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Abstract

Through deploying computing resource close to
users, Edge Computing is regarded as a promis-
ing complement to cloud computing to provide
low-latency computational services. Meanwhile,
edge platforms also play the role of competitors
of the cloud in a non-cooperative game, which set
prices for computational resources to attract users
with different real-time requirements. In this work,
we investigate the truthful pricing mechanisms at
the edge competing with the cloud under three
different settings. When full user information is
available, the optimal mechanism can be achieved
based on a knapsack problem oracle. With par-
tial information, where users’ resource demand is
given but his preference information to the edge
is private, we propose a random sampling mecha-
nism that achieves a constant approximation with
probability approaching one. We also propose
an efficient heuristic greedy mechanism. Both
mechanisms are truthful, which can be extended
to the prior-free setting where all users’ informa-
tion is private. Finally, extensive simulations are
conducted on the Google cluster dataset. The
results validate our theoretical analysis that the
greedy mechanism works well in the market where
edge resource is scarce, while the random sam-
pling mechanism performs better when the edge
platform has a larger capacity constraint.

1 Introduction

Internet of Things (IoT) and mobile computing
have been developing rapidly and drawn exten-
sive attention from both academia and industry.
Applications like voice assistant need to perform
computation-intensive speech recognition while
providing services to users. To overcome the limi-
tations of computation resources and energy, ap-
plications often offload these tasks to the remote
data center. This computing paradigm is known
as Mobile Cloud Computing (MCC), which has
enabled a lot of convenient services. However,

some emerging applications like augmented real-
ity or autonomous driving require real-time video
processing [1]. MCC’s long transmission latency
brought by geographical distance between the data
source and the remote cloud data center becomes
a major shortcoming. To mitigate this problem,
edge computing has been proposed by deploying
small scale edge servers at the edge of the Inter-
net, which is in close proximity to the users. Edge
computing can respond to real-time applications
in a timely manner and is regarded as the key
technology to achieve the 5G vision [2].

The development of edge computing and the
deployment of edge servers need to be promoted
with economic benefits, so it is vital to develop
a suitable pricing mechanism. There have been
many pieces of research that focus on the pricing
mechanism of cloud computing. Static pricing is
the most widely adopted pricing mechanism [3–5],
and dynamic pricing is studied in many different
perspectives [6–9]. These pricing mechanisms im-
ply a hypothesis that the cloud has unlimited com-
puting resources. More recent researches focus on
both pricing mechanism and resource allocation,
and many auction based mechanisms are proposed.
Zaman and Grosu [10] argue that fixed price is
not enough and proposed a combinatorial auction
based allocation mechanism for resources of a sin-
gle dimension. Zhang et al. [11] study the problem
under the setting that the cloud platform provides
some different types of VMs, and the users bid
for bundles of VMs. The cloud service provider
performs an auction to decide the allocation based
on the resources and the objective of maximizing
social welfare. And then they further extend the
problem to an online version that the user bids
bundles for some time slots [12]. Zhang et al. [13]
study a more flexible model that users can choose
the amount of resources and assemble VMs dynam-
ically. An auction determines the allocation, and
the users will pay the cloud platform based on the
resource they occupied. Zhang et al. [14] consider
three different user utility types and transform dif-
ferent types into different bids and then perform



an auction. Besides auction based mechanisms,
Zhang et al. [15] design a pricing mechanism based
on the current resource utilization ratio.

However, seldom existing research focused on
the edge computing scenario, while the pricing
mechanism of the edge platform is quite different
from the mechanism of the cloud platform. First,
compared with the cloud platform, edge servers
have relatively limited computational resources, so
we have to carefully design the pricing mechanism
to maximize the revenue. Besides, even when the
optimal prices are given, the optimal allocation
rule that determines which tasks should be ex-
ecuted on the edge platform is a hard problem.
Second, there is a competition between the edge
and the cloud platform. Therefore, the pricing
mechanism of the edge platform is constrained by
the cloud. A proper charging mechanism should
be adopted at the edge, or else the user would
choose the cloud platform to execute the task. Fi-
nally, different users have different sensitivity to
the response time. Therefore they have different
preferences to choose the cloud or the edge plat-
form. It is crucial to use this property to maximize
revenue for edge computing. The above charac-
teristics make it challenging to design the pricing
mechanism for the edge. Kiani and Ansari [16]
proposed a hierarchical model by introducing the
concept of field, shallow, deep cloudlets, and de-
signed an auction-based profit maximization mech-
anism. Bahreini et al. [17] assume a single provider
who provides VMs at both the cloud and the edge
platform. The users have a fixed preference co-
efficient of the utility of different platforms, and
the allocation is determined by an envy-free auc-
tion mechanism. Most researches above assume a
single service provider; however, there are usually
multiple service providers. Xu et al. [18] and Sun
et al. [19] use a double auction to allocate the
resources, but they did not consider the case that
different platforms have different strengths.

