s query score as the update

weight of the source node j to the target node i . To make coe�cients
easily comparable across di�erent nodes, we employed the softmax
function to normalize them across all choices of j. The attention
coe�cients Ei j is computed as:

Ei j = so�maxj (�i + �j ) =
exp(�i + �j )P

k 2Ni exp(�i + �k )
, (8)

where neighborhood Ni of node i includes node i itself. In the
context of containing self-loop propagation (when j equals i), �i
controls how much information the target node can receive, and
�j controls how much information the source node can send.

3.3 Interest-extraction Graph Pooling Layer
The fusion of implicit interest signals to explicit interest signals is
completed by performing information aggregation on the interest
graph. In this section, we use the graph pooling method [17, 22, 37]
to further extract the fused information. Similar to the downsam-
pling of feature maps in Pooling in CNN, graph pooling aims to
downsize the graph reasonably. Through the coarsening of the con-
structed graph structure, loose interest is transformed into tight
interest and its distribution is maintained.

3.3.1 Interest extraction via graph pooling. To obtain the
pooled graph, a cluster assignment matrix is necessary [22, 37]. As-
suming that a soft cluster assignment matrix S 2 Rn⇥m exists, it can
pool node information into cluster information.m is a pre-de�ned
model hyperparameter that re�ects the degree of pooling, where
m < n. Given the node embeddings {~h01, ~h

0
2, . . . ,

~h0n } and the node
scores {�1,�2, . . . ,�n } of the raw graph, the cluster embeddings and
scores of the coarsened graph can be generated as follows,

{~h⇤1,
~h⇤2, . . . ,

~h⇤m } = S
T
{~h01,

~h02, . . . ,
~h0n }, (9)

{�
⇤
1 ,�
⇤
2 , . . . ,�

⇤
m } = S

T
{�1,�2, . . . ,�n }, (10)

where�i obtained by applying softmax on �i represents importance
score of the i-th node. Each row of assignment matrix S corresponds
to one of the n nodes, and each column corresponds to one of
them clusters. It provides a soft assignment of each node to the
corresponding cluster. Above equations aggregate node embeddings
and scores according to the cluster assignment S , thereby generating
new embedding and score for each of them clusters.

Next, we discuss how to learn di�erentiable soft clusters assign-
ment S for nodes. We use the GNN architecture[37] to generate the
assignment matrix. The probability matrix of the assignment map-
ping is obtained through standard message passing and the softmax
function, based on the adjacency matrix and the node embedding.

Si : = so�max
⇣
Wp · Aggregate

⇣
Ai j ⇤ ~h

0
j |j 2 Ni

⌘⌘
, (11)

where the output dimension of weight matrixWp corresponds to
the maximum number of clustersm. The softmax function is used
to obtain the probability of the i-th node being divided into one
ofm clusters. It is worth noting that we can obtain the adjacency
matrix A⇤ of the pooled graph by performing STAS , ensuring the
connectivity between clusters. Then, the repetition of the above
equations can perform multi-layer pooling to achieve hierarchical
compression of interest.

Methodology
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𝑬𝒊,𝒋 perceives users’ core interest and 
the interest related to query interest.

a) Cluster-aware attention
score of the target node

b) Query-aware attention 
score of the source node

c) Interest fusion via 
attentive propagation

Multi-head attention mechanism
increases the expressive power.
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Interest Fusion 
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a) Cluster-aware attention
score of the target node
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score of the source node

c) Interest fusion via 
attentive propagation

d) Soft cluster assignment 
with regularizations

B. Interest-fusion Graph Convolutional Layer. C. Interest-extraction Graph Pooling Layer.

e) Interest extraction via
graph pooling

A. Interest Graph Construction. D. Prediction Layer.

Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h

0
2, . . . ,

~h0n }, ~h
0
i 2 R

d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a
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residual connection and a nonlinearity function � :
~h0i = �

⇣
Wa · Aggregate

⇣
Ei j ⇤ ~hj |j 2 Ni

⌘
+ ~hi
⌘
. (4)

Note that aggregation function can be a function such as Mean,
Sum, Max, GRU, etc. We use the simple sum function here and leave
other functions for future exploration. To stabilize the attention
mechanism’s learning process, we employ multi-head attention
similar to [25, 26]. Precisely, � independent attention mechanisms
execute the above transformation, and then their embeddings are
concatenated as the following output representation:

~h0i =

�

k
�=1

�

⇣
Wa

�
· Aggregate

⇣
E
�
i j ⇤

~hj |j 2 Ni
⌘
+ ~hi
⌘
, (5)

where k represents concatenation operation, E�i j are normalized
attention coe�cients obtained by the � -th attention head, andWa�

is the corresponding linear transformation’s weight matrix. It is
worth noting that the �nal returned output ~h0 will correspond to
�d
0 dimension embeddings (rather than d 0) for each node.

3.2.2 Cluster- and query-aware a�ention. To strengthen
important signals and weaken noise signals when integrating inter-
ests, we propose a cluster and query-aware attention mechanism.
We uses the attention coe�cients to redistribute weights on edge
information in the process of message passing. The attention mech-
anism considers the following two aspects.

Firstly, we assume that the target node �i ’s neighborhood will
form a cluster and regard the target node�i in the graph as amedoid
of a cluster c (�i ). We de�ne the k-hop neighborhood of the target
node �i as the receptive �eld of the cluster. The average value of all
nodes’ embedding in the cluster ~hic represents the cluster’s average
information. To identify whether the target node is the center of
the cluster, the target node embedding and its cluster embedding
are used to calculate the following attention score,

�i = Attentionc (Wc~hi k ~hic kWc~hi � ~hic ), (6)

where Wc is a transformation matrix, k is the concatenation op-
erator and � denotes the Hadamard product. In our experiments,
the attention mechanism Attentionc is a two-layers feedforward
neural network with the LeakyReLU as activation function.

Secondly, in order to serve the downstream dynamic pooling
method and learn the user interest’s independent evolution for
di�erent target interests, the correlation between the source node
embedding ~hj and the target item embedding ~ht should also be
considered. If the source node is more correlated with the query
item, its weight in the aggregation towards the target node will be
more signi�cant, and vice versa. Since only relevant behaviors can
play a role in the �nal prediction, we only keep relevant information,
and irrelevant information will be discarded during aggregation.

�j = Attentionq (Wq~hj k ~ht kWq~hj � ~ht ), (7)

where Wq is a transformation matrix, k is the concatenation op-
erator and � denotes the Hadamard product. In our experiments,
the attention mechanism Attentionq is a two-layers feedforward
neural network applying the LeakyReLU nonlinearity.

We follow the additive attention mechanism [1] to consider
the factors of cluster and query simultaneously. We sum the target
node’s cluster score and the source node’s query score as the update

weight of the source node j to the target node i . To make coe�cients
easily comparable across di�erent nodes, we employed the softmax
function to normalize them across all choices of j. The attention
coe�cients Ei j is computed as:

Ei j = so�maxj (�i + �j ) =
exp(�i + �j )P

k 2Ni exp(�i + �k )
, (8)

where neighborhood Ni of node i includes node i itself. In the
context of containing self-loop propagation (when j equals i), �i
controls how much information the target node can receive, and
�j controls how much information the source node can send.

3.3 Interest-extraction Graph Pooling Layer
The fusion of implicit interest signals to explicit interest signals is
completed by performing information aggregation on the interest
graph. In this section, we use the graph pooling method [17, 22, 37]
to further extract the fused information. Similar to the downsam-
pling of feature maps in Pooling in CNN, graph pooling aims to
downsize the graph reasonably. Through the coarsening of the con-
structed graph structure, loose interest is transformed into tight
interest and its distribution is maintained.

3.3.1 Interest extraction via graph pooling. To obtain the
pooled graph, a cluster assignment matrix is necessary [22, 37]. As-
suming that a soft cluster assignment matrix S 2 Rn⇥m exists, it can
pool node information into cluster information.m is a pre-de�ned
model hyperparameter that re�ects the degree of pooling, where
m < n. Given the node embeddings {~h01, ~h

0
2, . . . ,

~h0n } and the node
scores {�1,�2, . . . ,�n } of the raw graph, the cluster embeddings and
scores of the coarsened graph can be generated as follows,

{~h⇤1,
~h⇤2, . . . ,

~h⇤m } = S
T
{~h01,

~h02, . . . ,
~h0n }, (9)

{�
⇤
1 ,�
⇤
2 , . . . ,�

⇤
m } = S

T
{�1,�2, . . . ,�n }, (10)

where�i obtained by applying softmax on �i represents importance
score of the i-th node. Each row of assignment matrix S corresponds
to one of the n nodes, and each column corresponds to one of
them clusters. It provides a soft assignment of each node to the
corresponding cluster. Above equations aggregate node embeddings
and scores according to the cluster assignment S , thereby generating
new embedding and score for each of them clusters.

Next, we discuss how to learn di�erentiable soft clusters assign-
ment S for nodes. We use the GNN architecture[37] to generate the
assignment matrix. The probability matrix of the assignment map-
ping is obtained through standard message passing and the softmax
function, based on the adjacency matrix and the node embedding.

Si : = so�max
⇣
Wp · Aggregate

⇣
Ai j ⇤ ~h

0
j |j 2 Ni

⌘⌘
, (11)

where the output dimension of weight matrixWp corresponds to
the maximum number of clustersm. The softmax function is used
to obtain the probability of the i-th node being divided into one
ofm clusters. It is worth noting that we can obtain the adjacency
matrix A⇤ of the pooled graph by performing STAS , ensuring the
connectivity between clusters. Then, the repetition of the above
equations can perform multi-layer pooling to achieve hierarchical
compression of interest.

§ 1. Interest extraction via graph pooling : 
• downsizes the graph reasonably to further extract the fused interest.

44
𝒏 loose interests are transformed into 𝒎 tight 
interests and their distribution is maintained.

Cluster assignment matrix 𝑺 ∈ 𝑹𝒏×𝒎 pools 
node embedding 𝒉′𝒊 and score 𝜸𝒊 into cluster.
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Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h

0
2, . . . ,

~h0n }, ~h
0
i 2 R

d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a
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residual connection and a nonlinearity function � :
~h0i = �

⇣
Wa · Aggregate

⇣
Ei j ⇤ ~hj |j 2 Ni

⌘
+ ~hi
⌘
. (4)

Note that aggregation function can be a function such as Mean,
Sum, Max, GRU, etc. We use the simple sum function here and leave
other functions for future exploration. To stabilize the attention
mechanism’s learning process, we employ multi-head attention
similar to [25, 26]. Precisely, � independent attention mechanisms
execute the above transformation, and then their embeddings are
concatenated as the following output representation:

~h0i =

�

k
�=1

�

⇣
Wa

�
· Aggregate

⇣
E
�
i j ⇤

~hj |j 2 Ni
⌘
+ ~hi
⌘
, (5)

where k represents concatenation operation, E�i j are normalized
attention coe�cients obtained by the � -th attention head, andWa�

is the corresponding linear transformation’s weight matrix. It is
worth noting that the �nal returned output ~h0 will correspond to
�d
0 dimension embeddings (rather than d 0) for each node.

3.2.2 Cluster- and query-aware a�ention. To strengthen
important signals and weaken noise signals when integrating inter-
ests, we propose a cluster and query-aware attention mechanism.
We uses the attention coe�cients to redistribute weights on edge
information in the process of message passing. The attention mech-
anism considers the following two aspects.

Firstly, we assume that the target node �i ’s neighborhood will
form a cluster and regard the target node�i in the graph as amedoid
of a cluster c (�i ). We de�ne the k-hop neighborhood of the target
node �i as the receptive �eld of the cluster. The average value of all
nodes’ embedding in the cluster ~hic represents the cluster’s average
information. To identify whether the target node is the center of
the cluster, the target node embedding and its cluster embedding
are used to calculate the following attention score,

�i = Attentionc (Wc~hi k ~hic kWc~hi � ~hic ), (6)

where Wc is a transformation matrix, k is the concatenation op-
erator and � denotes the Hadamard product. In our experiments,
the attention mechanism Attentionc is a two-layers feedforward
neural network with the LeakyReLU as activation function.

Secondly, in order to serve the downstream dynamic pooling
method and learn the user interest’s independent evolution for
di�erent target interests, the correlation between the source node
embedding ~hj and the target item embedding ~ht should also be
considered. If the source node is more correlated with the query
item, its weight in the aggregation towards the target node will be
more signi�cant, and vice versa. Since only relevant behaviors can
play a role in the �nal prediction, we only keep relevant information,
and irrelevant information will be discarded during aggregation.

�j = Attentionq (Wq~hj k ~ht kWq~hj � ~ht ), (7)

where Wq is a transformation matrix, k is the concatenation op-
erator and � denotes the Hadamard product. In our experiments,
the attention mechanism Attentionq is a two-layers feedforward
neural network applying the LeakyReLU nonlinearity.

We follow the additive attention mechanism [1] to consider
the factors of cluster and query simultaneously. We sum the target
node’s cluster score and the source node’s query score as the update

weight of the source node j to the target node i . To make coe�cients
easily comparable across di�erent nodes, we employed the softmax
function to normalize them across all choices of j. The attention
coe�cients Ei j is computed as:

Ei j = so�maxj (�i + �j ) =
exp(�i + �j )P

k 2Ni exp(�i + �k )
, (8)

where neighborhood Ni of node i includes node i itself. In the
context of containing self-loop propagation (when j equals i), �i
controls how much information the target node can receive, and
�j controls how much information the source node can send.

3.3 Interest-extraction Graph Pooling Layer
The fusion of implicit interest signals to explicit interest signals is
completed by performing information aggregation on the interest
graph. In this section, we use the graph pooling method [17, 22, 37]
to further extract the fused information. Similar to the downsam-
pling of feature maps in Pooling in CNN, graph pooling aims to
downsize the graph reasonably. Through the coarsening of the con-
structed graph structure, loose interest is transformed into tight
interest and its distribution is maintained.

