

Learning Intents behind Interactions with Knowledge Graph for Recommendation

Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhengguang Liu, Xiangnan He, Tat-Seng Chua

Next ++ Ubiquitous Personalized Recommendation

- Serves as a fundamental tool
- Supports for various applications.
 - E-commerce, social network, content-sharing, fashion ...

Problem Formulation Recommendation

- Input:
 - Historical user-item interactions (e.g., click, view, purchase)
- Output:
 - Given an item, how likely a user would interact with it

Problem Formulation Knowledge Graph-based Recommendation

- Additional Input:
 - Knowledge Graph (KG)
 - Background knowledge of items (e.g., item attributes, facts)
 - Rich semantics & relations & connections

KG-based Recommender Evolving

Limitations of GNN-based Efforts On User Intents

None considers user-item relations at a finer-grained level of intents:

 They only model one single relation between users & items, however, a user generally has multiple intents to adopt items

Basic idea: Similar users have similar preferences on items.

However: Obscure intents would confound the modeling of users' behavioral similarity

Limitations of GNN-based Efforts On Relational Paths

Information aggregation schemes are mostly node-based:

• They only collect information from neighboring nodes, without differentiating which paths it comes from.

Our Solution User Intent Modeling (1)

Step 1. Representation Learning of Intents

- Motivation: Semantics of user intents can be expressed by KG relations.
- Idea: assign each intent with a distribution over KG relations → Use attention strategy to create intent embedding

Our Solution User Intent Modeling (2)

Step 2. Independence Modeling of Intents

- **Motivation**: Different intents should contain **different & unique** information.
- Idea: encourage the representations of intents to differ from each others →
 Add independence regularization to intent embeddings

Our Solution Relational Path-aware Aggregation (1)

Step 1. Aggregation over Intent Graph (IG)

- Motivation: IG contains rich collaborative information of users.
- Idea: users with similar intents would exhibit similar preference towards items
 → Intent-aware aggregation for user-intent-item triplet (u, p, i)

Our Solution Relational Path-aware Aggregation (2)

Step 2. Aggregation over Knowledge Graph

- Motivation: KG reflects content relatedness among items.
- Idea: each KG entity has different semantics in different relational contexts →
 Relation-aware aggregation for item-relation-entity triplet (i, r, v)

Element-wise product between relation r & connected entity v.

$$\mathbf{e}_i^{(1)} = \frac{1}{|\mathcal{N}_i|} \sum_{(r,v) \in \mathcal{N}_i} \mathbf{e}_r \odot \mathbf{e}_v^{(0)},$$

Our Solution Overall Framework

Knowledge Graph-based Intent Network (KGIN)

Representation of item, which memorizes the relational signals carried by the relational paths

$$\mathbf{e}_{i}^{(l)} = \sum_{s \in \mathcal{N}_{i}^{l}} \frac{\mathbf{e}_{r_{1}}}{|\mathcal{N}_{s_{1}}|} \odot \frac{\mathbf{e}_{r_{2}}}{|\mathcal{N}_{s_{2}}|} \odot \cdots \odot \frac{\mathbf{e}_{r_{l}}}{|\mathcal{N}_{s_{l}}|} \odot \mathbf{e}_{s_{l}}^{(0)}$$

• reflects the interactions among relations

preserves the holistic semantics of paths

$$s = i \xrightarrow{r_1} s_1 \xrightarrow{r_2} \cdots s_{l-1} \xrightarrow{r_l} s_l$$

Experiment Settings

Datasets

• Amazon-Book, Last-FM, Alibaba-iFashion

Evaluation Metrics

recall@K, ndcg@K

Baselines

	Data	User Intents	Independence of Intents	Information Aggregation	Higher-order Connectivity
MF	ID	-	-	-	-
CKE	IG	-	-	-	First-order
KGAT	IG + KG	-	-	Node-based	Higher-order
KGNN-LS	KG	-	-	Node-based	Higher-order
CKAN	IG + KG	-	-	Node-based	Higher-order
R-GCN	IG + KG	-	-	Node-based	Higher-order
KGIN	IG + KG	Intent	Mutual Information / Distance Correlation	Relational Path- based	Higher-order 13

Experiment Overall Performance Comparison

	Amazon-Book		Last-FM		Alibaba-iFashion	
	recall	ndcg	recall	ndcg	recall	ndcg
MF	0.1300	0.0678	0.0724	0.0617	0.1095	0.0670
CKE	0.1342	0.0698	0.0732	0.0630	<u>0.1103</u>	0.0676
KGAT	0.1487	0.0799	0.0873	0.0744	0.1030	0.0627
KGNN-LS	0.1362	0.0560	0.0880	0.0642	0.1039	0.0557
CKAN	0.1442	0.0698	0.0812	0.0660	0.0970	0.0509
R-GCN	0.1220	0.0646	0.0743	0.0631	0.0860	0.0515
KGIN-3	0.1687*	0.0915 *	0.0978*	0.0848 *	0.1147*	0.0716 *
%Imp.	13.44%	14.51%	11.13%	13.97%	3.98%	5.91%

- KGIN consistently yields the **best** performance on all three datasets.
- This verifies the importance of:
 - Capturing collaborative signal in **intent-aware interaction graphs**;
 - Preserving holistic semantics of paths;
- KGIN can better encode collaborative signals & item knowledge into user and item representations.

Experiment Study of KGIN

• Increasing the **depth of DGCF** substantially enhances the recommendation.

	Amazo	n-Book	Last-FM		Alibaba-iFashion	
	recall	ndcg	recall	ndcg	recall	ndcg
KGIN-1	0.1455	0.0766	0.0831	0.0707	0.1045	0.0638
KGIN-2	0.1652	0.0892	0.0920	0.0791	0.1162	0.0723
KGIN-3	0.1687	0.0915	0.0978	0.0848	0.1147	0.0716

• Increasing the **intent number** from 1 to 8 significantly enhances the performance.

Experiment Explainability of KGIN

Figure 5: Explanations of user intents and real cases in Amazon-Book (left) and Last-FM (right). Best viewed in color.

- KGIN first induces intents the commonality of all users with various combinations of KG relations.
- KGIN creates **instance-wise explanations** for each interaction the personalization of a single user.

Take-home messages

- We approach better relational modeling from two dimensions:
 - uncovering user-item relationships at the granularity of intents, which are coupled with KG relations to exhibit the explainable semantics;
 - relational path-aware aggregation, which integrates relational information from multi-hop paths to refine the representations.

Future Work

 Incorporating causal concepts to determine whether the intents are the causation of user behaviors.

THANK YOU!

Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW'2021

https://github.com/huangtinglin/Knowledge Graph based Intent Network

