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Sorting compliant capsules is an interesting research topic. In this paper, a simple bifurcated micro-
channel is used to sort the particles with different rigidities. The behavior of a compliant particle inside
the channel is investigated numerically. The fluid flow and the particle’s deformation are solved by
Lattice Boltzmann Method (LBM) and Lattice Spring Model (LSM), respectively. The fluid and solid solvers
are coupled through interpolated bounce-back scheme. Two benchmark problems are used to validate
our method. One is the motion of a compliant capsule in a channel and the other is the deformation of
a capsule inside a simple shear flow. The results are quantitatively consistent with those in literature.
By taking advantage of the rotating of capsules in shear flow, a simple distinguished bifurcated micro-
channel is proposed to sort capsules with different rigidities. In this micro-channel, the initial offset
and shear stress induce the rotating and lateral migration of the capsule and flux ratio is determined
by the outlet pressures. The competition between the effect of initial offset and flux ratio contributes
to the sorting mechanism. Compared to other micro-channels with different geometrical models, present
one is more convenient and may be more efficient to screen the microcapsule we want.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, researchers are very interested in the deforma-
tion and motion behavior of a capsule enclosed with elastic mem-
brane. A possible reason is that behavior of a capsule immersed in
fluid is similar to that of a Red Blood Cell (RBC) suspended in
plasma. As we know, the RBC plays important role in Oxygen trans-
fer. The RBC is enclosed with lipid bilayer, which would protect the
entity of the cell and afford the ability to deform. The RBC sus-
pended in blood on one hand is driven to flow with the blood, on
the other hand is deforming under the effect of the fluid enclosing
it. Hence, understanding the motion and deformation behavior of
the RBC is important. In blood diseases like cerebral malaria and
sickle cell anemia, the rigidity of RBC would be affected much
[1]. When the RBC goes through the constricted capillary tube, it
may be unable to deform enough and in a certain condition, it
may be destroyed by a little stimulant such as some impurity con-
tained in blood. For the application of capsules, artificial capsules
are often used in the pharmaceutical, cosmetics, and food indus-
tries. They could regulate the release of active substances and fla-
vors. Because of the small size and fragility, measuring the
mechanical properties of the membrane is very difficult.
Research in membrane hydrodynamics has achieved great
success. It leads to numerous membrane constitutive laws. The
simplest law is Hooke’s law restricted to small deformations.
Another is Mooney–Rivlin (MR) law which assumed the membrane
is a very thin sheet [2]. In order to model the large deformations
of RBC, Skalak et al. [3] proposed the Skalak (SK) Law. Some
theoretical studies have been carried out. Barthes-Biesel [4] and
Barthes-Biesel and Rallison [5] applied a regular perturbation to
analyze cases where the deviation from spherical shape of the
capsule is small or large. Barthes-Biesel et al. [6] also compared
the effect of constitutive laws for two dimensional (2D)
membranes. They found that after a continuous elongation, a
capsule with a MR membrane bursts, while a capsule with a SK
membrane would reach a steady state.

However, deformation of a RBC depends on not only the elastic
of the membrane, but also the flow of fluid surrounding the RBC.
The flows in complex geometry are difficult to be analyzed theo-
retically. To study the deformation, usually experimental and
numerical methods are adopted. To investigate the deformation
of a capsule in a simple shear flow, Chang and Olbricht [7] and
Walter et al. [8] designed artificial capsules composed of different
material. However, usually it is difficult to change the rigidity of
the capsule in experiments. With the development of numerical
methods and computers, more researchers carried out relevant
numerical studies [9–17].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2015.02.021&domain=pdf
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http://dx.doi.org/10.1016/j.compfluid.2015.02.021
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Many numerical methods have been developed to solve both
the deformation of the capsule and fluid flow. For example,
Woolfenden and Blyth [18] used boundary element method to
solve both the solid and fluid parts. Immersed-boundary method
(IBM) is another simple but effective scheme to solve the flow
problem. The IBM is introduced by Peskin [19], and developed by
Feng et al. [20], which is usually used to simulate the moving
boundary problem. In the scheme, the deformation of capsule
and fluid flow are solved separately and the IBM is used to couple
the solutions. For example, MacMeccan et al. [21] and Sui et al. [11]
applied the finite element analysis (FEA) and Lattice Boltzmann
Method (LBM) to solve the dynamics of the membrane and fluid
flow, respectively. The IBM is adopted to couple the FEA and
LBM. This method is able to simulate large numbers of capsules
suspended in fluid efficiently [12]. Sui et al. [9,10] identified vari-
ous types of motion for a capsule freely suspended in simple shear
flow. For an initially spherical capsule, it would exhibit a steady
‘‘tank-treading’’ motion, wherein the capsule deforms into a sta-
tionary shape with a finite inclination with the flow direction
and the membrane would rotate around the interior liquid. Keller
and Skalak [22] analyzed the motion of a viscous ellipsoid and
investigated the effect of viscosity ratio of the inner and outer
fluids. They found the critical viscosity ratio for a capsule translat-
ing from tank-treading motion to tumbling motion. Abkarian et al.
[23] and Skotheim and Secomb [24] found that lowering the shear
rate of the external flow could trigger the transition from succes-
sive swinging mode to the pure tumbling mode. Kessler et al.
[25] concluded a full phase diagram for varying shear rate and vis-
cosity ratio.