In this paper, we propose the Edge Pricing
Game under Competition (EPGC), and study the
pricing mechanism of the edge platform. Our ob-
jective is to maximize the income of the edge plat-
form. Each user has some computation resource
requirement. The edge platform will decide the
pricing of resources, and the users will choose to
purchase resources at the edge or the cloud. To fit
the actual scenario, we assume the following gen-
eral settings: 1) Multi-dimension computational
resources: typically, three kinds of resources are
considered, CPU, memory, and storage; 2) Dy-
namic VM packing: in each time slot, the platform
can dynamically pack VMs based on the compu-
tational resource the users requests [20]; 3) Indi-
visible computational resources: a user’s required
computational resources should all be allocated at

the cloud or the edge platform, but not both. If a
user’s requirement can be allocated at both plat-
forms, we will divide the case into two different
users; and 4) Bias of the edge platform: to model
the latency requirement of different applications,
we set each user has a personal preference level to
the edge platform which is of lower latency. If the
total charge of the edge platform is higher than
the cloud by no more than the preference value,
the user will tend to choose the edge platform.

To our best knowledge, this is the first work to
study the pricing mechanism for edge computing
taking into account the competition of the cloud.
Our contributions can be summarized as follows:

• We investigate the optimal pricing mechanism
for the edge platform against the cloud. Three
settings are considered depending on how much
information the platforms know about the users,
i.e., full, partial, and none of the user informa-
tion. We focus on designing truthful mecha-
nisms with no discriminate prices. Specifically,
with full user information, the optimal mecha-
nism is achieved (Sec. 3). The random sampling
mechanism is competitive that guarantees 1/9
optimal revenue with probability approaching
1 with partial user information (Sec. 4). Both
the above mechanisms can be extended when
no user information is available(Sec. 5)

• We evaluate different mechanisms by extensive
simulations based on the data-trace from Google
Cluster [21]. Simulation results show that our
mechanisms perform consistently well to maxi-
mize the revenue with different settings of var-
ious parameters. Most notably, the random
sampling mechanism can achieve near-optimal
revenue of the edge platform. (Sec. 6).

2 System and Problem Definition

Network Model: We consider single time
slot network. There are two computing service
providers: the cloud platform and the edge plat-
form. There are multiple dimensions of computa-
tional resources, and we denote the number of di-
mensions by τ . Here, we consider τ = 3, i.e. there
are three dimensions of computational resources:
CPU, memory and storage, denoted by g = 1, 2, 3,
respectively. As for the amount of available compu-
tational resources, the edge platform has relatively
limited computational resources, and the cloud
platform has unlimited amount of resources. The
available amount of resources of different types at
the edge platform is denoted as Cge , g = 1, 2, 3.

The utility of the platform is the total payment
from the users minus the cost of providing comput-
ing resources. Here, we assume the cost is zero for



simplicity. All the results can be easily extended
to the model where cost is not zero.
Pricing Model: The relationship between the
edge and the cloud platforms is competitive. Both
seek to maximize their own revenue by renting
their computational resources to users to execute
their tasks. In practice, the scale of the cloud
platform is typically much larger than the edge.
We assume the cloud platform sets prices pgc for
using a unit of computational resources of type g
at first. The edge platform then decides the prices
of three different resources pge to maximize edge
platform’s revenue in response to cloud prices.

Note that if the total resource demand of the
edge platform exceeds its capacity, the edge plat-
form will choose and rent computational resources
to a subset of the users choosing the edge platform,
and the other users’ requests will be offloaded to
the cloud. The revenue of the cloud and the edge
platforms are denoted as uc and ue, respectively.
User Model: There are n users, and each user
has a computation task to execute at the cloud
or the edge platform. The resources required by
user i is denoted as dgi , the edge or the cloud
platform will pack the required resources as a VM
to execute the request of the user. Given two
price profiles {pge} and {pgc}, each user will choose
to purchase resources from one platform. In the
edge computing scenario, the edge platform can
complete computation tasks with lower latency
than the cloud platform. So the users prefer the
edge platform to execute their tasks. We model
this preference by incurring bias vi of user i. That
is to say, if the edge platform charges the user i
more than the cloud platform charges the user i
by no more than vi, the user will choose the edge
platform. Specifically, user i is characterized by
vector (d1

i , ..., d
τ
i , vi), and he will choose the edge

platform if
τ∑
g=1

dgi p
g
e ≤

τ∑
g=1

dgi p
g
c + vi. (1)