3.3.1 Interest extraction via graph pooling. To obtain the
pooled graph, a cluster assignment matrix is necessary [22, 37]. As-
suming that a soft cluster assignment matrix S 2 Rn⇥m exists, it can
pool node information into cluster information.m is a pre-de�ned
model hyperparameter that re�ects the degree of pooling, where
m < n. Given the node embeddings {~h01, ~h

0
2, . . . ,

~h0n } and the node
scores {�1,�2, . . . ,�n } of the raw graph, the cluster embeddings and
scores of the coarsened graph can be generated as follows,

{~h⇤1,
~h⇤2, . . . ,

~h⇤m } = S
T
{~h01,

~h02, . . . ,
~h0n }, (9)

{�
⇤
1 ,�
⇤
2 , . . . ,�

⇤
m } = S

T
{�1,�2, . . . ,�n }, (10)

where�i obtained by applying softmax on �i represents importance
score of the i-th node. Each row of assignment matrix S corresponds
to one of the n nodes, and each column corresponds to one of
them clusters. It provides a soft assignment of each node to the
corresponding cluster. Above equations aggregate node embeddings
and scores according to the cluster assignment S , thereby generating
new embedding and score for each of them clusters.

Next, we discuss how to learn di�erentiable soft clusters assign-
ment S for nodes. We use the GNN architecture[37] to generate the
assignment matrix. The probability matrix of the assignment map-
ping is obtained through standard message passing and the softmax
function, based on the adjacency matrix and the node embedding.

Si : = so�max
⇣
Wp · Aggregate

⇣
Ai j ⇤ ~h

0
j |j 2 Ni

⌘⌘
, (11)

where the output dimension of weight matrixWp corresponds to
the maximum number of clustersm. The softmax function is used
to obtain the probability of the i-th node being divided into one
ofm clusters. It is worth noting that we can obtain the adjacency
matrix A⇤ of the pooled graph by performing STAS , ensuring the
connectivity between clusters. Then, the repetition of the above
equations can perform multi-layer pooling to achieve hierarchical
compression of interest.

§ 1. Interest extraction via graph pooling : 
• uses the GNN architecture to generate the assignment matrix.

45
The output dimension of weight 𝑾𝒑
is set as the number of clusters 𝒎.

Softmax is used to obtain the probability of 
the 𝒊-th node being divided into m clusters.
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Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h

0
2, . . . ,

~h0n }, ~h
0
i 2 R

d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a
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3.3.2 Assignment regularization. However, it is di�cult to
train the cluster assignment matrix S using only the gradient signal
from the downstream recommendation task. The non-convex opti-
mization problem makes it easy to fall into the local optimum in the
early training stage[37]. In addition, the relative position of each
node embedding in {~h01, ~h

0
2, . . . ,

~h0n } corresponds to the temporal
order of the interaction. But in the pooled cluster embedding matrix
{~h⇤1,

~h⇤2, . . . ,
~h⇤m }, the temporal order between the clusters re�ecting

the user’s interest is di�cult to be guaranteed. Therefore, we use
three regularization terms to alleviate the above issue.
• Same mapping regularization. To make it easier for two nodes
with greater connection strength to be mapped to the same clus-
ter, the �rst regularization is used as follows,

LM = kA, SS
T
kF , (12)

where k · kF denotes the Frobenius norm. Each element in adja-
cency matrix A represents the connection strength between two
nodes, and each element in SS

T represents the probability that
two nodes are divided to the same cluster.
• Single a�liation regularization. To clearly de�ne the a�liation
of each cluster, we make each row Si : in assignment matrix ap-
proach a one-hot vector by regularizing the entropy as follows,

LA =
1
n

nX

i=1
H (Si :) , (13)

where H (·) is the entropy function that can reduce the uncer-
tainty of the mapping distribution. The optimal situation is that
the i-th node is only mapped to one cluster, and the entropy
H (Si :) is 0 at this time.
• Relative position regularization. The temporal order of the user’s
interest before and after pooling needs to bemaintained for down-
stream interest evolution modeling. However, the operation of
swapping the index on the pooled cluster embedding matrix
{~h⇤1,

~h⇤2, . . . ,
~h⇤m } is not di�erentiable. Therefore, we design a posi-

tion regularization to ensure the temporal order between clusters
during pooling as follows,

LP = kPnS, Pm k2, (14)

where Pn is a position encoding vector {1, 2, ...,n}, and Pm is a
position encoding vector {1, 2, ...,m}. Minimizing the L2 norm
makes the position of the non-zero elements in S closer to the
main diagonal elements. Intuitively, for the node with the front
position in the original sequence, the position index of the cluster
to which it is assigned tends to be in the front.

3.3.3 Graph readout. At this point, we have obtained a tightly
coarsened graph G⇤ representing the user’s stronger interest signal.
At the same time, we perform a weighted readout on raw graph
G to constrain each node’s importance, which aggregates all node
embeddings after the forward computation of the propagation layer
to generate a graph-level representation ~h� :

~h� = Readout({�i ⇤ ~h0i , i 2 G}), (15)

where the weight is the score �i of each node before pooling, and
the Readout function can be a function such as Mean, Sum, Max,
etc. We use the simple sum function here to ensure permutation
invariant and leave other functions for future exploration. We feed

this graph-level representation into the �nal prediction layer to
better extract each cluster’s information in the pooling layer.

3.4 Prediction Layer
3.4.1 Interest evolutionmodeling. Under the joint in�uence

of the external environment and internal cognition, the users’ core
interests are continually evolving. The user may become interested
in various sports for a time and need books at another time. How-
ever, only using the readout operation mentioned above does not
consider the evolution between core interests, which will undoubt-
edly cause the time order’s bias. To supply the �nal representation
of interest with more relative historical information, it is also nec-
essary to consider the chronological relationship between interests.

Bene�ting from the relative position regularization, the pooled
cluster embeddingmatrix maintains the temporal order of the user’s
interest, which is equivalent to �attening the pooled graph into a
reduced sequence with enhanced interest signals. Intuitively, we
can use any known sequential recommendation method to model
the concentrated interest sequence. For the sake of simplicity and
to illustrate the e�ectiveness of the pooling method, we use a single
sequential model to model the evolution of interest:

~hs = AUGRU({~h⇤1, ~h
⇤
2, . . . ,

~h⇤m }). (16)

As we know, GRU overcomes the vanishing gradients problem of
RNN and is faster than LSTM [11]. Furthermore, to make better
use of the importance weight � ⇤i of fused interest in the interest
extraction layer, we adopt GRU with attentional update gate (AU-
GRU) [45] to combine attention mechanism and GRU seamlessly.
AUGRU uses attention score� ⇤i to scale all dimensions of the update
gate, which results that less related interest make fewer e�ects on
the hidden state. It avoids the disturbance from interest drifting
more e�ectively and pushes the relative interest to evolve smoothly.

3.4.2 Prediction. We take the graph-level representation of
the interest extraction layer and evolution output of the interest
evolution layer as the user’s current interest, and concatenate them
with the target item embedding. Given the concatenated dense rep-
resentation vector, fully connected layers are used to automatically
learn the combination of embeddings. We use two-layer feedfor-
ward neural network as the prediction function to estimate the
probability of the user interacting with the item at the next mo-
ment, and all compared models in the experimental part will share
this popular design [39, 45, 46],

�̂ = Predict(~hs k~h� k~ht k~h� � ~ht ). (17)

Following the CTR (click-through rate) prediction in the real-
world industry [45, 46], we use the negative log-likelihood function
as the loss function and share this setting with all compared models.
The optimization process is to minimize the loss function together
with a L2 regularization term to prevent over-�tting,

L = �
1
|O|

X

o2O

(�o log �̂o + (1 � �o ) log(1 � �̂o )) + �k�k2, (18)

where O is the training set and |O| is the number of training in-
stances. � denotes the set of trainable parameters and � controls
the penalty strength. The label �o = 1 indicates a positive instance
and �o = 0 indicates a negative instance. And �̂o stands for the

§ 2. Assignment regularization : 
• Same mapping regularization with Frobenius norm.

46
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Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h

0
2, . . . ,

~h0n }, ~h
0
i 2 R

d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a
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3.3.2 Assignment regularization. However, it is di�cult to
train the cluster assignment matrix S using only the gradient signal
from the downstream recommendation task. The non-convex opti-
mization problem makes it easy to fall into the local optimum in the
early training stage[37]. In addition, the relative position of each
node embedding in {~h01, ~h

0
2, . . . ,

~h0n } corresponds to the temporal
order of the interaction. But in the pooled cluster embedding matrix
{~h⇤1,

~h⇤2, . . . ,
~h⇤m }, the temporal order between the clusters re�ecting

the user’s interest is di�cult to be guaranteed. Therefore, we use
three regularization terms to alleviate the above issue.
• Same mapping regularization. To make it easier for two nodes
with greater connection strength to be mapped to the same clus-
ter, the �rst regularization is used as follows,

LM = kA, SS
T
kF , (12)

where k · kF denotes the Frobenius norm. Each element in adja-
cency matrix A represents the connection strength between two
nodes, and each element in SS

T represents the probability that
two nodes are divided to the same cluster.
• Single a�liation regularization. To clearly de�ne the a�liation
of each cluster, we make each row Si : in assignment matrix ap-
proach a one-hot vector by regularizing the entropy as follows,

LA =
1
n

nX

i=1
H (Si :) , (13)

where H (·) is the entropy function that can reduce the uncer-
tainty of the mapping distribution. The optimal situation is that
the i-th node is only mapped to one cluster, and the entropy
H (Si :) is 0 at this time.
• Relative position regularization. The temporal order of the user’s
interest before and after pooling needs to bemaintained for down-
stream interest evolution modeling. However, the operation of
swapping the index on the pooled cluster embedding matrix
{~h⇤1,

~h⇤2, . . . ,
~h⇤m } is not di�erentiable. Therefore, we design a posi-

tion regularization to ensure the temporal order between clusters
during pooling as follows,

LP = kPnS, Pm k2, (14)

where Pn is a position encoding vector {1, 2, ...,n}, and Pm is a
position encoding vector {1, 2, ...,m}. Minimizing the L2 norm
makes the position of the non-zero elements in S closer to the
main diagonal elements. Intuitively, for the node with the front
position in the original sequence, the position index of the cluster
to which it is assigned tends to be in the front.

3.3.3 Graph readout. At this point, we have obtained a tightly
coarsened graph G⇤ representing the user’s stronger interest signal.
At the same time, we perform a weighted readout on raw graph
G to constrain each node’s importance, which aggregates all node
embeddings after the forward computation of the propagation layer
to generate a graph-level representation ~h� :

~h� = Readout({�i ⇤ ~h0i , i 2 G}), (15)

where the weight is the score �i of each node before pooling, and
the Readout function can be a function such as Mean, Sum, Max,
etc. We use the simple sum function here to ensure permutation
invariant and leave other functions for future exploration. We feed

this graph-level representation into the �nal prediction layer to
better extract each cluster’s information in the pooling layer.

3.4 Prediction Layer
3.4.1 Interest evolutionmodeling. Under the joint in�uence

of the external environment and internal cognition, the users’ core
interests are continually evolving. The user may become interested
in various sports for a time and need books at another time. How-
ever, only using the readout operation mentioned above does not
consider the evolution between core interests, which will undoubt-
edly cause the time order’s bias. To supply the �nal representation
of interest with more relative historical information, it is also nec-
essary to consider the chronological relationship between interests.

Bene�ting from the relative position regularization, the pooled
cluster embeddingmatrix maintains the temporal order of the user’s
interest, which is equivalent to �attening the pooled graph into a
reduced sequence with enhanced interest signals. Intuitively, we
can use any known sequential recommendation method to model
the concentrated interest sequence. For the sake of simplicity and
to illustrate the e�ectiveness of the pooling method, we use a single
sequential model to model the evolution of interest:

~hs = AUGRU({~h⇤1, ~h
⇤
2, . . . ,

~h⇤m }). (16)

As we know, GRU overcomes the vanishing gradients problem of
RNN and is faster than LSTM [11]. Furthermore, to make better
use of the importance weight � ⇤i of fused interest in the interest
extraction layer, we adopt GRU with attentional update gate (AU-
GRU) [45] to combine attention mechanism and GRU seamlessly.
AUGRU uses attention score� ⇤i to scale all dimensions of the update
gate, which results that less related interest make fewer e�ects on
the hidden state. It avoids the disturbance from interest drifting
more e�ectively and pushes the relative interest to evolve smoothly.

3.4.2 Prediction. We take the graph-level representation of
the interest extraction layer and evolution output of the interest
evolution layer as the user’s current interest, and concatenate them
with the target item embedding. Given the concatenated dense rep-
resentation vector, fully connected layers are used to automatically
learn the combination of embeddings. We use two-layer feedfor-
ward neural network as the prediction function to estimate the
probability of the user interacting with the item at the next mo-
ment, and all compared models in the experimental part will share
this popular design [39, 45, 46],

�̂ = Predict(~hs k~h� k~ht k~h� � ~ht ). (17)

Following the CTR (click-through rate) prediction in the real-
world industry [45, 46], we use the negative log-likelihood function
as the loss function and share this setting with all compared models.
The optimization process is to minimize the loss function together
with a L2 regularization term to prevent over-�tting,

L = �
1
|O|

X

o2O

(�o log �̂o + (1 � �o ) log(1 � �̂o )) + �k�k2, (18)

where O is the training set and |O| is the number of training in-
stances. � denotes the set of trainable parameters and � controls
the penalty strength. The label �o = 1 indicates a positive instance
and �o = 0 indicates a negative instance. And �̂o stands for the

§ 2. Assignment regularization : 
• Single affiliation regularization with entropy function.
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𝑯(·) is the entropy function that can reduce 
the uncertainty of the mapping distribution.