For studies of capsules sorting, Alexeev et al. [26–28] came up
with an idea about capsules that are driven by a shear flow going
through compliant substrates or corrugated surfaces. The motion
of capsules can be controlled through changing rigidity of the sub-
strates or corrugated structure. Zhu et al. [29] designed a con-
stricted pillar geometrical model to regulate the motion of
capsule because the velocity of the capsule depends on the rigidity
of the capsule. However, the above sorting methods are not easily
and efficiently applied in engineering. Now, more and more
researchers try to design different mechanism to sort capsules with
different rigidity.

Here, taking advantage of ‘‘tank treading motion’’, we designed
a simple bifurcated micro-channel to sort capsules with different
rigidities. Through setting different pressures on the outlet bound-
aries of the device, we can control which sub-channel the capsules
will enter into. In the literature, there are some studies on capsules’
behavior near the bifurcation. Woolfenden and Blyth [18] con-
ducted a two-dimensional elastic fluid-filled capsule through a
channel with a side branch. The deformation experienced by the
capsule near the junction of main channel and side branch is found
to depend strongly on the branch angle, and the path selection of a
cell at a branch junction can depend crucially on the capsule
deformability [18]. Hyakutake et al. [30] and Barber et al. [31] used
2D bifurcation flow to investigate the blood cell behavior at micro-
vascular bifurcations. They found the fractional particle flux to a
daughter branch is almost similar to the fractional bulk flow to
the same branch in high hematocrit. However, in low hematocrit,
the fractional particle flux against the fractional bulk flow
increases. Hence, in previous relevant studies, no one focused on
sorting capsules using simple bifurcated micro-channel.

To evaluate the performance of the device we designed, we take
a numerical study on the sorting mechanism. Our numerical
method is based on that of Alexeev et al. [26]. Capsule is modeled
as a fluid-filled elastic shell. The Lattice Spring Model (LSM) is used
to solve the deformation of the shell [32–35]. This model is able to
simulate the solid material constructed by isotropic homogeneous
elastic medium [32]. In the model, discrete solid nodes are
connected with linear springs. For the fluid flow, the LBM is used,
which is an efficient solver for Navier–Stokes equations [36–38].
The interpolated bounce-back scheme is used to couple the fluid
flow and deformation of the capsules. However, Omori et al. [14]
has used the numerical test of tension-strain relations and the iso-
tropic tension-area dilation relations for large deformation to
demonstrate that the cross mesh type we used in our paper
exhibits a strain-hardening behavior and strain-softening behav-
ior,respectively. So we set the capsule’s deformation relatively
low ðCa < 0:2Þ in order to model the biological cell membranes
which is local area incompressibility more closely.

In this paper, first the numerical methods about LBM and LSM
are introduced briefly. Then the numerical method is validated
by two benchmark problems. One is the motion of a compliant cap-
sule in a channel and the other is the deformation of a capsule
inside a simple shear flow. Finally, sorting mechanism of capsules
with different rigidity through the bifurcated channel is explored.