Even user i is willing to choose edge platform
given the prices, it is possible that user i is not
chosen by the edge platform due to the capacity
constraint. The revenue of edge platform can be
denoted as: ue =

∑
i∈E

τ∑
g=1

pged
g
i , where E is the set

of users whose computation tasks are executed at
the edge platform.
Problem Formulation: Based on the settings
above, we formulate the Edge Pricing Game under
Competition (EPGC).
Game 1 (EPGC). The edge platform is a utility
maximizer. Given the prices on cloud platform are
{pgc}, the edge platform then decides prices {pge}.
The users will choose the cloud or the edge plat-
form based on their type {(d1

i , d
2
i , d

3
i , vi)}. Next,

the edge chooses a set of users from the candidates
subject to the resource constraint {Cge }.

We focus on the pricing strategies. When de-
signing mechanisms, we take both the pricing and
choosing candidate strategies into consideration.

3 Full User Information

In this section, we consider the mechanism design
with full information. Every user’s type is pub-
lic information which includes both the demand
and the bias between two platforms. In a mecha-
nism, we need to specify the set of users chosen
by the edge and what the prices are. We focus
on designing a “fair” mechanism that we do not
set discriminate prices for different users, and the
payment is proportional to how much resources
a user rents on the edge platform. We show that
designing the optimal mechanism is hard.

Theorem 1. Designing the optimal mechanism
for the edge, even with a fixed cloud pricing strat-
egy, is NP-hard.

Proof. The proof is based on reduction to the sub-
set sum problem. Given a subset sum instance
that the set of numbers is {a1, a2, ..., an}, we ask
whether there is a subset such that the sum of the
set is s. We construct the mechanism design prob-
lem with n users with type (ai, 0, 0, ai), i = 1, ..., n
and the capacity of resources on edge platform is
(s, 0, 0). Obviously, the optimal prices are (1, 0, 0).
The values per unit resource of all users are 1,
which are equal. A mechanism that achieves rev-
enue s exists if and only if there is a solution for
the subset sum problem.

We do not set negative prices for resources. The
following lemma gives a characterization of the
optimal prices.

Lemma 1. If prices for k ∈ [0, ..., τ − 1] type
resources are zero in the optimal mechanism, then
there are at least τ − k users indifferent from two
platforms.

The proof is omitted, and the idea is as follows.
If there are less than τ−k users who are indifferent
from two platforms, we can always adjust the
prices and increase the edge’s revenue.

Mechanism 1 describes the optimal mechanism
of the edge platform. It first enumerates a set
of users who are indifferent choosing two plat-
forms (i.e., S). OptimalAssignment(S) takes S
as the input to find the optimal prices to get the
maximum revenue (Line 3–Line 9). For any combi-
nations of three users/two users/one user (Line 11–
Line 16), we can find one/three/three sets of edge
and cloud price plans such that the equities of in
eqn. (1) holds for the chosen users, and there are



Mechanism 1: Optimal Mechanism with Full
Information

1 Input (dgi , vi), g = 1, ..., τ, i = 1, ..., n;Cge , g =
1, ..., τ ;

2 ue = 0,A = ∅
3 Function OptimalAssignment(S):
4 for all sets of {pge} such that

|{pge : pge > 0 ∀ g}| = 3− |S| and
τ∑
g=1

dgi p
g
e − (

τ∑
g=1

dgi p
g
c + vi) = 0 (∀ i ∈ S)

do
5 (A, u′e) =OptimalKnapsack({({dgi }, vi), i ∈

S}, {Cge })
6 if u′e > ue then
7 ue = u′e
8 {p′ge } = {pge}

9 return A, ue, {p′ge }
10 uopt = 0
11 for all combinations S of three users i, j, k;

two users i, j and one user i do
12 (A, ue, {p′ge }) = OptimalAssignment(S)
13 if uopt < ue then
14 uopt = ue
15 {popt,ge } = {p′ge }
16 Aopt = A

17 return Aopt, {popt,ge }

zero/one/two types of resources’ whose price is
0 (Line 4). Then, with each fixed price plan, we
can use three-dimensional knapsack oracle to find
the optimal set of users to be placed on the edge
platform (5). The knapsack solver returns the
set of users chosen and the total revenue. In this
way, we can enumerate all the potential optimal
prices, which have

(
n
3
)

+ 3 ×
(
n
2
)

+ 3 ×
(
n
1
)

cases
in total. Mechanism 1 needs to find the optimal
knapsack solution for O(n3) times. The overall
time-complexity is O(n3 ·KS(n)), where KS(n) is
the time complexity of finding the optimal knap-
sack solution which is pseudo-polynomial.