It makes each row 𝑺𝒊: in assignment 
matrix approach a one-hot vector.
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a) Cluster-aware attention
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Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h

0
2, . . . ,

~h0n }, ~h
0
i 2 R

d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a

Interest Graph Construction

Interest-fusion Graph 
Convolutional Layer

Interest-extraction 
Graph Pooling Layer

Prediction Layer
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3.3.2 Assignment regularization. However, it is di�cult to
train the cluster assignment matrix S using only the gradient signal
from the downstream recommendation task. The non-convex opti-
mization problem makes it easy to fall into the local optimum in the
early training stage[37]. In addition, the relative position of each
node embedding in {~h01, ~h

0
2, . . . ,

~h0n } corresponds to the temporal
order of the interaction. But in the pooled cluster embedding matrix
{~h⇤1,

~h⇤2, . . . ,
~h⇤m }, the temporal order between the clusters re�ecting

the user’s interest is di�cult to be guaranteed. Therefore, we use
three regularization terms to alleviate the above issue.
• Same mapping regularization. To make it easier for two nodes
with greater connection strength to be mapped to the same clus-
ter, the �rst regularization is used as follows,

LM = kA, SS
T
kF , (12)

where k · kF denotes the Frobenius norm. Each element in adja-
cency matrix A represents the connection strength between two
nodes, and each element in SS

T represents the probability that
two nodes are divided to the same cluster.
• Single a�liation regularization. To clearly de�ne the a�liation
of each cluster, we make each row Si : in assignment matrix ap-
proach a one-hot vector by regularizing the entropy as follows,

LA =
1
n

nX

i=1
H (Si :) , (13)

where H (·) is the entropy function that can reduce the uncer-
tainty of the mapping distribution. The optimal situation is that
the i-th node is only mapped to one cluster, and the entropy
H (Si :) is 0 at this time.
• Relative position regularization. The temporal order of the user’s
interest before and after pooling needs to bemaintained for down-
stream interest evolution modeling. However, the operation of
swapping the index on the pooled cluster embedding matrix
{~h⇤1,

~h⇤2, . . . ,
~h⇤m } is not di�erentiable. Therefore, we design a posi-

tion regularization to ensure the temporal order between clusters
during pooling as follows,

LP = kPnS, Pm k2, (14)

where Pn is a position encoding vector {1, 2, ...,n}, and Pm is a
position encoding vector {1, 2, ...,m}. Minimizing the L2 norm
makes the position of the non-zero elements in S closer to the
main diagonal elements. Intuitively, for the node with the front
position in the original sequence, the position index of the cluster
to which it is assigned tends to be in the front.

3.3.3 Graph readout. At this point, we have obtained a tightly
coarsened graph G⇤ representing the user’s stronger interest signal.
At the same time, we perform a weighted readout on raw graph
G to constrain each node’s importance, which aggregates all node
embeddings after the forward computation of the propagation layer
to generate a graph-level representation ~h� :

~h� = Readout({�i ⇤ ~h0i , i 2 G}), (15)

where the weight is the score �i of each node before pooling, and
the Readout function can be a function such as Mean, Sum, Max,
etc. We use the simple sum function here to ensure permutation
invariant and leave other functions for future exploration. We feed

this graph-level representation into the �nal prediction layer to
better extract each cluster’s information in the pooling layer.

3.4 Prediction Layer
3.4.1 Interest evolutionmodeling. Under the joint in�uence

of the external environment and internal cognition, the users’ core
interests are continually evolving. The user may become interested
in various sports for a time and need books at another time. How-
ever, only using the readout operation mentioned above does not
consider the evolution between core interests, which will undoubt-
edly cause the time order’s bias. To supply the �nal representation
of interest with more relative historical information, it is also nec-
essary to consider the chronological relationship between interests.

Bene�ting from the relative position regularization, the pooled
cluster embeddingmatrix maintains the temporal order of the user’s
interest, which is equivalent to �attening the pooled graph into a
reduced sequence with enhanced interest signals. Intuitively, we
can use any known sequential recommendation method to model
the concentrated interest sequence. For the sake of simplicity and
to illustrate the e�ectiveness of the pooling method, we use a single
sequential model to model the evolution of interest:

~hs = AUGRU({~h⇤1, ~h
⇤
2, . . . ,

~h⇤m }). (16)

As we know, GRU overcomes the vanishing gradients problem of
RNN and is faster than LSTM [11]. Furthermore, to make better
use of the importance weight � ⇤i of fused interest in the interest
extraction layer, we adopt GRU with attentional update gate (AU-
GRU) [45] to combine attention mechanism and GRU seamlessly.
AUGRU uses attention score� ⇤i to scale all dimensions of the update
gate, which results that less related interest make fewer e�ects on
the hidden state. It avoids the disturbance from interest drifting
more e�ectively and pushes the relative interest to evolve smoothly.

3.4.2 Prediction. We take the graph-level representation of
the interest extraction layer and evolution output of the interest
evolution layer as the user’s current interest, and concatenate them
with the target item embedding. Given the concatenated dense rep-
resentation vector, fully connected layers are used to automatically
learn the combination of embeddings. We use two-layer feedfor-
ward neural network as the prediction function to estimate the
probability of the user interacting with the item at the next mo-
ment, and all compared models in the experimental part will share
this popular design [39, 45, 46],

�̂ = Predict(~hs k~h� k~ht k~h� � ~ht ). (17)

Following the CTR (click-through rate) prediction in the real-
world industry [45, 46], we use the negative log-likelihood function
as the loss function and share this setting with all compared models.
The optimization process is to minimize the loss function together
with a L2 regularization term to prevent over-�tting,

L = �
1
|O|

X

o2O

(�o log �̂o + (1 � �o ) log(1 � �̂o )) + �k�k2, (18)

where O is the training set and |O| is the number of training in-
stances. � denotes the set of trainable parameters and � controls
the penalty strength. The label �o = 1 indicates a positive instance
and �o = 0 indicates a negative instance. And �̂o stands for the

§ 2. Assignment regularization : 
• Relative position regularization with L2 norm.
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𝑷𝒏 and 𝑷𝒎 are position encoding vectors, 
like {𝟏, 𝟐, . . . , 𝒏} and {𝟏, 𝟐, . . . ,𝒎}.

It makes the position of the non-zero elements 
in 𝑺 closer to the main diagonal elements.
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Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h

0
2, . . . ,

~h0n }, ~h
0
i 2 R

d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a
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3.3.2 Assignment regularization. However, it is di�cult to
train the cluster assignment matrix S using only the gradient signal
from the downstream recommendation task. The non-convex opti-
mization problem makes it easy to fall into the local optimum in the
early training stage[37]. In addition, the relative position of each
node embedding in {~h01, ~h

0
2, . . . ,

~h0n } corresponds to the temporal
order of the interaction. But in the pooled cluster embedding matrix
{~h⇤1,

~h⇤2, . . . ,
~h⇤m }, the temporal order between the clusters re�ecting

the user’s interest is di�cult to be guaranteed. Therefore, we use
three regularization terms to alleviate the above issue.
• Same mapping regularization. To make it easier for two nodes
with greater connection strength to be mapped to the same clus-
ter, the �rst regularization is used as follows,

LM = kA, SS
T
kF , (12)

where k · kF denotes the Frobenius norm. Each element in adja-
cency matrix A represents the connection strength between two
nodes, and each element in SS

T represents the probability that
two nodes are divided to the same cluster.
• Single a�liation regularization. To clearly de�ne the a�liation
of each cluster, we make each row Si : in assignment matrix ap-
proach a one-hot vector by regularizing the entropy as follows,

LA =
1
n

nX

i=1
H (Si :) , (13)

where H (·) is the entropy function that can reduce the uncer-
tainty of the mapping distribution. The optimal situation is that
the i-th node is only mapped to one cluster, and the entropy
H (Si :) is 0 at this time.
• Relative position regularization. The temporal order of the user’s
interest before and after pooling needs to bemaintained for down-
stream interest evolution modeling. However, the operation of
swapping the index on the pooled cluster embedding matrix
{~h⇤1,

~h⇤2, . . . ,
~h⇤m } is not di�erentiable. Therefore, we design a posi-

tion regularization to ensure the temporal order between clusters
during pooling as follows,

LP = kPnS, Pm k2, (14)

where Pn is a position encoding vector {1, 2, ...,n}, and Pm is a
position encoding vector {1, 2, ...,m}. Minimizing the L2 norm
makes the position of the non-zero elements in S closer to the
main diagonal elements. Intuitively, for the node with the front
position in the original sequence, the position index of the cluster
to which it is assigned tends to be in the front.

3.3.3 Graph readout. At this point, we have obtained a tightly
coarsened graph G⇤ representing the user’s stronger interest signal.
At the same time, we perform a weighted readout on raw graph
G to constrain each node’s importance, which aggregates all node
embeddings after the forward computation of the propagation layer
to generate a graph-level representation ~h� :

~h� = Readout({�i ⇤ ~h0i , i 2 G}), (15)

where the weight is the score �i of each node before pooling, and
the Readout function can be a function such as Mean, Sum, Max,
etc. We use the simple sum function here to ensure permutation
invariant and leave other functions for future exploration. We feed

this graph-level representation into the �nal prediction layer to
better extract each cluster’s information in the pooling layer.

3.4 Prediction Layer
3.4.1 Interest evolutionmodeling. Under the joint in�uence

of the external environment and internal cognition, the users’ core
interests are continually evolving. The user may become interested
in various sports for a time and need books at another time. How-
ever, only using the readout operation mentioned above does not
consider the evolution between core interests, which will undoubt-
edly cause the time order’s bias. To supply the �nal representation
of interest with more relative historical information, it is also nec-
essary to consider the chronological relationship between interests.

Bene�ting from the relative position regularization, the pooled
cluster embeddingmatrix maintains the temporal order of the user’s
interest, which is equivalent to �attening the pooled graph into a
reduced sequence with enhanced interest signals. Intuitively, we
can use any known sequential recommendation method to model
the concentrated interest sequence. For the sake of simplicity and
to illustrate the e�ectiveness of the pooling method, we use a single
sequential model to model the evolution of interest:

~hs = AUGRU({~h⇤1, ~h
⇤
2, . . . ,

~h⇤m }). (16)

As we know, GRU overcomes the vanishing gradients problem of
RNN and is faster than LSTM [11]. Furthermore, to make better
use of the importance weight � ⇤i of fused interest in the interest
extraction layer, we adopt GRU with attentional update gate (AU-
GRU) [45] to combine attention mechanism and GRU seamlessly.
AUGRU uses attention score� ⇤i to scale all dimensions of the update
gate, which results that less related interest make fewer e�ects on
the hidden state. It avoids the disturbance from interest drifting
more e�ectively and pushes the relative interest to evolve smoothly.

3.4.2 Prediction. We take the graph-level representation of
the interest extraction layer and evolution output of the interest
evolution layer as the user’s current interest, and concatenate them
with the target item embedding. Given the concatenated dense rep-
resentation vector, fully connected layers are used to automatically
learn the combination of embeddings. We use two-layer feedfor-
ward neural network as the prediction function to estimate the
probability of the user interacting with the item at the next mo-
ment, and all compared models in the experimental part will share
this popular design [39, 45, 46],

�̂ = Predict(~hs k~h� k~ht k~h� � ~ht ). (17)

Following the CTR (click-through rate) prediction in the real-
world industry [45, 46], we use the negative log-likelihood function
as the loss function and share this setting with all compared models.
The optimization process is to minimize the loss function together
with a L2 regularization term to prevent over-�tting,

L = �
1
|O|

X

o2O

(�o log �̂o + (1 � �o ) log(1 � �̂o )) + �k�k2, (18)

where O is the training set and |O| is the number of training in-
stances. � denotes the set of trainable parameters and � controls
the penalty strength. The label �o = 1 indicates a positive instance
and �o = 0 indicates a negative instance. And �̂o stands for the

§ 3. Graph readout : 
• feeds graph-level representation into the final prediction layer.
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The weighted readout on raw graph 
constrains each node’s importance.

The constrains of node information can 
better extract each cluster’s importance.

Methodology
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B. Interest-fusion Graph Convolutional Layer. C. Interest-extraction Graph Pooling Layer.

e) Interest extraction via
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Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h

0
2, . . . ,

~h0n }, ~h
0
i 2 R

d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a

Interest Graph Construction

Interest-fusion Graph 
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Interest-extraction 
Graph Pooling Layer

Prediction Layer

e) Interest extraction via
graph pooling

d) Soft cluster assignment 
with regularizations
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§ 1. Interest evolution modeling : 
• supplies the final interest with more relative historical information;

50

Methodology

3.3.2 Assignment regularization. However, it is di�cult to
train the cluster assignment matrix S using only the gradient signal
from the downstream recommendation task. The non-convex opti-
mization problem makes it easy to fall into the local optimum in the
early training stage[37]. In addition, the relative position of each
node embedding in {~h01, ~h

0
2, . . . ,

~h0n } corresponds to the temporal
order of the interaction. But in the pooled cluster embedding matrix
{~h⇤1,

~h⇤2, . . . ,
~h⇤m }, the temporal order between the clusters re�ecting

the user’s interest is di�cult to be guaranteed. Therefore, we use
three regularization terms to alleviate the above issue.
• Same mapping regularization. To make it easier for two nodes
with greater connection strength to be mapped to the same clus-
ter, the �rst regularization is used as follows,

LM = kA, SS
T
kF , (12)

where k · kF denotes the Frobenius norm. Each element in adja-
cency matrix A represents the connection strength between two
nodes, and each element in SS

T represents the probability that
two nodes are divided to the same cluster.
• Single a�liation regularization. To clearly de�ne the a�liation
of each cluster, we make each row Si : in assignment matrix ap-
proach a one-hot vector by regularizing the entropy as follows,

LA =
1
n

nX

i=1
H (Si :) , (13)

where H (·) is the entropy function that can reduce the uncer-
tainty of the mapping distribution. The optimal situation is that
the i-th node is only mapped to one cluster, and the entropy
H (Si :) is 0 at this time.
• Relative position regularization. The temporal order of the user’s
interest before and after pooling needs to bemaintained for down-
stream interest evolution modeling. However, the operation of
swapping the index on the pooled cluster embedding matrix
{~h⇤1,

~h⇤2, . . . ,
~h⇤m } is not di�erentiable. Therefore, we design a posi-

tion regularization to ensure the temporal order between clusters
during pooling as follows,

LP = kPnS, Pm k2, (14)

where Pn is a position encoding vector {1, 2, ...,n}, and Pm is a
position encoding vector {1, 2, ...,m}. Minimizing the L2 norm
makes the position of the non-zero elements in S closer to the
main diagonal elements. Intuitively, for the node with the front
position in the original sequence, the position index of the cluster
to which it is assigned tends to be in the front.

3.3.3 Graph readout. At this point, we have obtained a tightly
coarsened graph G⇤ representing the user’s stronger interest signal.
At the same time, we perform a weighted readout on raw graph
G to constrain each node’s importance, which aggregates all node
embeddings after the forward computation of the propagation layer
to generate a graph-level representation ~h� :

~h� = Readout({�i ⇤ ~h0i , i 2 G}), (15)

where the weight is the score �i of each node before pooling, and
the Readout function can be a function such as Mean, Sum, Max,
etc. We use the simple sum function here to ensure permutation
invariant and leave other functions for future exploration. We feed

this graph-level representation into the �nal prediction layer to
better extract each cluster’s information in the pooling layer.