2. Method

2.1. Lattice Boltzmann method

In our study, the fluid flow is solved using LBM. In the LBM, the
Bhatnagar–Gross–Krook (BGK) approximation for the collision
term is adopted [36]. In the lattice BGK method, a distribution
function f iðx; tÞ is introduced to implicitly represent all relevant
properties of the fluid. This distribution function satisfies the fol-
lowing lattice Boltzmann equation [36]:

f iðxþ eiDt; t þ DtÞ ¼ f iðx; tÞ �
1
s
ðf iðx; tÞ � f eq

i ðx; tÞÞ; ð1Þ

where f iðx; tÞ is the density distribution function in the discrete
velocity ei direction. f iðx; tÞ is functions of position x and time t. s
is a non-dimensional relaxation time which is related to the kine-
matic viscosity by m ¼ c2

s ðs� 0:5ÞDt. Usually in the LBM code, Eq.
(1) is decomposed into two steps. One is the streaming step:

f iðxþ eiDt; t þ DtÞ ¼ fþi ðx; tÞ; ð2Þ

the other is the collision step:

fþi ðx; tÞ ¼ f iðx; tÞ �
1
s
ðf iðx; tÞ � f eq

i ðx; tÞÞ: ð3Þ

The equilibrium distribution function f eq
i ðx; tÞ can be calculated

as [36]

f eq
i ðx; tÞ ¼ wiq 1þ ei � u

c2
s
þ ðei � uÞ2

2c4
s
� ðuÞ

2

2c2
s

" #
: ð4Þ

In Eqs. (1) and (4), for the two-dimensional nine-velocity
(D2Q9) model, eis are given by [36]

½e0;e1;e2;e3;e4;e5;e6;e7;e8� ¼ c �
0 1 0 �1 0 1 �1 �1 1
0 0 1 0 �1 1 1 �1 �1

� �
:

In Eq. (4) the weighting coefficients wi ¼ 4=9, (i = 0), wi ¼ 1=9,
(i = 1, 2, 3, 4), wi ¼ 1=36, (i = 5, 6, 7, 8). The lattice sound speed in
the LBM [36] is cs ¼ cffiffi

3
p for the D2Q9 model, where c ¼ Dx

Dt is the ratio

of lattice spacing Dx and time step Dt. Here, we define 1 lattice unit
(Dx) as 1 lu, 1 time step (Dt) as 1 ts, and 1 mass unit as 1 mu.

In Eq. (4), q is the density of the fluid, which can be obtained
from the zeroth order moment of f i [36],

q ¼
X

i

f i; ð5Þ

and q0 is used to denote the average density of the fluid. The fluid
velocity can be calculated through the first order moment of f i [36],
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u ¼ 1
q
X

i

f iei: ð6Þ

Macroscopically, the LBM recovers the Navier–Stokes equations.
2.2. Lattice spring model

The deformation of an elastic capsule is solved by the lattice
spring model [26]. In the model, the regularly spaced mass point
and nodes are connected by harmonic springs. The lattice spring
nodes are described in a Lagrange coordinate. The position of the
node i in the Euler coordinates (fixed in space) is ri, which may
change with time. The elastic energy on node ri is [26,33]

EðriÞ ¼
1
2

X
j

kj rij � req
ij

� �2
; ð7Þ

where rij and kj are the length and the spring constant of the spring
connecting ri and rj, respectively. rij and req

ij are the distance
between ri and rj, and its equilibrium length, respectively. Hence
the summation is over all the springs connected with node ri. This
results in spring forces acting on node ri [26]

FsðriÞ ¼
X

j

kj

rij � req
ij

rij

 !
rij: ð8Þ

Fig. 1 shows that the elastic capsule (a thin shell) is modeled as
a cylindrically symmetric lattice of springs, which has n concentric
layers and each layer consists N nodes. Gap between two adjacent
layers is Dr ¼ DxLS, where DxLS is the lattice spacing in the LSM.
Hence, the thickness of capsule hs ¼ ðn� 1ÞDr and the lattice spac-
ing Dr ¼ DxLs ¼ 2pðR� hs=2Þ=N, where R is the radius of outermost
layer.