4 Partial User Information

In this section, we consider the case that a user’s
demand is public, while his bias information is
private. We would like the mechanism to be com-
petitive, i.e., it can yield a constant factor of the
optimal revenue in the full information setting.
To achieve this, we assume any user can only con-
tribute a little fraction to the optimal revenue.

We consider the ex-post truthful mechanism.
We first solicit users’ bids, and users will truthfully
report their bias. Then we set prices for three
resources and determine who would be chosen by
the edge platform. There are two basic ideas to

set prices: one is to set the equilibrium prices
when supply equals the demand, and the other
is to set more reasonable prices by learning the
distribution of the bias.

4.1 Greedy Mechanism
Following the first idea, we propose a greedy mech-
anism. Such mechanisms perform well in the
scarce market where the supply is far smaller than
the total demand of users. We first normalize
capacities for the three resources to be the same.
Greedy mechanism sorts all users in the decreasing
order of bias per unit resource. Users are chosen
sequentially until the demand for some resources
exceeds the corresponding capacity of the edge
platform. Then prices are set to the bias per unit
resource of the user at whom the process stops.
User i’s per unit bias is defined as vi

d1
i
+d2

i
+d3

i
.

Mechanism 2: Greedy Mechanism
1 Input

(dgi ), g = 1, ..., τ, i = 1, ..., n;Cge , g = 1, ..., τ ;
2 All users report their bias vi, i = 1, ..., n
3 S = ∅
4 for all users i do
5 qi = vi

d1
i
+d2

i
+d3

i
.

6 Sort qi such that qm(1) ≥ qm(2) ≥ ... ≥ qm(n).
7 for k = 1, ..., n− 1 do
8 if

∑
i∈S d

g
i + dgm(k) ≤ C

g
e for g = 1, 2, 3.

then
9 S = S ∪ {m(k)}

10 else
11 break

12 return S,{pgc + qm(k)}

The greedy mechanism takes the demand as
input and collect users’ private information. At
last, it outputs the set of users chosen by the edge
platform and corresponding prices for different
type of resources.

This greedy mechanism works well if the de-
mands for three resources are not correlated heav-
ily. So the consumption of the resources is bal-
anced in the outcome. In the case that most of
the high-valued users’ demand focus on the same
type of resource, this greedy mechanism performs
terrible. Consider the following example.
Example 1. There are 7 users. The first three
only need the first type of resources. The other
four users need all three types. Particularly, for
users i = 1, 2, 3, (d1

i , d
2
i , d

3
i , vi) = (1, 0, 0, 1), for

i = 4, 5, 6, 7, (d1
i , d

2
i , d

3
i , vi) = (1, 1, 1, 2.9).

The edge platform will choose user 1, 2, 3 and set
prices (1/3, 1/3, 1/3) applying our greedy mecha-
nism, and the revenue is 3. Since we have three



types of resources and the user will only provide a
bias in a single dimension so that we can have dif-
ferent definitions of the bias per unit. One possible
modification is that user i’s per unit bias is defined
to be vi

max{d1
i
,d2

i
,d3

i
} . The edge platform will choose

user 4, 5, 6 and set prices (2.9/3, 2.9/3, 2.9/3) ap-
plying the modified greedy mechanism, and the
revenue would be 8.7.

Theorem 2. The mechanism setting the same
prices for three resources can only guarantee 1/n
fraction of the optimal revenue, where n is the
number of users.

The proof is in Appendix A. Since greedy mech-
anism sets the same prices for three resources, so
we claim that

Corollary 1. Greedy mechanism cannot guaran-
tee more than 1/n fraction of the optimal revenue.

Our greedy mechanism has a good welfare guar-
antee. Welfare is defined as the sum of biases of
users chosen by edge platform. In other words,
welfare is the social improvement due to the exis-
tence of the edge platform.

Theorem 3. Assume every user has less than
1/β fraction of the largest welfare that could be
achieved. Greedy mechanism guarantees 1/3−1/β
fraction of the largest welfare.

Proof. We use the same notations as in the greedy
mechanism. Assume the edge platform chooses
the first k users: m(1), ...,m(k). The total welfare
is then

∑
i=1,...,k vm(i). When the largest welfare

is achieved, we denote the set of users on the edge
platform by h(1), ..., h(l).