3.4 Prediction Layer
3.4.1 Interest evolutionmodeling. Under the joint in�uence

of the external environment and internal cognition, the users’ core
interests are continually evolving. The user may become interested
in various sports for a time and need books at another time. How-
ever, only using the readout operation mentioned above does not
consider the evolution between core interests, which will undoubt-
edly cause the time order’s bias. To supply the �nal representation
of interest with more relative historical information, it is also nec-
essary to consider the chronological relationship between interests.

Bene�ting from the relative position regularization, the pooled
cluster embeddingmatrix maintains the temporal order of the user’s
interest, which is equivalent to �attening the pooled graph into a
reduced sequence with enhanced interest signals. Intuitively, we
can use any known sequential recommendation method to model
the concentrated interest sequence. For the sake of simplicity and
to illustrate the e�ectiveness of the pooling method, we use a single
sequential model to model the evolution of interest:

~hs = AUGRU({~h⇤1, ~h
⇤
2, . . . ,

~h⇤m }). (16)

As we know, GRU overcomes the vanishing gradients problem of
RNN and is faster than LSTM [11]. Furthermore, to make better
use of the importance weight � ⇤i of fused interest in the interest
extraction layer, we adopt GRU with attentional update gate (AU-
GRU) [45] to combine attention mechanism and GRU seamlessly.
AUGRU uses attention score� ⇤i to scale all dimensions of the update
gate, which results that less related interest make fewer e�ects on
the hidden state. It avoids the disturbance from interest drifting
more e�ectively and pushes the relative interest to evolve smoothly.

3.4.2 Prediction. We take the graph-level representation of
the interest extraction layer and evolution output of the interest
evolution layer as the user’s current interest, and concatenate them
with the target item embedding. Given the concatenated dense rep-
resentation vector, fully connected layers are used to automatically
learn the combination of embeddings. We use two-layer feedfor-
ward neural network as the prediction function to estimate the
probability of the user interacting with the item at the next mo-
ment, and all compared models in the experimental part will share
this popular design [39, 45, 46],

�̂ = Predict(~hs k~h� k~ht k~h� � ~ht ). (17)

Following the CTR (click-through rate) prediction in the real-
world industry [45, 46], we use the negative log-likelihood function
as the loss function and share this setting with all compared models.
The optimization process is to minimize the loss function together
with a L2 regularization term to prevent over-�tting,

L = �
1
|O|

X

o2O

(�o log �̂o + (1 � �o ) log(1 � �̂o )) + �k�k2, (18)

where O is the training set and |O| is the number of training in-
stances. � denotes the set of trainable parameters and � controls
the penalty strength. The label �o = 1 indicates a positive instance
and �o = 0 indicates a negative instance. And �̂o stands for the

𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑮𝒓𝒂𝒑𝒉 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑺𝒆𝒒𝒖𝒆𝒏𝒄𝒆

𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏
𝒇𝒍𝒂𝒕𝒕𝒆𝒏

𝒑𝟏

𝒑𝟐

𝒑𝟒
𝒑𝟑

𝒑𝟏 𝒑𝟐 𝒑𝟒𝒑𝟑

AUGRU uses cluster score 𝜸𝒊∗ to scale all 
dimensions of the update gate in GRU.

It is easier to model evolution on reduced 
sequence with enhanced interest signals.

The relative position regularization 
avoids the time order’s bias.

q D. Prediction Layer 16

!"#$%&
'"($)%)*

<("&$#="'-( >&*+&(=& <("&$&)" ?$#@A <("&$&)" ?$#@A <("&$&)" >&*+&(=&

+,-%#%,)
.'(##")

Interest Fusion 
and Extraction

a) Cluster-aware attention
score of the target node

b) Query-aware attention 
score of the source node

c) Interest fusion via 
attentive propagation

d) Soft cluster assignment 
with regularizations

B. Interest-fusion Graph Convolutional Layer. C. Interest-extraction Graph Pooling Layer.

e) Interest extraction via
graph pooling

A. Interest Graph Construction. D. Prediction Layer.

Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h

0
2, . . . ,

~h0n }, ~h
0
i 2 R

d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a
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3.3.2 Assignment regularization. However, it is di�cult to
train the cluster assignment matrix S using only the gradient signal
from the downstream recommendation task. The non-convex opti-
mization problem makes it easy to fall into the local optimum in the
early training stage[37]. In addition, the relative position of each
node embedding in {~h01, ~h

0
2, . . . ,

~h0n } corresponds to the temporal
order of the interaction. But in the pooled cluster embedding matrix
{~h⇤1,

~h⇤2, . . . ,
~h⇤m }, the temporal order between the clusters re�ecting

the user’s interest is di�cult to be guaranteed. Therefore, we use
three regularization terms to alleviate the above issue.
• Same mapping regularization. To make it easier for two nodes
with greater connection strength to be mapped to the same clus-
ter, the �rst regularization is used as follows,

LM = kA, SS
T
kF , (12)

where k · kF denotes the Frobenius norm. Each element in adja-
cency matrix A represents the connection strength between two
nodes, and each element in SS

T represents the probability that
two nodes are divided to the same cluster.
• Single a�liation regularization. To clearly de�ne the a�liation
of each cluster, we make each row Si : in assignment matrix ap-
proach a one-hot vector by regularizing the entropy as follows,

LA =
1
n

nX

i=1
H (Si :) , (13)

where H (·) is the entropy function that can reduce the uncer-
tainty of the mapping distribution. The optimal situation is that
the i-th node is only mapped to one cluster, and the entropy
H (Si :) is 0 at this time.
• Relative position regularization. The temporal order of the user’s
interest before and after pooling needs to bemaintained for down-
stream interest evolution modeling. However, the operation of
swapping the index on the pooled cluster embedding matrix
{~h⇤1,

~h⇤2, . . . ,
~h⇤m } is not di�erentiable. Therefore, we design a posi-

tion regularization to ensure the temporal order between clusters
during pooling as follows,

LP = kPnS, Pm k2, (14)

where Pn is a position encoding vector {1, 2, ...,n}, and Pm is a
position encoding vector {1, 2, ...,m}. Minimizing the L2 norm
makes the position of the non-zero elements in S closer to the
main diagonal elements. Intuitively, for the node with the front
position in the original sequence, the position index of the cluster
to which it is assigned tends to be in the front.

3.3.3 Graph readout. At this point, we have obtained a tightly
coarsened graph G⇤ representing the user’s stronger interest signal.
At the same time, we perform a weighted readout on raw graph
G to constrain each node’s importance, which aggregates all node
embeddings after the forward computation of the propagation layer
to generate a graph-level representation ~h� :

~h� = Readout({�i ⇤ ~h0i , i 2 G}), (15)

where the weight is the score �i of each node before pooling, and
the Readout function can be a function such as Mean, Sum, Max,
etc. We use the simple sum function here to ensure permutation
invariant and leave other functions for future exploration. We feed

this graph-level representation into the �nal prediction layer to
better extract each cluster’s information in the pooling layer.

3.4 Prediction Layer
3.4.1 Interest evolutionmodeling. Under the joint in�uence

of the external environment and internal cognition, the users’ core
interests are continually evolving. The user may become interested
in various sports for a time and need books at another time. How-
ever, only using the readout operation mentioned above does not
consider the evolution between core interests, which will undoubt-
edly cause the time order’s bias. To supply the �nal representation
of interest with more relative historical information, it is also nec-
essary to consider the chronological relationship between interests.

Bene�ting from the relative position regularization, the pooled
cluster embeddingmatrix maintains the temporal order of the user’s
interest, which is equivalent to �attening the pooled graph into a
reduced sequence with enhanced interest signals. Intuitively, we
can use any known sequential recommendation method to model
the concentrated interest sequence. For the sake of simplicity and
to illustrate the e�ectiveness of the pooling method, we use a single
sequential model to model the evolution of interest:

~hs = AUGRU({~h⇤1, ~h
⇤
2, . . . ,

~h⇤m }). (16)

As we know, GRU overcomes the vanishing gradients problem of
RNN and is faster than LSTM [11]. Furthermore, to make better
use of the importance weight � ⇤i of fused interest in the interest
extraction layer, we adopt GRU with attentional update gate (AU-
GRU) [45] to combine attention mechanism and GRU seamlessly.
AUGRU uses attention score� ⇤i to scale all dimensions of the update
gate, which results that less related interest make fewer e�ects on
the hidden state. It avoids the disturbance from interest drifting
more e�ectively and pushes the relative interest to evolve smoothly.

3.4.2 Prediction. We take the graph-level representation of
the interest extraction layer and evolution output of the interest
evolution layer as the user’s current interest, and concatenate them
with the target item embedding. Given the concatenated dense rep-
resentation vector, fully connected layers are used to automatically
learn the combination of embeddings. We use two-layer feedfor-
ward neural network as the prediction function to estimate the
probability of the user interacting with the item at the next mo-
ment, and all compared models in the experimental part will share
this popular design [39, 45, 46],

�̂ = Predict(~hs k~h� k~ht k~h� � ~ht ). (17)

Following the CTR (click-through rate) prediction in the real-
world industry [45, 46], we use the negative log-likelihood function
as the loss function and share this setting with all compared models.
The optimization process is to minimize the loss function together
with a L2 regularization term to prevent over-�tting,

L = �
1
|O|

X

o2O

(�o log �̂o + (1 � �o ) log(1 � �̂o )) + �k�k2, (18)

where O is the training set and |O| is the number of training in-
stances. � denotes the set of trainable parameters and � controls
the penalty strength. The label �o = 1 indicates a positive instance
and �o = 0 indicates a negative instance. And �̂o stands for the

§ 2. Prediction : 
• uses MLPS to automatically learn the combination of embeddings;
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𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑮𝒓𝒂𝒑𝒉 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑺𝒆𝒒𝒖𝒆𝒏𝒄𝒆

𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏
𝒇𝒍𝒂𝒕𝒕𝒆𝒏

Two-layer feedforward neural network 
is used as the prediction function.

Graph representation, evolution output 
and target item embedding are considered.

The probability of the user interacting 
with next item is estimated.

?

𝒙𝒕
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Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h

0
2, . . . ,

~h0n }, ~h
0
i 2 R

d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a
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3.3.2 Assignment regularization. However, it is di�cult to
train the cluster assignment matrix S using only the gradient signal
from the downstream recommendation task. The non-convex opti-
mization problem makes it easy to fall into the local optimum in the
early training stage[37]. In addition, the relative position of each
node embedding in {~h01, ~h

0
2, . . . ,

~h0n } corresponds to the temporal
order of the interaction. But in the pooled cluster embedding matrix
{~h⇤1,

~h⇤2, . . . ,
~h⇤m }, the temporal order between the clusters re�ecting

the user’s interest is di�cult to be guaranteed. Therefore, we use
three regularization terms to alleviate the above issue.
• Same mapping regularization. To make it easier for two nodes
with greater connection strength to be mapped to the same clus-
ter, the �rst regularization is used as follows,

LM = kA, SS
T
kF , (12)

where k · kF denotes the Frobenius norm. Each element in adja-
cency matrix A represents the connection strength between two
nodes, and each element in SS

T represents the probability that
two nodes are divided to the same cluster.
• Single a�liation regularization. To clearly de�ne the a�liation
of each cluster, we make each row Si : in assignment matrix ap-
proach a one-hot vector by regularizing the entropy as follows,

LA =
1
n

nX

i=1
H (Si :) , (13)

where H (·) is the entropy function that can reduce the uncer-
tainty of the mapping distribution. The optimal situation is that
the i-th node is only mapped to one cluster, and the entropy
H (Si :) is 0 at this time.
• Relative position regularization. The temporal order of the user’s
interest before and after pooling needs to bemaintained for down-
stream interest evolution modeling. However, the operation of
swapping the index on the pooled cluster embedding matrix
{~h⇤1,

~h⇤2, . . . ,
~h⇤m } is not di�erentiable. Therefore, we design a posi-

tion regularization to ensure the temporal order between clusters
during pooling as follows,

LP = kPnS, Pm k2, (14)

where Pn is a position encoding vector {1, 2, ...,n}, and Pm is a
position encoding vector {1, 2, ...,m}. Minimizing the L2 norm
makes the position of the non-zero elements in S closer to the
main diagonal elements. Intuitively, for the node with the front
position in the original sequence, the position index of the cluster
to which it is assigned tends to be in the front.

3.3.3 Graph readout. At this point, we have obtained a tightly
coarsened graph G⇤ representing the user’s stronger interest signal.
At the same time, we perform a weighted readout on raw graph
G to constrain each node’s importance, which aggregates all node
embeddings after the forward computation of the propagation layer
to generate a graph-level representation ~h� :

~h� = Readout({�i ⇤ ~h0i , i 2 G}), (15)

where the weight is the score �i of each node before pooling, and
the Readout function can be a function such as Mean, Sum, Max,
etc. We use the simple sum function here to ensure permutation
invariant and leave other functions for future exploration. We feed

this graph-level representation into the �nal prediction layer to
better extract each cluster’s information in the pooling layer.

3.4 Prediction Layer
3.4.1 Interest evolutionmodeling. Under the joint in�uence

of the external environment and internal cognition, the users’ core
interests are continually evolving. The user may become interested
in various sports for a time and need books at another time. How-
ever, only using the readout operation mentioned above does not
consider the evolution between core interests, which will undoubt-
edly cause the time order’s bias. To supply the �nal representation
of interest with more relative historical information, it is also nec-
essary to consider the chronological relationship between interests.

Bene�ting from the relative position regularization, the pooled
cluster embeddingmatrix maintains the temporal order of the user’s
interest, which is equivalent to �attening the pooled graph into a
reduced sequence with enhanced interest signals. Intuitively, we
can use any known sequential recommendation method to model
the concentrated interest sequence. For the sake of simplicity and
to illustrate the e�ectiveness of the pooling method, we use a single
sequential model to model the evolution of interest:

~hs = AUGRU({~h⇤1, ~h
⇤
2, . . . ,

~h⇤m }). (16)

As we know, GRU overcomes the vanishing gradients problem of
RNN and is faster than LSTM [11]. Furthermore, to make better
use of the importance weight � ⇤i of fused interest in the interest
extraction layer, we adopt GRU with attentional update gate (AU-
GRU) [45] to combine attention mechanism and GRU seamlessly.
AUGRU uses attention score� ⇤i to scale all dimensions of the update
gate, which results that less related interest make fewer e�ects on
the hidden state. It avoids the disturbance from interest drifting
more e�ectively and pushes the relative interest to evolve smoothly.

3.4.2 Prediction. We take the graph-level representation of
the interest extraction layer and evolution output of the interest
evolution layer as the user’s current interest, and concatenate them
with the target item embedding. Given the concatenated dense rep-
resentation vector, fully connected layers are used to automatically
learn the combination of embeddings. We use two-layer feedfor-
ward neural network as the prediction function to estimate the
probability of the user interacting with the item at the next mo-
ment, and all compared models in the experimental part will share
this popular design [39, 45, 46],

�̂ = Predict(~hs k~h� k~ht k~h� � ~ht ). (17)

Following the CTR (click-through rate) prediction in the real-
world industry [45, 46], we use the negative log-likelihood function
as the loss function and share this setting with all compared models.
The optimization process is to minimize the loss function together
with a L2 regularization term to prevent over-�tting,

L = �
1
|O|

X

o2O

(�o log �̂o + (1 � �o ) log(1 � �̂o )) + �k�k2, (18)

where O is the training set and |O| is the number of training in-
stances. � denotes the set of trainable parameters and � controls
the penalty strength. The label �o = 1 indicates a positive instance
and �o = 0 indicates a negative instance. And �̂o stands for the

§ 3. Optimization objective : 
• uses the negative log-likelihood function as the loss function;
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L2 regularization is used to prevent over-
fitting and 𝝀 controls the penalty strength.

L𝒚𝒐 stands for the network’s output 
after the softmax layer.
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Interest Fusion 
and Extraction

a) Cluster-aware attention
score of the target node

b) Query-aware attention 
score of the source node

c) Interest fusion via 
attentive propagation

d) Soft cluster assignment 
with regularizations

B. Interest-fusion Graph Convolutional Layer. C. Interest-extraction Graph Pooling Layer.

e) Interest extraction via
graph pooling

A. Interest Graph Construction. D. Prediction Layer.

Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by �attening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the �nal similarity:

M
�
i j = cos(~w� � ~hi , ~w� � ~hj ), Mi j =

1
�

�X

�=1
M
�
i j , (2)

where M�
i j computes the similarity metric between the two item

embeddings ~hi and ~hj for the � -th head, and each head implictly
capture di�erent perspective of semantics.

3.1.3 Graph sparsification via �-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [�1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Speci�cally, we mask o� (i.e., set to zero) those elements inM that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

(
1, Mi j >= Rank�n2 (M );
0, otherwise; (3)

where Rank�n2 (M ) returns the value of the �n2-th largest value in
the metric matrixM . n is the number of nodes and � controls the
overall sparsity of the generated graph.

It is di�erent from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a �xed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and di�erent
types of interests form di�erent clusters. Furthermore, to gather
weak signals to strong ones that can accurately re�ect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph a�entive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {~h1, ~h2, . . . , ~hn }, ~hi 2 Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {~h01, ~h

0
2, . . . ,

~h0n }, ~h
0
i 2 R

d 0 ,
as its output with potentially di�erent dimension d 0.

An alignment score Ei j is computed to map the importance
of target node �i on it’s neighbor node �j . Once obtained, the
normalized attention coe�cients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the re�ned output embeddings for every node after applying a
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q Datasets
§ E-commerce Platform: Taobao
§ Short-video Platform: Kuaishou

q Evaluation Metrics:
§ Accuracy Metrics: AUC, GAUC
§ Ranking Metrics: MRR, NDCG@K

q Dataset partition:
§ Taobao: 2017.11. 25 ~ 2017.12.3, first 7 days as training set, the 8th 

day as validation set, and the last day as test set.
§ Kuaishou: 2020.10.11 ~ 2020.10.28, first 6 days as training set, before 

12 pm of the last day as validation set, and after 12 pm as test set.Table 1: Statistics of the Datasets.

Dataset Users Items Instances Average Length

Taobao 36,915 64,138 1,471,155 39.85
Kuaishou 60,813 292,286 14,952,659 245.88

network’s output after the softmax layer, representing the pre-
dicted probability of the next item being clicked. Besides, the three
regularization terms in Section 3.3.2 are added to the �nal recom-
mendation objective function to obtain the better performance and
more interpretable cluster assignments.

4 EXPERIMENT
In this section, we conduct experiments on two real-world datasets
for sequential recommendation to evaluate our proposed method,
with the purpose of answering the following three questions.
• RQ1: How does the proposed method perform compared with
state-of-the-art sequential recommenders?
• RQ2: Can the proposed method be able to handle sequences with
various length e�ectively and e�ciently?
• RQ3: What is the e�ect of di�erent components in the method?

4.1 Experimental Settings
4.1.1 Dataset. We evaluate the recommendation performance

on a public e-commerce dataset and an industrial short-video dataset.
Table 1 summarizes the basic statistics of the two datasets. Average
Length represents the average of users’ history length, which indi-
cates that the scale of the industry dataset we adopt is much larger
than the public dataset.
• Taobao∗. This dataset is widely used for recommendation re-
search [20, 47], which is collected from the largest e-commerce
platform in China. We use the click data from November 25 to
December 3, 2017 and �lter out users with less than 10 inter-
actions. We use the �rst 7 days as training set, the 8th day as
validation set, and the last day as test set.
• Kuaishou†. This is an industrial dataset collected from one of
the largest short-video platforms in China. Users can upload
short-videos and browse other users’ short-videos. We downsam-
ple the logs from October 22 to October 28, 2020. User behaviors
such as click, like, follow (subscribe) and forward are recorded
in the dataset. Click data is used to conduct experiments, and
the 10-core setting is also adopted to �lter out inactive users and
videos. Behaviors of the �rst 6 days are used to train recommen-
dation models. Behaviors during the before 12 pm of the last day
is used as validation set, and we keep the instances after 12 pm of
the last day to evaluate the �nal recommendation performance.

4.1.2 Evaluation Metrics. To evaluate the performance of
each model, we use two widely adopted accuracy metrics including
AUC and GAUC [46], as well as two ranking metrics MRR and
NDCG. They are de�ned as follows,
• AUC signi�es the probability that the positive item sample’s
score is higher than the negative item sample’s score, re�ecting
the classi�cation model’s ability to rank samples.

∗https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
†https://www.kuaishou.com/en

• GAUC performs a weighted average of each user’s AUC, where
the weight is his number of clicks. It eliminates the bias between
users and evaluates model performance with a �ner granularity.
• MRR is the mean reciprocal rank, which is the mean value of
the inverse of the ranking of the �rst hit item.
• NDCG@K assigns higher scores to hits at higher positions in
the top-K ranking list, which emphasizes that test items should
be ranked as higher as possible. In our experiments, we set K to
2, a widely-used setting in existing works.

4.1.3 Baselines. To demonstrate the e�ectiveness of our SURGE
model, we compare it with competitive sequential recommenders.
The baselines are classi�ed into two categories: non-sequential
model that only captures user’s static interest, and sequential mod-
els that consider dynamic interest patterns.
Non-sequential Models:
• NCF [9]: This method combines matrix factorization and multi-
layer perceptrons to predict user interactions, and it is the state-
of-the-art general recommender.
• DIN [46]: This method uses attention mechanism with the target
item as the query vector. Representation of the user is obtained by
aggregating the history interaction with the attention weights.
• LightGCN [8]: This is the state-of-the-art model which uses
graph neural network to extract higher-order connectivity for
the recommendation.

Sequential Models:
• Caser [24]: This method embeds a set of recent item sequences in
time and latent space into an image feature and uses convolution
�lters to learn the its sequence patterns.
• GRU4REC [10]: This method uses GRU to model user session
sequences and encode user interest into a �nal state.
• DIEN [45]: This method uses a two-layer GRU composed of
interest extraction layer and interest evolution layer to model
the user’s behavior sequence.
• SLi-Rec [39]: This is the state-of-the-art method that jointly mod-
els long and short-term interests based on an attention framework
and an improved time-aware LSTM.
It is worth noting that session recommendation is another rec-

ommendation task similar to sequential recommendation, which
aims to predict the next item based on only the user’s current
session data without utilizing the long-term preference pro�le. Re-
cently, graph-based models [21, 31, 33, 35] achieve successes on
this task. The complex transitions between repeated behaviors in
each session are modeled through the small item graphs for each
user. However, users rarely produce repetitive behaviors over a
long time, making relevant work impossible to apply to the task of
sequential recommendation.

4.1.4 Hyper-parameter Se�ings. We implement all the mod-
els with the Microsoft Recommenders framework‡ based on Tensor-
Flow§. We use Adam [14] for optimization with the initial learning
rate as 0.001. The batch size is set as 500 and embedding size is �xed
to 40 for all models. Xavier initialization [7] is used here to initialize
the parameters. All methods use a two-layer feedforward neural
network with hidden sizes of [100, 64] for interaction estimation.

‡https://github.com/microsoft/recommenders
§https://www.tensor�ow.org

LightGCN: Simplifying and Powering Graph 
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q NCF [He et al. WWW'17]
§ matrix factorization and multilayer perceptrons

q DIN [Zhou et al. KDD'18]
§ attention mechanism with target item as query

q LightGCN [Zhou et al. SIGIR'20]
§ uses GCN to extract higher-order connectivity

q GRU4REC [Hidasi et al. ICLR'16]
§ encodes user interest into GRU’s final state

q Caser [Tang et al. WSDM'18]
§ uses CNN to learn sequence patterns

q DIEN [Zhou et al. AAAI'19]
§ interest extraction and evolution GRUs

q SLi-Rec [Yu et al. IJCAI’19]
§ jointly models long and short-term interests

Compared Methods

5454

General 
Models

Sequential 
Models
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q Overal PerformanceTable 2: Performance comparisons (bold means p-value < 0.05, bold* means p-value < 0.01, and bold** means p-value < 0.001.)

Method
Taobao Kuaishou

AUC GAUC MRR NDCG@2 AUC GAUC MRR NDCG@2
NCF 0.7128 0.7221 0.1446 0.0829 0.5559 0.5531 0.7734 0.8327
DIN 0.7637 0.8524 0.3091 0.2352 0.6160 0.7483 0.8863 0.9160
LightGCN 0.7483 0.7513 0.1669 0.1012 0.6403 0.6407 0.8175 0.8653
Caser 0.8312 0.8499 0.3508 0.2890 0.7795 0.8097 0.9100 0.9336
GRU4REC 0.8635 0.8680 0.3993 0.3422 0.8156 0.8333 0.9174 0.9391
DIEN 0.8477 0.8745 0.4011 0.3404 0.7037 0.7800 0.9030 0.9284
SLi-Rec 0.8664 0.8669 0.3617 0.2971 0.7978 0.8128 0.9075 0.9318
SURGE 0.8906⇤⇤ 0.8888 0.4228⇤ 0.3625⇤⇤ 0.8525⇤⇤ 0.8610⇤⇤ 0.9316⇤⇤ 0.9495⇤

The maximum length for user interaction sequences is 50 for the
Taobao dataset and 250 for the Kuaishou dataset. We apply careful
grid-search to �nd the best hyper-parameters. All regularization
coe�cients are searched in [1e�7, 1e�5, 1e�3]. The pooling length
of the user interaction sequence is searched in [10, 20, 30, 40, 50]
for Taobao dataset and [50, 100, 150, 200, 250] for Kuaishou dataset.

4.2 Overall Performance (RQ1)
Table 2 illustrates the results on the two datasets. From the results,
we have the following observations:
• Our proposed method consistently achieves the best per-
formance. We can observe that our model SURGE signi�cantly
outperforms all baselines in terms of both classi�cation and rank-
ing metrics. Speci�cally, our model improves AUC by around
0.03 (p-value < 0.001) on Taobao dataset and 0.04 (p-value < 0.001)
on Kuaishou dataset. The improvement is more obvious on the
Kuaishou dataset with longer interaction history, which veri�es
that our method can handle long sequences more e�ectively and
signi�cantly reduces the di�culty of modeling user interests.
• Sequential models are e�ective but have a short-term bot-
tleneck. Compared with NCF, DIN and LightGCN, the better
performance of Caser, DIEN and GRU4Rec veri�es the necessity
of capturing sequential patterns for modeling user interests. On
the Taobao dataset, RNN-based models (GRU4Rec and DIEN)
with more powerful ability to capture sequential patterns outper-
formed the CNN-based model (Caser). The max pooling scheme
in CNN that is commonly used in computer vision omits impor-
tant position and recurrent signals when modeling long-range
sequence data. But on the Kuaishou dataset, since RNNs tend to
forget long-term interest when processing longer sequences, the
performance of DIEN and GRU4Rec are in par with Caser in most
metrics. This result indicates that even powerful recurrent neu-
ral networks have a short-term memory bottleneck. In addition,
since long sequences tend to contain more noise, DIEN’s perfor-
mance on the two datasets is unstable compared to GRU4REC.
This shows that the even though two-layer GRU structure is often
more e�ective, the performance is more likely to be impacted by
noise on datasets with long sequences, therefore justifying our
motivation to summarize the sequences with metric learning.
• Joint modeling long and short-term interests does not al-
ways add up to better performance. SLi-Rec, which joint mod-
els long and short-term interests, is the best baseline on Taobao in

terms of the AUC metric, but exhibits poor performance accord-
ing to rankingmetrics. In addition, on Kuaishouwith longer inter-
action sequences, SLi-Rec’s performance is worse than GRU4Rec
for all metrics, even though GRU4REC does not explicitly model
long and short-term interests. This indicates that although SLi-
Rec utilizes two separate components to model users’ long and
short-term interests, it still fails to e�ectively integrate them
into a single model, in particular for long sequences. Moreover,
SLi-Rec leverages timestamp information to improve modeling
long and short-term interests. However, our method shows better
performance by compressing information with metric learning,
without the need to explicitly model timestamp.

4.3 Study on Sequence Length and E�ciency
Comparison (RQ2)

4.3.1 Study on Sequence Length. In real-world applications,
a user may have very long interaction sequences. Long historical
sequences often have more patterns that can re�ect user interests,
but the accompanying increased noise signals will mislead the mod-
eling of real interests. Thus, whether to e�ectively model the user’s
long-term history is a signi�cant issue for sequential recommen-
dation. We study how SURGE improves the recommendation for
those users with long behavior records. Speci�cally, we divide all
users of the two datasets into �ve groups based on the length of the
interaction history. For each group, we compare the performance
of our method with the baseline methods and present the GAUC
metric of the two datasets, as shown in Figure 3.