By definition, user m(k + 1) does not fit in
the edge platform due to the limited capacity.
We design a virtual user with a task similar
as user m(k + 1) but with a smaller scale such
that exactly fit in the remaining capacity of the
edge platform. Formally, virtual user n + 1 has
type (θ∗d1

m(k+1), θ
∗d2
m(k+1), θ

∗d3
m(k+1), θ

∗v1
m(k+1))

where θ∗ = max{θ|θd1
m(k+1) +

∑
i=1,...,k d

g
i ≤

Ce, g = 1, 2, 3}. Then we have

vn+1 +
∑
i=1,...,k vm(i)

Ce

≥
∑
i=1,...,k+1 vm(i)∑

i=1,...,k+1(d1
m(i) + d2

m(i) + d3
m(i))

≥
∑
i=1,...,l vh(i)∑

i=1,...,l(d1
h(i) + d2

h(i) + d3
h(i))

≥
∑
i=1,...,l vh(i)

3Ce

By assumption, we have vm(k+1) ≤
1
β

∑
i=1,...,l vh(i) ≤ 3

β

∑
i=1,...,k+1 vm(i). Hence

the total welfare achieved by greedy mechanism is

∑
i=1,...,k+1 vm(i) ≥ (1− 3

β
)

∑
i=1,...,k+1

vm(i)

≥ (1
3 −

1
β

)
∑

i=1,...,l
vh(i)

4.2 Random Sampling Mechanism

In the mechanism, after all users report their val-
uations, we first sample some users out. Then we
learn their valuations and compute the optimal
prices on the samples. Third, we apply the op-
timal prices to the remaining users. At last, we
solve a knapsack problem.

Mechanism 3: Random Sampling
1 Input

(dgi ), g = 1, ..., τ, i = 1, ..., n;Cge , g = 1, ..., τ ;
2 All users report their bias vi, i = 1, ..., n
3 S = ∅
4 for all users i do
5 With probability 1

2 , S = S ∪ {i}
6 (S1, {pge}) = Mechanism1({({dgi }, vi), i ∈

S}, {Cge })
7 T = {i ∈ N\S|vi ≥

∑
g=1,...,r pg ∗ d

g
i }

8 (A, ue) =Knapsack({({dgi }, vi), i ∈ T}, {Cge })
9 return A, {pge}

Theorem 4. The random sampling mechanism
is ex-post truthful.

The proof is in Appendix B. Next, we show a
lemma that would be used in the proof of random
sampling mechanism is competitive.

Lemma 2. For any i, xi is a random vari-
ble equals 0 and hi with equal probability and
E[xi] = hi/2. Let h̄ = maxi{hi} and we as-
sume h̄ ≤ 1

β

∑
i xi. Then we have Pr(

∑
i xi /∈

[
∑

i
hi

3 ,
2
∑

i
hi

3 ]) ≤ 2 exp(− β
18 ).

The proof is in Appendix C. We run a random
sampling mechanism. For each user, we pick him
with half probability. We denote the sample set of
users by S and the n users by N . We denote the
optimal price and revenue for n users in the full
information setting by {pg0} and R0. We assume
that any single user cannot contribute more than
1
β fraction of the revenue R0.

Theorem 5. With probability at least 1 −
n3 exp(− β

54 )−2 exp(− β
18 ) , we can achieve at least

RN/9 revenue using sampling mechanism.



Proof. AN is the set of users chosen for N with
full information. Thus we have

max
i∈AN

{
∑

g=1,2,3
dgi p

g
N} ≤

1
β
RN ≤

1
β

∑
i∈A

∑
g=1,2,3

dgi p
g
N .

By sampling method, we divide AN into ap-
proximately equal size with high probability. Par-
ticularly, we define random varibles for users
in AN . For user i ∈ AN , if i ∈ S we set
xi =

∑
g=1,2,3 d

g
i p
g
N otherwise xi = 0.

By Lemma 2, we have Pr[
∑
i∈AN

xi /∈
[RN

3 , 2RN

3 ]] ≤ 2 exp(− β
18 ). So with probability

at least 1 − 2 exp(− β
18 ), we have

∑
i∈AN

xi ∈
[RN

3 , 2RN

3 ]. By using price pgN , g = 1, 2, 3 on sam-
ples we can guarantee RN

3 revenue, so RS ≥ RN

3 .
We call a set of users T is good with prices

pg, g = 1, 2, 3 if the following two conditions hold:

•
∑
i∈T

∑
g=1,2,3 d

g
i p
g ≥ RN

3

•
∑
g=1,2,3 d

g
i ≤ Cge , i.e., users in T fit in the

edge platform.

Similarly, we define random varibles for users
in T . For user i ∈ T , if i ∈ S we set yi =∑
g=1,2,3 d

g
i p
g otherwise xi = 0. ti ≤ 1

βRN ≤
3
β

∑
i∈T

∑
g=1,2,3 d

g
i p
g.