From the results, we can observe that all models are challenging
to capture users’ real interest when the sequence length is short
due to data sparsity. As the length of the sequence increases and
the di�culty of modeling decreases, most models’ performance
improves and reaches a peak. But as the length continues to increase,
most models’ performance will decline with the introduction of a
large number of noise signals. Among them, DIN and DIEN declined
most signi�cantly. It is di�cult for DIN to focus on the most critical
parts in a long sequence. The item with the greatest attention may
occur in the early part of the sequence, and it may be very di�erent
from the user’s current interest. When the two-layer GRU structure
in DIEN models user interests, the next GRU input depends on
the previous GRU output, making it easier to be disturbed by the
noise in long sequences. Due to the short-term bottleneck of a
single GRU, GRU4REC will only focus on the recent history and

Performance comparisons (bold means p-value < 0.05, bold* means p-value < 0.01, and bold** means p-value < 0.001.)

1. Our proposed method consistently achieves the best performance;
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q Overal PerformanceTable 2: Performance comparisons (bold means p-value < 0.05, bold* means p-value < 0.01, and bold** means p-value < 0.001.)

Method
Taobao Kuaishou

AUC GAUC MRR NDCG@2 AUC GAUC MRR NDCG@2
NCF 0.7128 0.7221 0.1446 0.0829 0.5559 0.5531 0.7734 0.8327
DIN 0.7637 0.8524 0.3091 0.2352 0.6160 0.7483 0.8863 0.9160
LightGCN 0.7483 0.7513 0.1669 0.1012 0.6403 0.6407 0.8175 0.8653
Caser 0.8312 0.8499 0.3508 0.2890 0.7795 0.8097 0.9100 0.9336
GRU4REC 0.8635 0.8680 0.3993 0.3422 0.8156 0.8333 0.9174 0.9391
DIEN 0.8477 0.8745 0.4011 0.3404 0.7037 0.7800 0.9030 0.9284
SLi-Rec 0.8664 0.8669 0.3617 0.2971 0.7978 0.8128 0.9075 0.9318
SURGE 0.8906⇤⇤ 0.8888 0.4228⇤ 0.3625⇤⇤ 0.8525⇤⇤ 0.8610⇤⇤ 0.9316⇤⇤ 0.9495⇤

The maximum length for user interaction sequences is 50 for the
Taobao dataset and 250 for the Kuaishou dataset. We apply careful
grid-search to �nd the best hyper-parameters. All regularization
coe�cients are searched in [1e�7, 1e�5, 1e�3]. The pooling length
of the user interaction sequence is searched in [10, 20, 30, 40, 50]
for Taobao dataset and [50, 100, 150, 200, 250] for Kuaishou dataset.

4.2 Overall Performance (RQ1)
Table 2 illustrates the results on the two datasets. From the results,
we have the following observations:
• Our proposed method consistently achieves the best per-
formance. We can observe that our model SURGE signi�cantly
outperforms all baselines in terms of both classi�cation and rank-
ing metrics. Speci�cally, our model improves AUC by around
0.03 (p-value < 0.001) on Taobao dataset and 0.04 (p-value < 0.001)
on Kuaishou dataset. The improvement is more obvious on the
Kuaishou dataset with longer interaction history, which veri�es
that our method can handle long sequences more e�ectively and
signi�cantly reduces the di�culty of modeling user interests.
• Sequential models are e�ective but have a short-term bot-
tleneck. Compared with NCF, DIN and LightGCN, the better
performance of Caser, DIEN and GRU4Rec veri�es the necessity
of capturing sequential patterns for modeling user interests. On
the Taobao dataset, RNN-based models (GRU4Rec and DIEN)
with more powerful ability to capture sequential patterns outper-
formed the CNN-based model (Caser). The max pooling scheme
in CNN that is commonly used in computer vision omits impor-
tant position and recurrent signals when modeling long-range
sequence data. But on the Kuaishou dataset, since RNNs tend to
forget long-term interest when processing longer sequences, the
performance of DIEN and GRU4Rec are in par with Caser in most
metrics. This result indicates that even powerful recurrent neu-
ral networks have a short-term memory bottleneck. In addition,
since long sequences tend to contain more noise, DIEN’s perfor-
mance on the two datasets is unstable compared to GRU4REC.
This shows that the even though two-layer GRU structure is often
more e�ective, the performance is more likely to be impacted by
noise on datasets with long sequences, therefore justifying our
motivation to summarize the sequences with metric learning.
• Joint modeling long and short-term interests does not al-
ways add up to better performance. SLi-Rec, which joint mod-
els long and short-term interests, is the best baseline on Taobao in

terms of the AUC metric, but exhibits poor performance accord-
ing to rankingmetrics. In addition, on Kuaishouwith longer inter-
action sequences, SLi-Rec’s performance is worse than GRU4Rec
for all metrics, even though GRU4REC does not explicitly model
long and short-term interests. This indicates that although SLi-
Rec utilizes two separate components to model users’ long and
short-term interests, it still fails to e�ectively integrate them
into a single model, in particular for long sequences. Moreover,
SLi-Rec leverages timestamp information to improve modeling
long and short-term interests. However, our method shows better
performance by compressing information with metric learning,
without the need to explicitly model timestamp.

4.3 Study on Sequence Length and E�ciency
Comparison (RQ2)

4.3.1 Study on Sequence Length. In real-world applications,
a user may have very long interaction sequences. Long historical
sequences often have more patterns that can re�ect user interests,
but the accompanying increased noise signals will mislead the mod-
eling of real interests. Thus, whether to e�ectively model the user’s
long-term history is a signi�cant issue for sequential recommen-
dation. We study how SURGE improves the recommendation for
those users with long behavior records. Speci�cally, we divide all
users of the two datasets into �ve groups based on the length of the
interaction history. For each group, we compare the performance
of our method with the baseline methods and present the GAUC
metric of the two datasets, as shown in Figure 3.

From the results, we can observe that all models are challenging
to capture users’ real interest when the sequence length is short
due to data sparsity. As the length of the sequence increases and
the di�culty of modeling decreases, most models’ performance
improves and reaches a peak. But as the length continues to increase,
most models’ performance will decline with the introduction of a
large number of noise signals. Among them, DIN and DIEN declined
most signi�cantly. It is di�cult for DIN to focus on the most critical
parts in a long sequence. The item with the greatest attention may
occur in the early part of the sequence, and it may be very di�erent
from the user’s current interest. When the two-layer GRU structure
in DIEN models user interests, the next GRU input depends on
the previous GRU output, making it easier to be disturbed by the
noise in long sequences. Due to the short-term bottleneck of a
single GRU, GRU4REC will only focus on the recent history and

Performance comparisons (bold means p-value < 0.05, bold* means p-value < 0.01, and bold** means p-value < 0.001.)

1. Our proposed method consistently achieves the best performance;

2. Sequential models are effective but have a short-term bottleneck;
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q Overal PerformanceTable 2: Performance comparisons (bold means p-value < 0.05, bold* means p-value < 0.01, and bold** means p-value < 0.001.)

Method
Taobao Kuaishou

AUC GAUC MRR NDCG@2 AUC GAUC MRR NDCG@2
NCF 0.7128 0.7221 0.1446 0.0829 0.5559 0.5531 0.7734 0.8327
DIN 0.7637 0.8524 0.3091 0.2352 0.6160 0.7483 0.8863 0.9160
LightGCN 0.7483 0.7513 0.1669 0.1012 0.6403 0.6407 0.8175 0.8653
Caser 0.8312 0.8499 0.3508 0.2890 0.7795 0.8097 0.9100 0.9336
GRU4REC 0.8635 0.8680 0.3993 0.3422 0.8156 0.8333 0.9174 0.9391
DIEN 0.8477 0.8745 0.4011 0.3404 0.7037 0.7800 0.9030 0.9284
SLi-Rec 0.8664 0.8669 0.3617 0.2971 0.7978 0.8128 0.9075 0.9318
SURGE 0.8906⇤⇤ 0.8888 0.4228⇤ 0.3625⇤⇤ 0.8525⇤⇤ 0.8610⇤⇤ 0.9316⇤⇤ 0.9495⇤

The maximum length for user interaction sequences is 50 for the
Taobao dataset and 250 for the Kuaishou dataset. We apply careful
grid-search to �nd the best hyper-parameters. All regularization
coe�cients are searched in [1e�7, 1e�5, 1e�3]. The pooling length
of the user interaction sequence is searched in [10, 20, 30, 40, 50]
for Taobao dataset and [50, 100, 150, 200, 250] for Kuaishou dataset.

4.2 Overall Performance (RQ1)
Table 2 illustrates the results on the two datasets. From the results,
we have the following observations:
• Our proposed method consistently achieves the best per-
formance. We can observe that our model SURGE signi�cantly
outperforms all baselines in terms of both classi�cation and rank-
ing metrics. Speci�cally, our model improves AUC by around
0.03 (p-value < 0.001) on Taobao dataset and 0.04 (p-value < 0.001)
on Kuaishou dataset. The improvement is more obvious on the
Kuaishou dataset with longer interaction history, which veri�es
that our method can handle long sequences more e�ectively and
signi�cantly reduces the di�culty of modeling user interests.
• Sequential models are e�ective but have a short-term bot-
tleneck. Compared with NCF, DIN and LightGCN, the better
performance of Caser, DIEN and GRU4Rec veri�es the necessity
of capturing sequential patterns for modeling user interests. On
the Taobao dataset, RNN-based models (GRU4Rec and DIEN)
with more powerful ability to capture sequential patterns outper-
formed the CNN-based model (Caser). The max pooling scheme
in CNN that is commonly used in computer vision omits impor-
tant position and recurrent signals when modeling long-range
sequence data. But on the Kuaishou dataset, since RNNs tend to
forget long-term interest when processing longer sequences, the
performance of DIEN and GRU4Rec are in par with Caser in most
metrics. This result indicates that even powerful recurrent neu-
ral networks have a short-term memory bottleneck. In addition,
since long sequences tend to contain more noise, DIEN’s perfor-
mance on the two datasets is unstable compared to GRU4REC.
This shows that the even though two-layer GRU structure is often
more e�ective, the performance is more likely to be impacted by
noise on datasets with long sequences, therefore justifying our
motivation to summarize the sequences with metric learning.
• Joint modeling long and short-term interests does not al-
ways add up to better performance. SLi-Rec, which joint mod-
els long and short-term interests, is the best baseline on Taobao in

terms of the AUC metric, but exhibits poor performance accord-
ing to rankingmetrics. In addition, on Kuaishouwith longer inter-
action sequences, SLi-Rec’s performance is worse than GRU4Rec
for all metrics, even though GRU4REC does not explicitly model
long and short-term interests. This indicates that although SLi-
Rec utilizes two separate components to model users’ long and
short-term interests, it still fails to e�ectively integrate them
into a single model, in particular for long sequences. Moreover,
SLi-Rec leverages timestamp information to improve modeling
long and short-term interests. However, our method shows better
performance by compressing information with metric learning,
without the need to explicitly model timestamp.

4.3 Study on Sequence Length and E�ciency
Comparison (RQ2)

4.3.1 Study on Sequence Length. In real-world applications,
a user may have very long interaction sequences. Long historical
sequences often have more patterns that can re�ect user interests,
but the accompanying increased noise signals will mislead the mod-
eling of real interests. Thus, whether to e�ectively model the user’s
long-term history is a signi�cant issue for sequential recommen-
dation. We study how SURGE improves the recommendation for
those users with long behavior records. Speci�cally, we divide all
users of the two datasets into �ve groups based on the length of the
interaction history. For each group, we compare the performance
of our method with the baseline methods and present the GAUC
metric of the two datasets, as shown in Figure 3.

From the results, we can observe that all models are challenging
to capture users’ real interest when the sequence length is short
due to data sparsity. As the length of the sequence increases and
the di�culty of modeling decreases, most models’ performance
improves and reaches a peak. But as the length continues to increase,
most models’ performance will decline with the introduction of a
large number of noise signals. Among them, DIN and DIEN declined
most signi�cantly. It is di�cult for DIN to focus on the most critical
parts in a long sequence. The item with the greatest attention may
occur in the early part of the sequence, and it may be very di�erent
from the user’s current interest. When the two-layer GRU structure
in DIEN models user interests, the next GRU input depends on
the previous GRU output, making it easier to be disturbed by the
noise in long sequences. Due to the short-term bottleneck of a
single GRU, GRU4REC will only focus on the recent history and

Performance comparisons (bold means p-value < 0.05, bold* means p-value < 0.01, and bold** means p-value < 0.001.)

1. Our proposed method consistently achieves the best performance;

2. Sequential models are effective but have a short-term bottleneck;

3. Joint modeling long and short-term interests are not always better.
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1. As the length increases, each model’s performance reaches its peak;
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q Study on Sequence Length
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1. As the length increases, each model’s performance reaches its peak;
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q Study on Sequence Length

2. As the length continues to increase, most models’ performance decline;
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1. As the length increases, each model’s performance reaches its peak;
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q Study on Sequence Length

2. As the length continues to increase, most models’ performance decline;

3. The performance gap with SURGE is larger when sequences become longer.



� ���� ����
,WHUDWLRQ

����

����

����

����

*
$
8
&

7DEREDR�'DWDVHW

',1
',(1
&$6(5
*58�5(&
6/L�5HF
685*(

� ���� �����
,WHUDWLRQ

����

����

����

*
$
8
&

.XDLVKRX�'DWDVHW

',1
',(1
&$6(5
*58�5(&
6/L�5HF
685*(

Experiments

61

q Efficiency Comparison

SURGE’s another advantage is that the convergence process 
during training is more stable and fast.
§ Other methods either continually fluctuate and are difficult to 

converge, or increase slowly and are difficult to stop early.



Figure 2: Performance breakdown by sequence lengths on
the two datasets. Best viewed in color.

ignore the sequence length, and its performance in each length
group is relatively stable. Although SLi-Rec jointly considers users’
long-term and short-term interests, it still models for noise-�lled
sequences, so it is inevitable to su�er performance degradation on
long sequences.

However, the performance gap between SURGE and other meth-
ods becomes larger as the sequence length increases. Furthermore,
even in the user group with the longest historical sequence, SURGE
still keeps the excellent performance of 0.8919 and 0.8502 on Taobao
and Kuaishou datasets, respectively. Since the SURGEmodel merges
implicit signals into explicit signals and �lters out noise, it can
achieve good performance for users with a long history. In sum-
mary, we conclude that the SURGE model we proposed can more
e�ectively model users’ long-term historical sequence.