By applying Lemma 2, we have

Pr[
∑
i∈T

yi ≤
RN
9 ]

≤ Pr[
∑
i∈T

yi /∈ [
∑
i∈T

∑
g d

g
i p
g

3 ,
2
∑
i∈T

∑
g d

g
i p
g

3 ]]

≤ 2 exp(− β

54)

Thus by using prices pg, g = 1, 2, 3, T\S has
revenue at least RN

9 with at least 1− 2 exp(− β
54 ).

When we compute the optimal prices on sam-
pling users with full information, the number of
possible prices is tiny compared with the number
of different samplings. When introducing Mech-
anism 1, we have shown the optimal prices have
only q =

(
n
3
)
+3
(
n
2
)
+3
(
n
1
)

= n3+6n2+11n
6 ≤ n3

2 pos-
sibilities, denoted by (pgi , g = 1, 2, 3), i = 1, ..., q.

Then we define the set Wi as the set of users
who can afford prices pgi , g = 1, 2, 3. If Wi has a
good subset, then we call Wi wonderful set and
let Ti denote the corresponding good subset.

We have shown that with probability at least 1−
2 exp(− β

18 ), we will choose prices (pgi , g = 1, 2, 3)
such that Wi is wonderful. We have also shown
that with probability at least 1−2 exp(− β

54 ), Ti\S
gives revenue at least RN

9 . By union bound, with
probability at least 1− 2q exp(− β

54 )− 2 exp(− β
18 ),

all Ti\S, i = 1, ..., q give revenue at least RN

9 and
the mechanism chooses the prices of some won-
derful set. In other words, a random sampling

mechanism guarantees RN

9 revenue with probabil-
ity approaching 1.

5 No User Information

In this section, we consider a user’s demand infor-
mation and bias information are both private. If a
user misreports demand information, he will only
be interested in revealing greater demand. Other-
wise, he is not able to accomplish the task even
he has been chosen by the edge platform. We still
focus on the truthful mechanism and consider if
the mechanism introduced in the previous section
can be used in this setting.

Theorem 6. The greedy mechanism is truthful.

Proof. To prove the mechanism is truthful, it
is sufficient to prove a user’s dominant strat-
egy is revealing his type truthfully no matter
what other users report. Suppose user i’s true
type is (d1

i , d
2
i , d

3
i , vi) then his per unit price is

vi

d1
i
+d2

i
+d3

i
. We denote user i misreports his type

as (d1
i
′
, d2
i
′
, d3
i
′
, vi). We denote user i’s ranking

for truthful report and misreport as k1 and k2
respectively. There are two possibilities how user
i’s ranking changes.

• User i’s ranking becomes lower, i.e., k2 > k1. It
implies user i’s per-unit price decreases. When
we run greedy algorithms, if the execution stops
before reaching user i, then user i’s utility be-
comes zero. If the execution stops after reaching
user i and does not choose user i, then user i’s
utility is still zero. If the algorithm chooses
user i with ranking k2, then the algorithm must
choose user i with ranking k1. We notice that
the greedy algorithm must stop after checking
the user with ranking k2 when user i has ranking
k1. Furthermore, since the user will only report
greater demand, the algorithm will stop at the
same or earlier position. More importantly, the
prices will be higher if he misreports. Thus user
i’s payment will stay the same or increase.

• User i’s ranking becomes higher, i.e., k2 ≤ k1.
There are two subcases.

– User i with ranking k1 is chosen by the
mechanism. Similarly to the argument in
the first possibility, the unit price never
decreases. Since the fake demand can only
be larger, user i’s payment never decreases.

– User i with ranking k1 is not chosen by
the mechanism. When i misreports, the
greedy algorithm will stop before reaching
the user with ranking k1. So the per-unit
price set by the greedy algorithm will be
higher than vi

d1
i
+d2

i
+d3

i
. That means user

i’s utility would be non-positive.



In summary, user i cannot increase his utility by
misreporting. The mechanism is truthful.

We also observe that the random sampling mech-
anism is not truthful. Here is an example: after
sampling, the mechanism learns the optimal prices
on the sampling users are (1, 1, 1). The capacity of
the edge platform is (4, 4, 4). There are two users
left after sampling: user 1’s type is (2, 2, 2, 20) and
user 2’s type is (3, 3, 3, 10). Both users 1 and 2
can afford the prices. In our random sampling
mechanism, user 2 will be chosen by edge platform
since user 2 has larger demand. As a result, user
1’s utility is zero. This mechanism is not truthful
since user 1 has an incentive to report (4, 4, 4, 20),
which leads to a higher utility 20− 4− 4− 4 = 8.