4.3.2 E�iciency Comparison. For sequential recommenda-
tion systems, it is challenging to e�ciently model user behavior
history. The di�erences and diversity of items in the user’s historical
sequence lead to slow model convergence. Besides, long historical
sequences often correspond to more complex calculations and more
time-consuming training. To study whether SURGE can alleviate
the issue, we visualize the training process of SURGE and baseline
models and compare the convergence speed and training time of
each model. Speci�cally, we plot the performance changes of the
proposed method and the baseline methods on the validation set
during the training process and reported the GAUC metric. We
use early stop to detect whether the training is over, that is, if the
GAUC on the validation set does not increase within �ve epochs,
the training process will stop. For the two datasets’ performance
change curves, we use smoothing rates of 0.2 and 0.6 to smooth
them to see the trend better.

The training process on the two datasets is shown in Figure 3.
From the results, we can observe that DIN fails to focus on criti-
cal interests on long sequences, so it continually �uctuates on the
kuaishou dataset and it is di�cult to converge. Since GRU4REC is
more likely to forget long-term interests, only the item embeddings
at the end of the sequence will be updated in each training instance.
Therefore, its training curve is steady and slow, and the continu-
ous slight increase makes it hard to stop early. Because SLIREC
speci�cally considers the long-term interests of users, it converges
quickly on the kuaishou dataset, but it is the slowest method on
the Taobao dataset with a shorter sequence.

Table 3 shows each model’s training time on the two datasets.
We can observe that, except for the non-sequential model of DIN

Figure 3: Test performance of the baselines by iterations on
two datasets. Best viewed in color.

Table 3: Total training time until convergence of baselines
on two real-world datasets, where m indicates minutes.

Dataset DIN Caser GRU4REC DIEN SLi-Rec SURGE

Taobao 22.65m 23.66m 26.78m 18.74m 27.82m 14.96m
Kuaishou 20.59m 120.26m 73.35m 28.47m 28.84m 22.86m

on the kuaishou dataset, our method’s e�ciency improvement com-
pared with all baselines is more than 20%. The reason is that SURGE
performs a pooling operation on the sequence before feeding the em-
bedded sequence into the recurrent neural network, which greatly
reduces the number of recurrent steps. Besides, since most of the
noise is �ltered, the pooled sequence only contains the core interest,
which will undoubtedly help speed up the model’s convergence.
Therefore, we concluded that the SURGE model we proposed can
more e�ciently model users’ long-term historical sequence.

4.4 Ablation and Hyper-parameter Study (RQ3)
4.4.1 E�ectiveness of interest fusion. We propose to per-

form message passing on the interest graph based on similarity
to merge weak signals into strong signals. We now investigate
whether this fusion design that strengthens core interests and acti-
vates target interests is necessary. To be speci�c, Speci�cally, we
compare the no propagation, cluster-aware propagation, query-
aware propagation, cluster- and query-aware propagation.

The results on the two datasets in Table 4 show the e�ectiveness
of fusing weak signals into strong signals through graph convolu-
tion. The enhancement of core interest and the activation of target
interest respectively bring further performance improvements.

4.4.2 E�ectiveness of interest extraction. To evaluate the
impact of interest extraction through pooling strategy on interest
modeling. We compared no graph pooling, graph pooling without
assignment regularization, graph poolingwithoutweighted readout,
and complete graph pooling.

The results are shown in Table 4. We can observe that interest
extraction can help �lter irrelevant noise so that the model focuses
on the most critical part of modeling. Especially when the assign-
ment regularization and the graph readout are injected into the
model, the user’s interest can be better compressed to improve the
recommendation performance.

4.4.3 Design choices for interest evolution. Our framework
is agnostic to the selection of the prediction layer after the pool-
ing sequence. We can use any known sequential recommendation
method to model the concentrated interest sequence. We compared

Experiments
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q Efficiency Comparison

Total training time until convergence of baselines on two real-world datasets, where m indicates minutes.

Except for the non-sequential model of DIN, SURGE’s efficiency 
improvement compared with all baselines is more than 20%.
§ SURGE compresses the sequence before feeding the 

embedded sequence into the recurrent neural network, 
which greatly reduces the number of recurrent steps. 

§ Since most of the noise is filtered, the pooled sequence only 
contains the core interest, which will undoubtedly help 
speed up the model’s convergence.
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q Design choices for interest evolution

SURGE’s third advantage is that the framework can bring 
benefits to some existing methods.
§ Modeling on the compressed sequence will significantly 

reduce the difficulty of capturing user interests.



Conclusion & Future Work

64

q Conclusion
§ We approach sequential recommendation from a new 

perspective.
§ We propose to aggregate implicit signals into explicit 

ones by designing graph neural network-based models on 
constructed item-item interest graphs. 

§ We design dynamic-pooling to filter and reserve activated 
core preferences for recommendation.

q Future Work
§ We plan to use different behaviors to explore fine-grained

multiple interactions from noisy historical sequences.



Recent advances of GNN-based RecSys

• Social Recommendation
• Sequential Recommendation
• Session-based Recommendation
• KG-based Recommendation
• Bundle Recommendation

• Accuracy
• Multi-behavior
• Diversity
• Explainability
• Fairness
• Privacy

• Matching (Collaborative Filtering)
• Ranking (Feature-based / CTR)

Stage Scenario

Objective

Recommender System

Bundle recommendation with graph convolutional networks. 
Chang, J., Gao, C., He, X., Jin, D., & Li, Y. SIGIR 2020 65



What is a bundle?

6666

Nursery Bundle Suit Bundle Computer Bundle

App Bundle Movie Bundle Game Bundle



Background

67

§ Bundle recommendation aims to recommend                     a 
bundle of items for a user to consume as a whole.

§ The prevalence of bundled items on e-commerce and content 
platforms makes it become an important task.

content 

e-commerce

improve user 
experience

avoid monotonous 
choices 

reduce query 
operations

increase business 
salesexpand order sizesset overall discounts



Challenges

q Model

§ The attractiveness of a bundle depends on its items.

§ The users need to be satisfied with most items in a bundle.

§ The items matching degree will affect the user's choice.

68



Challenges

q Data

§ On the existing platforms, the item is still the main form to buy.

§ The number of bundles that the user has interacted with is limited.

§ There is a sparser interaction between the user and bundle.

69



q Input: 
§ user-bundle interaction records
§ user-item interaction records
§ bundle-item affiliation information

q Output: 
§ user-bundle interaction probability

Problem Definition

7070

𝒃𝟐𝒖𝟏

𝒊𝟑

𝒊𝟒

?



1. Separated modeling of two affiliated entities.
§ reuse model parameters

§ share model parameters 

§ It is difficult to balance the weights of the main task 
and auxiliary task. 

Limitations of Existing works

7171

user-item
interaction

𝑦:;

user-bundle
interaction 

𝑦:<

model1 model1
task 1 task 2

user-item 
interaction

𝑦:;

user-bundle 
interaction

𝑦:<

model1 model2
task 1 task 2



2. Substitution of bundles is not considered. 

§ They only consider the correlation between items in a 
bundle to enhance the item task.

§ The association between the bundles as the 
recommended target is even more critical.

Limitations of Existing works

7272



3. Decision-making is ignored in bundle scenarios. 

§ Even though a user likes most items in a bundle, but 
may refuse the bundle.

§ For two highly similar bundles, the key to the user’s 
final selection is non-overlapping parts.

Limitations of Existing works

7373

×

? ?



BGCN Model Framework
q Heterogeneous Graph Construction

Solve Limitation 1: Separated modeling 
of two affiliated entities.

74

Prediction

Bundle Level 
Propagation

Heterogeneous 
Graph 

Construction

Identify 
Item Level 

Hard Negatives
Item Level 

Propagation

Identify 
Bundle Level 

Hard Negatives

Training



BGCN Model Framework
q Levels Propagation

Solve Limitation 1 and Limitation 2: 
Substitution of bundles is not considered.

7575

Prediction

Bundle Level 
Propagation

Heterogeneous 
Graph 

Construction

Identify 
Item Level 

Hard Negatives
Item Level 

Propagation

Identify 
Bundle Level 

Hard Negatives

Training
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q Training with Hard Negatives

Solve Limitation 3: Decision-making 
is ignored in bundle scenarios.

76

BGCN Model Framework

Prediction

Bundle Level 
Propagation

Heterogeneous 
Graph 

Construction

Identify 
Item Level 

Hard Negatives
Item Level 

Propagation

Identify 
Bundle Level 

Hard Negatives

Training



q Heterogeneous Graph Construction

Interaction Relation

𝒖𝟐

𝒖𝟑

𝒖𝟏
𝒊𝟏

𝒊𝟒

𝒊𝟐

𝒊𝟑

𝒃𝟏

𝒃𝟐

𝒃𝟏

𝒃𝟐

𝒊𝟏

𝒊𝟓

𝒊𝟑

𝒊𝟒

Affiliation Relation

77

§ Our target:
• predict any possible unobserved links between u and b.
• e.g., will user 1 interact with bundle 2?

an observed link means user u once 
purchased bundle b or item i.

an observed link means bundle b
contains item i.

Limitation 1 is addressed!

Methodology

77



q Item Level Propagation

Methodology

𝒃𝟐
𝒊𝟑

𝒊𝟏

𝒖𝟏

𝒊𝟒

𝒖𝟏𝒊𝟑

𝒖𝟑

𝒖𝟐

78

𝑵𝒖 , 𝑵𝒊 , 𝑵𝒃 represent neighbors of user u, item i and 
bundle b, respectively.

78



𝒃𝟐𝒖𝟏

𝒊𝟑 𝒃𝟏

𝒖𝟑

𝒖𝟐𝒃𝟏

79
𝜷𝒃𝒃! represents the overlap intensity 
between bundles after normalization.

𝑴𝒃 represents neighbors of bundle b on 
the bundle-item-bundle meta-path.

q Bundle Level Propagation

V.S.

V.S.
Limitation 2 is addressed!

Methodology

79



q Prediction
§ propagate iteratively for L times;
§ concatenate L layers’ embeddings.

§ combine the information from different depths

80

𝒃𝟐𝒖𝟏 𝒖𝟐 𝒃𝟑𝒃𝟏

𝒊𝟐𝒖𝟑 𝒖𝟒 𝒊𝟑𝒊𝟏

𝒃𝟐𝒊𝟏 𝒊𝟐 𝒃𝟑𝒃𝟏

higher-order 
connectivity 
in affiliation

higher-order 
connectivity 
in interaction

cannot be modeled in 
CF model!

Methodology

80



𝒑𝒖𝟏,𝟏
∗

𝒓𝒃𝟐,𝟏
∗

𝒑𝒖𝟏,𝟐
∗

𝒓𝒃𝟐,𝟐
∗

L𝒚𝒖𝟏𝒃𝟐
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q Prediction
§ adopt inner product 
§ combine bundle and item levels

user's 
embedding

bundle's 
embedding

user's
embedding

bundle's 
embedding

Item 
Level

Bundle
Level

The probability of 
the user 1 interacting 

with bundle 2.

Methodology

81



𝒖𝟏
𝒃𝒉𝒂𝒓𝒅

82

𝒃𝒉𝒂𝒓𝒅 is the bundle that 𝒖𝟏 has not 
interacted with but interacted with 
most of its internal items.

q Training with Hard Negatives

• Even though a user likes most items in a bundle, 
• but may refuse it because of the existence of one disliked item.

bundles contain more items and 
have higher prices

users are often cautious to avoid 
unnecessary risks

§ Identify Item Level Hard Negatives

Methodology

82
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q Training with Hard Negatives

• For two highly similar bundles, 
• the key to the user’s final selection is their non-overlapping parts.

bundles contain more items and 
have higher prices

users are often cautious to avoid 
unnecessary risks

§ Identify Bundle Level Hard Negatives

𝒃𝒉𝒂𝒓𝒅𝒃𝟐

𝒃𝒉𝒂𝒓𝒅 is the bundle that overlaps with 
𝒃𝟐 a lot.

Methodology

83
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q Training with Hard Negatives
bundles contain more items and 

have higher prices
users are often cautious to avoid 

unnecessary risks.

§ Training

• Bayesian Personalized Ranking pairwise learning.
• To prevent over-fitting, we adopt L2 regularization.
• After the model converges, the hard-negative samples are selected 

with a certain probability(80%) for training.

Limitation 3 is addressed!

Methodology

84



Model Bundle Level Item Level Graph Propagation

MFBPR √
GCN-BG √ √
GCN-TG √ √ √

NGCF-BG √ √
NGCF-TG √ √ √

DAM √ √
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q Datasets
§ Two real-world datasets
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§ Recall@K and NDCG@K

q Baseline
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§ Recall@K and NDCG@K

q Baseline



Experiments

8888

q Overal Performance

1. Our proposed BGCN achieves the best performance.
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1. Our proposed BGCN achieves the best performance.

2. Graph models have advantages but not enough.

3. More input does not always mean better performance.
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q Overal Performance

𝒖

𝒊 𝒃

Ø interaction or affiliation?
Ø 𝒊 belongs to 𝒃 ?
Ø 𝒃 belongs to 𝒊 ?

Our special designs to make graph neural network 
work in bundle task is necessary.
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q Ablation Study
§ Levels Propagation

1) perform propagation at only the item level;
2) perform propagation at only the bundle level; 
3) perform propagation at both levels.

2

1

1
2
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q Ablation Study
§ Levels Propagation 
§ B2B Propagation

1) bundle level propagation without b2b;
2) bundle level propagation with unweighted b2b; 
3) bundle level propagation with weighted b2b.

32

1

3
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4
5

q Ablation Study
§ Levels Propagation 
§ B2B Propagation
§ Hard-negative sample

1) train without hard samples;
2) train with hard samples at the item level;
3) train with hard samples at the bundle level; 
4) train with hard samples at both levels.

4

32

1

5



Experiments
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q Impact of Data Sparsity

Steady performance improvement achieved by BGCN



Conclusion

96

§ We propose a graph-based solution for bundle 
recommendation which re-constructs the two kinds   of 
interaction and an affiliation into the graph.

§ With item nodes as the bridge, graph convolutional 
propagation between user and bundle nodes makes the 
learned representations capture the item level semantics.

§ We do experiments on two real-world datasets to 
demonstrate the superiority of our model.



Recent advances of GNN-based RecSys

• Social Recommendation
• Sequential Recommendation
• Session-based Recommendation
• KG-Based Recommendation
• Bundle Recommendation

• Accuracy
• Multi-behavior
• Diversity
• Explainability
• Fairness
• Privacy

• Matching (Collaborative Filtering)
• Ranking (Feature-based / CTR)

Stage Scenario

Objective

Recommender System

Multi-behavior recommendation with graph convolutional networks. 
Jin, B., Gao, C., He, X., Jin, D., & Li, Y. SIGIR 2020 97



Background
• Traditional recommender system aims to give 

recommendation for one target behavior

?
Purchase

98



Background
• Platform can collect users’ multi-behavior data

• Recommender systems only utilizing target behavior record 
suffers from data sparsity and cold-start issue
• The auxiliary multi-behavior data can help alleviate 

the issue 99

Purchase
Cart
Click?



Problem Definition
• Input:
• User-item interaction data of T types of behaviors

• Output:
• User-item interaction probability under target behavior

100

Purchase
Cart
Click?



Challenge1: Behavior Strength

• Behavior-level
• There may be intensity difference between behaviors
• Behavior intensity is vague

Purchase>Cart>Collect>Click ?

Purchase>Collect>Cart>Click ?

Purchase>Cart=Collect>Click ?

101

Purchase
Cart

Click
Collect



Challenge2: Behavior Semantics

• Item-level
• Item relation is diverse among various types of behavior
• Items may be complementary or replaceable or …

complementary replaceable

102

Purchase

Click

√

×

Co-behavior is important for items!



Existing Method

• Methods
• Sampling based: MCBPR, BPRH,…
• Multi-task based: CMF, NMTR, …

• Behavior Strength: 
• They must assume an artificial behavior-strength 

sequence (however, behaviors’ strength may be vague)
• Behavior Semantics:
• Not considered at all

103



Methodology: Our MBGCN Model

• Why we use GCN?

• Capture CF effect

• Extract High-order information in multi-behavior data

104



Methodology: Our MBGCN Model
• Graph Construction
• Nodes: user, item
• Edges: 
• user-t-item (t represents a type of behavior)

• Meta-path: 
• item-t-user-t-item (t represents a type of behavior)

105

𝒖𝟏

𝒖𝟐

𝒖𝟑
𝒖𝟒 𝒊𝟏
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Methodology: Our MBGCN Model

106

user-item 
Propagation

item-item 
Propagation

Joint scoringEmbedding layer

Solve 
challenge1

Solve 
challenge2

𝒊𝟏
𝒊𝟐
𝒊𝟑
𝒊𝟒

𝒖𝟏

𝒊𝟔

𝒊𝟕
𝒊𝟖

𝒊𝟏



Our MBGCN Model

107

user-item 
Propagation

item-item 
Propagation

Joint scoringEmbedding 
layer

• Embedding layer

0

1

0

0

0

0

!"

…
…

#$

Local User Embedding 

1 !"
0

0

0

…
…

#$

Local Item Embedding 

• Convert user/item one-hot vector to user/item embedding



• Behavior-aware User-Item Propagation Layer

• Item->User embedding propagation based on behavior types

108

Our MBGCN Model
user-item 

Propagation

item-item 
Propagation

Joint scoringEmbedding 
layer

Solve Challenge1
Take behavior strength and 

user preference into account. 



• Behavior-aware User-Item Propagation Layer

• Behavior importance calculation for each user

109

Our MBGCN Model
user-item 

Propagation

item-item 
Propagation

Joint scoringEmbedding 
layer

𝒘𝒕
· behavior-wised importance weight of behavior t 
· the same for all users

𝛼ST =
𝑤T ⋅ 𝑛ST

∑U∈V#𝑤W ⋅ 𝑛SW

𝒏𝒖𝒕
· count of behavior t operated by user u
· different depends on user

Behavior count may 
imply user preference



• Behavior-aware User-Item Propagation Layer

110

Our MBGCN Model
user-item 

Propagation

item-item 
Propagation

Joint scoringEmbedding 
layer

• User->Item embedding propagation

r

r is the target behavior

Capture user->item CF signal



• Behavior-aware Item-Item Propagation Layer
• Item->Item embedding propagation based on behavior types 

111

Our MBGCN Model
user-item 

Propagation

item-item 
Propagation

Joint scoringEmbedding 
layer

Solve Challenge2 by introducing item-item propagation

Item node will receive information from it’s neighbor item nodes



• Joint Prediction

• Loss function: BPR

112

Our MBGCN Model
user-item 

Propagation

item-item 
Propagation

Joint scoringEmbedding 
layer

User-based CF Scoring

Item-based CF Scoring

User-based CF Scoring

Item behavior wised relation calculation matrix

𝑦(𝑢, 𝑖) Final score extracts both CF 
signal and behavior semantics!



Methodology: Our MBGCN Model

• Whole model

113



Experiments
• Dataset
• Two real-world datasets collected from e-commerce 

platform

• Evaluation protocols
• Top-K evaluation with two metrics Recall and NDCG

• Baseline
• Single-behavior models: 

• BPR-MF(UAI09), NeuMF(WWW17), GraphSAGE-OB(NeurIPs17), NGCF-
OB(SIGIR19), 

• Multi-behavior models:
• NMTR(ICDE19), MC-BPR(RecSys16), GraphSAGE-MB(NeurIPs17), NGCF-

MB(SIGIR19), RGCN(ESWC2018) 114



Experiments
• Overall Comparison

• Tmall

115



Experiments
• Overall Comparison

• Beibei

116



Experiments
• Overall Comparison

Observation1: Our model performs the best 117



Experiments
• Overall Comparison

Observation2: Multi-behavior models perform better than single-behavior models

118



Experiments
• Ablation Study on Model structure
• Ablation study of user-item propagation weight

Learn-able 𝒘 is the best!

It’s reasonable to have item-item propagation based on all behavior!
119

• Ablation study of item-item propagation method



Experiments
• Cold-start Problem Study
• Recommendation for cold-start user
• Learn users’ interest only from auxiliary behaviors

Our model can alleviate cold-start problem better!

120



Experiments

• Hyper-parameter Study
The model is not sensitive to 𝝀. 

121



Experiments

• Hyper-parameter Study

122

Item-Item Propagation is useful!

User-Item Propagation is essential!



Conclusion

• We approach the problem of multi-behavior recommendation. 

• We develop a MBGCN method with user-item propagation layer 
and item-item propagation layer to address two major challenges 
on modeling behavior strength and behavior semantics.

• We do experiment on two real-world datasets to demonstrate the 
superiority of our MBGCN model.

123



Recent advances of GNN-based RecSys

• Social Recommendation
• Sequential Recommendation
• Session-based Recommendation
• KG-based Recommendation
• Bundle Recommendation

• Accuracy
• Multi-behavior
• Diversity
• Explainability
• Fairness
• Privacy

• Matching (Collaborative Filtering)
• Ranking (Feature-based / CTR)

Stage Scenario

Objective

Recommender System

DGCN: Diversified Recommendation with Graph Convolutional Networks. 
Zheng, Y., Gao, C., Chen, L., Jin, D., & Li, Y.  WWW 2021 124



• How to measure a recommender system?
• accuracy, diversity, freshness, novelty…

• Diversity: dis-similarity among the recommended items

Background

125125accurate but redundant

dominant category with 
more interactions

disadvantaged category 
with fewer interactions

accurate and diverse



MF
NGCFDPP

MMR

DUM

PMF+!+"

• Having both accuracy and diversity is challenging
• Accuracy-Diversity dilemma

Background

126126
Goal: better trade-off between accuracy and diversity

high diversity
low accuracy

high accuracy
low diversity



Existing solutions

127127

• Re-ranking (usually heuristics and greedy), e.g. MMR[1][2]

• First accuracy, then diversity
• Step 1: Generate candidates (accuracy)
• Step 2: Re-rank candidates (diversify with some loss on 

accuracy)

Accuracy and diversity are decoupled!

[1] Carbonell, J., & Goldstein, J. (1998, August). The use of MMR, diversity-based reranking for reordering documents and 
producing summaries. In Proceedings of the 21st annual international ACM SIGIR conference on Research and development in 
information retrieval (pp. 335-336).
[2] Ziegler, C. N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005, May). Improving recommendation lists through topic 
diversification. In Proceedings of the 14th international conference on World Wide Web (pp. 22-32).



• Insufficient diversity signals in matching models
• Upstream matching models are unaware of diversification

• Sample bias with respect to item category
• Dominant categories have much more samples than 

disadvantaged categories

• Accuracy-diversity dilemma
• Higher diversity is often at the cost of lower accuracy

Challenges

128128



Methodology: Our DGCN Model
• Diversified recommendation with Graph Convolutional 

Networks (DGCN)

• Challenge 1: insufficient diversity signals in matching 
models

• Our proposal: perform diversification with GCN

129

• Benefit 1: diversify during 
matching instead of 
diversify after matching 
(challenge 1 addressed)

• Benefit 2: higher order
neighbors tend to cover
more diverse items



Methodology: Our DGCN Model
• Diversified recommendation with Graph Convolutional 

Networks (DGCN)

• Challenge 2: sample bias with respect to item category
• Our proposal: 

130

• Adversarial learning
• Intuition: remove category 

information from item embedding

• Diversified neighbor 
discovering and negative 
sampling

• Intuition: balance dominant 
and disadvantaged category



Methodology: Our DGCN Model
• Diversified recommendation with Graph Convolutional 

Networks (DGCN)

• Challenge 3: Accuracy-diversity dilemma
• Our proposal: 

131

• Tunable neighbor 
discovering and 
negative sampling

• Two hyper-parameters 
are introduced to 
perform trade-off
between accuracy and 
diversity



Methodology: Our DGCN Model

• Diversified recommendation with Graph Convolutional 
Networks (DGCN)

• Diversify during matching with GCN
• Diversified neighbor discovering and negative sampling
• Adversarial learning

132



Methodology: Our DGCN Model
• Diversified neighbor discovering and negative sampling

133

select node neighbors and 
negative items randomly

#recommended items:
clothes >> electronics

low diversity

idea: select more electronics as 
neighbors and more clothes as 
negative items

Selected positive/negative items
Unselected items

#neighbors (positive samples):
clothes >> electronics

#negative samples:
clothes  ≈ electonics

Selected positive/negative items
Unselected items



Methodology: Our DGCN Model

• Diversified neighbor discovering

134

1. Compute category histogram for each user’s interacted items
2. Take inverse of the histogram to reweight each interacted item
3. Introduce 𝛼 to perform trade-off (take exp to smooth)



Methodology: Our DGCN Model
• Diversified negative sampling

135

items of negative
categories

items of positive
categories

positive items

1. Select more negative items from positive categories
2. Introduce 𝛽 to perform trade-off (sample probability)



Methodology: Our DGCN Model
• Adversarial learning

137GRL: gradient reversal layer

• Capture only 
item-level 
preference

• Remove 
category-level 
preference

Remove category
information from
item embeddings!

We can not predict 
item category from 
the item embedding!



Experiments

138

• Datasets
• Taobao
• Beibei
• MSD

• Baselines
• MMR[1][2]

• DUM[3]

• PMF + 𝛼 + 𝛽[4]

• DPP[5]

• Metrics
• Accuracy: recall, hit ratio
• Diversity: coverage, entropy, gini index (lower is better)

[1] Carbonell, J., & Goldstein, J. (1998, August). The use of MMR, diversity-based reranking for reordering documents and producing summaries. 
In Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 335-336).
[2] Ziegler, C. N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005, May). Improving recommendation lists through topic diversification. 
In Proceedings of the 14th international conference on World Wide Web (pp. 22-32).
[3] Ashkan, A., Kveton, B., Berkovsky, S., & Wen, Z. (2015, January). Optimal Greedy Diversity for Recommendation. In IJCAI (Vol. 15, pp. 1742-
1748).
[4] Sha, C., Wu, X., & Niu, J. (2016, January). A Framework for Recommending Relevant and Diverse Items. In IJCAI (Vol. 16, pp. 3868-3874).
[5] Chen, L., Zhang, G., & Zhou, H. (2017). Fast greedy map inference for determinantal point process to improve recommendation diversity. arXiv
preprint arXiv:1709.05135.

coverage: #recommended categories
entropy & gini index: equality/fairness 
of different categories



Experiments

139

• RQ1: How does the proposed method perform compared 
with other diversified recommendation algorithms?

• RQ2: What is the effect of each proposed component in 
DGCN?

• RQ3: How to perform trade-off between accuracy and 
diversity using DGCN?
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• Overall Comparison

• The accuracy-diversity tradeoff exists widely
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Experiments

142142

• Overall Comparison

• The accuracy-diversity tradeoff exists widely

• It is more difficult to balance the two aspects for greedy 
algorithms

• Our proposed DGCN achieves a better overall performance 



Experiments
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• Overall Comparison

• DGCN attains a better overall performance considering both 
accuracy and diversity against state-of-the-art DPP method

with same diversity, 
DGCN achieves 
better accuracy

with same accuracy, 
DGCN achieves 
better diversity



Experiments
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• Study on DGCN

• Each component alone contributes to improve 
diversity



Experiments
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• Study on DGCN

• Each component alone contributes to improve 
diversity

• Combining the three special designs achieves the 
most diverse recommendation



Experiments
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• Trade-off between accuracy and diversity

• Trade-off is successfully achieved by tuning the two 
introduced hyper-parameters, 𝛼 and 𝛽



Conclusion and Future Work

147147

• We propose diversification during matching based on 
GCN, which attains better overall performance compared 
with existing diversification after matching approaches. 
Better trade-off between accuracy and diversity can be 
effectively achieved by the proposed DGCN model.

• Future work
• Automate the process of neighbor discovering and 

negative sampling in DGCN and replace it with a 
learnable module.
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Outline

• Background

• Motivations and Challenges of GNN-based RecSys

• Recent Advances of GNN-based RecSys
• Part 1 – Collaborative Filtering, Knowledge Graph-based RecSys
• Part II – Feature-based Sequential/Bundle/Multi-behavior/Diversified RecSys

• Open Problems and Future Directions



Open discussions

Ø Go Deeper
Ø Requiring more efforts and explorations

Ø Efficiency on large-scale graphs
Ø A concern in industrial deployment

Ø Hyper-graph

Ø Dynamic Graph

2
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Thanks!

https://sites.google.com/view/gnn-recsys

Gao. et al. "Graph neural networks for recommender systems: Challenges, methods, and 
directions." arXiv preprint arXiv:2109.12843 (2021).

WSDM 2022 Tutorial