The reason why the random sampling mecha-
nism fails to be truthful is that users are chosen
using a knapsack algorithm, which depends on
the user’s demand. We propose a modified mecha-
nism, where we first arrange the users in uniformly
random order and then accept user sequentially if
he fits on edge platform.

Mechanism 4: Modified Random Sampling
1 Input

(dgi ), g = 1, ..., τ, i = 1, ..., n;Cge , g = 1, ..., τ ;
2 All users report their types {(dgi , vi)}
3 S = ∅
4 for all users i do
5 S = S ∪ {i} with probability 1

2

6 (S1, {pge}) = Mechanism1({({dgi }, vi), i ∈
S}, {Cge })

7 T = {i ∈ N\S|vi ≥
∑
g=1,...,τ p

g
e ∗ d

g
i }

8 A = ∅
9 for i ∈ T in random order do

10 if dgi +
∑
j∈A d

g
j ≤ Cge for g = 1, 2, 3 then

11 A = A ∪ {i}

12 return A, {pge}

Theorem 7. The modified mechanism is truthful.

Proof. The general idea is that a user has no in-
centive to move from T to N\T and vice versa.
If a user is already a member of T , reporting a
greater demand will only cause a larger payment.
So the mechanism is truthful.

6 Evaluation

In this section, we evaluate the proposed greedy
and random sampling mechanisms by extensive
simulations on a real-world data-trace.

6.1 Experiment Settings
We use the data set of Google cluster [21] to obtain
the resource requirement of tasks. We group the

tasks by their release time and divide them into
different time slots. We choose the optimal pricing
mechanism of the edge platform as a baseline, and
need to solve 3-dimension knapsack problem O(n3)
times for a time slot. Thus, we choose a relatively
small scale data of 150 random tasks of a minute
to evaluate the performance by default.

As for the pricing of the cloud, we use the pricing
of Google Cloud [20]. For ease of representation,
we normalize the price to 280 per CPU core, 35
per GB of memory, 1 per GB of disk, and the
capacity of the edge platform of all resources are
normalized to 1 by default. There is no existing
data of the bias. Therefore, the bias of each task
is generated randomly from 1 to 10 by default.

6.2 Mechanism and Metrics

Under the experiment settings above, we imple-
ment and compare the optimal mechanism (Mech-
anism 1, represented by “Optimal”), greedy mech-
anism (Mechanism 2, represented by “Greedy”),
and the random sampling mechanism (Mecha-
nism 4, represented by “Random Sampling”). We
also compare these mechanisms with fixed pric-
ing, which is widely adopted by current service
providers. Note that we can set different sampling
rates for the random sampling mechanism, and
the sampling rate is set to 1/2 by default. We
evaluate different mechanisms by comparing the
corresponding revenue of the edge platform, and
the revenue is the sum of all users’ normalized
payments whose computation tasks are executed
at the edge platform.

6.3 Simulation Results

Here, we present the simulation results on the
performance of the pricing mechanisms on impact
of the number of users, the capacity of the edge
platform, the bias of users, and the sampling rate.

6.3.1 The Impact of Number of Users
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Figure 1: Impact of Number of Users

Fig. 1 demonstrates the revenue of the edge plat-
form and the social welfare with the number of
users from 100 to 200. As shown in the figure, with
the increment of the number of users, the opti-
mal revenue of the edge platform doesn’t increase.



This is due to limited computational resources.
When there are more users, the random sampling
mechanism samples more users for pricing and
therefore can set better prices to maximize the
revenue. Unlike the random sampling mechanism,
the revenue of the greedy mechanism performs
arbitrarily with the number of users increases.

It should be noted that when there are 100
users, the greedy mechanism performs better than
the random sampling mechanism. The reason is
that the random sampling mechanism excludes
half of all the users (50 in this case), this will
cause insufficient utilization of the computational
resources at the edge platform. This shortcoming
can be overcome by adjusting the sampling rate,
which will be discussed in the parts behind.

As for the social welfare, it is mainly influenced
by the number of users. The greedy mechanism
achieves the best. The reason is that the greedy
mechanism selects users with the higher bias.

6.3.2 The Impact of the Capacity of the
Edge Platform
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Figure 2: Impact of Capacity of the Edge Platform

Since we have performed normalization to the
trace data and the price, we can assume the capac-
ity of three resources increases or decreases by the
same value with the number of machines at the
edge increases or decreases. Fig. 2 demonstrates
the revenue of the edge with the capacity of three
resources from 0.6 to 1.4. As we can see, the rev-
enue of all the three mechanisms increases as the
capacity of the edge platform increases. When the
capacity reaches 1.4, similar to the situation when
there are 100 users, the random sampling performs
worse than the greedy due to insufficient resource
utilization. As for the social welfare, the result is
similar. However, the increment of capacity of the
edge doesn’t result in significant increase in social
welfare. The reason is that the cloud platform
can contribute to the social welfare when a user’s
request isn’t served by the edge.

6.3.3 The Impact of Bias of Users

Fig. 3 demonstrates the revenue of the edge plat-
form of different ranges of bias of users. We simu-
late 5 group of users, having bias of 1 to 5, 6 to 10,
11 to 15, 16 to 20 and 21 to 25 respectively. The
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Figure 3: Impact of Bias of Users

simulation result is quite straightforward that with
higher bias, the users are willing to pay more for
executing tasks at the edge. This leads to higher
pricing for a unit of computational resource, and
therefore the revenue becomes higher.

6.3.4 The Impact of Sampling Rate
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Figure 4: Impact of Sampling Rate

We investigate the revenue of the edge plat-
form with the random sampling mechanism un-
der different sampling rates. As shown in Fig. 4,
when there are more users, all sampling rates can
achieve higher revenue. It’s straightforward since
more users are sampled, we can better set the
price. As for different sampling rates under the
same number of users, when there are more users,
the revenue difference between different sampling
rates becomes smaller. This means that all sam-
pling rates have sampled enough user information
to set a proper price. When there are fewer users,
both high and low sampling rates perform poorly.
The reason is that when the sampling rate is high,
too many users are excluded, and the utilization
of the resources is low; when the sampling rate is
low, the sampled users’ information is not enough.
As for the social welfare, the higher bias results
in the higher social welfare, but the influence is
less significant than the number of users.

7 Conclusion

In this work, we propose and study the Edge
Pricing Game under Competition (EPGC). We
consider the case where the cloud platform adopts
fixed prices and investigate the best mechanism
for the edge platform. We propose several truthful
mechanisms that are restricted to setting prices



for different unit resources. Though greedy mech-
anism have no theoretical guarantee on the rev-
enue, it works well in a scarce market where the
edge platform has relatively small computational
resources. Random sampling mechanism has a
1/9 optimal revenue guarantee with probability
approaching 1 when there is no single user can
contribute a large fraction to the revenue. The
performance is validated by our extensive experi-
ments. One extension of this work is to consider
the case that the cloud platform realizes the edge
is a threat and will adjust the prices in response.
Another direction is to design mechanisms that
are not constrained to price for unit resources.
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A The proof of Theorem 2

Proof. Consider the following example. There are
n users with type (d1

i = 1, d2
i = qi, d3

i = 0, vi = 1).
The edge platform has capacity (C1

e = n,C2
e =

qn+1, C3
e = 0). The cloud prices are pgc = 0.

The optimal mechanism should set prices
(1, 0, 0) and achieve revenue n. This is optimal
since the users’ value is n. Consider a mechanism
sets uniform price (p, p, p)for all three resources.
Suppose p ∈ ( 1

qk+1+1 ,
1

qk+1 ], then users 1 ≤ i ≤ k
can afford the prices. The total payment would
be

p
∑

i=1,...,k
(1 + qi) ≤

∑
i=1,...,k(1 + qi)
qk + 1 < 1 + 2

q

So the mechanism with uniform prices has at most
1
n + 2

nq fraction of the opitmal revenue. If we set
q large enough, this number approaches 1/n.

B Proof of Theorem 4

Proof. When user i is chosen as samples, he has no
incentive to misreport since his utility is doomed
to be zero. When user i is not chosen as samples.
The price is fixed already. What bias he reports
only determines whether he would be in set T .
Suppose he is in T , whether he will be chosen in
A is already determined by his demand, which
is public information. If user i misreports and
becomes a member in A as a result. Then he
will only get negative utility since his bias cannot
afford the payment. If user i misreports and is
not a member in T as a result. Then he will has
zero utility.

In summary, misreport will not improve a user’s
utility in any case. So the mechanism is ex-post
truthful.

C The proof of Lemma 2

Proof. Since xi are independent variable, and xi ∈
[0, hi], by Hoeffding’s inequality, we have

Pr(|
∑
i xi − E[

∑
i xi]| ≥

∑
i
hi

6 )

≤ 2 exp(− 2(

∑
i

hi

6 )2∑
i
h2

i

)

Thus, we have:

Pr(
∑
i xi /∈ [

∑
i
hi

3 ,
2
∑

i
hi

3 ])

≤ 2 exp(− 2(

∑
i

hi

6 )2∑
i
h2

i

)

≤ 2 exp(− 2(

∑
i

hi

6 )2∑
i

hi

h̄
h̄2

)

≤ 2 exp(− β
18 )

The result is achieved.