As shown in Fig. 1, each lattice spring node is connected by
orthogonal and diagonal springs. The spring constants for the
orthogonal and diagonal springs are 2k and k, respectively [33].
For small deformations, this system of equations obey linear elas-
ticity theory and results in a Young’s modulus Es ¼ 5k=2DxLS [33].
This simple model results in a Poisson’s ratio ms ¼ 1

4 [39,33]. This
Poisson ratio is fixed in our study although more complicated
many-body interactions can be included to change ms [33,41]. The
sound speed in the solid is c0s ¼ DxLS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3k=M

p
, and the solid density

is qs ¼ M=Dx2
LS, where M is the mass assigned to each lattice node.
Fig. 1. Schematic diagram of lattice spring model. Open squares (�) and solid
square (j) represent lattice Boltzmann nodes in fluid and solid, respectively. Solid
circles (�) denote Lattice spring nodes. The solid and dotted springs represent
orthogonal and diagonal connections, respectively.
After getting the force exerted by the fluid on the solid, we
could integrate Newton’s equation of motion,

FðriÞ ¼ Mð@2ri=@t2Þ; ð9Þ

to capture the dynamics of solid. The following Verlet algorithm is
used to integrate Eq. (9), which is a well-know method to update
position ri, velocity vi, and acceleration ai of each node at discrete
time t þ Dt [32,33].

riðt þ DtÞ ¼ riðtÞ þ viðtÞDt þ 1
2

aiðtÞDt2;

vi t þ Dt
2

� �
¼ viðtÞ þ

1
2

aiðtÞDt;

aiðt þ DtÞ ¼ FiðtÞ
M

;

viðt þ DtÞ ¼ vi t þ Dt
2

� �
þ 1

2
aiðt þ DtÞDt: ð10Þ

This is a explicit scheme, so it requires that we should choose
appropriate lattice spacing and time step to satisfy stability pur-
pose. For our scheme, we only need to ensure that the Courant
number Cr ¼ c0sDtLS=DxLS is smaller than one. Further stability
conditions are displayed in reference [28].

2.3. Solid–fluid coupling

For the solid–fluid coupling, as shown in Fig. 1, part of the fluid
nodes would be overlapped by the lattice spring nodes (solid
nodes). For these fluid nodes overlapped by solid nodes, the colli-
sion step is not implemented. There is no interaction between
the overlapped fluid nodes and the lattice spring nodes. But the
solid–fluid coupling does exist between the outmost (or inner-
most) lattice spring nodes and the fluid nodes next to them.

Here, the interaction between the outmost lattice spring nodes
and its nearby fluid nodes is taken as a example. Usually, the out-
most boundary of the capsule is supposed to be a curved wall. The
coupling takes into account in this way: the fluid force acting on
the curved wall boundary would be distributed to the nearby solid
nodes (lattice spring nodes) on the curved wall by interpolation.
Then according to Newton’s equation of motion, position ri and
velocity vi of each lattice spring node are updated (see
Section 2.2). After vi is known, the fluid solver (LBM) should take
into account the movement of each small curved wall segment
(outmost layer of the solid nodes). Through applying this ‘new’
moving boundary condition, the fluid field should be updated
(see Section 2.1). Through this explicit iteration procedure, the
solid and fluid solvers are well coupled [26,33].

In the follows, two key issues mentioned above will be intro-
duced briefly. One is how to calculate the fluid force acting on
the solid nodes on the outmost layer of the capsule, the other
is how to take into account the moving wall effect in the LBM
solver.

2.3.1. Fluid force acting on outmost lattice spring nodes
Fig. 2 shows the schematic diagram of fluid–solid coupling. We

can see that near the curved wall, there are many intersections on
the wall ‘‘b1’’, ‘‘b2’’, . . . when connecting the fluid nodes and its
neighboring overlapped nodes. Suppose the micro fluidic force
act on these intersections, the force should be distributed to the
lattice spring nodes (the large red disks on the curved wall in
Fig. 2). In the follows, an example is used to explain this point.

The force on the intersections can be calculated through the
momentum exchange scheme [37]. For example, the fluid force
acting on node ‘‘b2’’ in the direction of ea ¼ e5 is (see Fig. 2).

FðbÞ xb2; t þ
Dt
2

� �
¼ ea fþa ðxf ; tÞ þ f �aðxf ; t þ DtÞ

	 

; ð11Þ
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Fig. 2. Schematic diagram of fluid–solid coupling. Open squares (�) and solid
square (j) represent lattice Boltzmann nodes in fluid and overlapped by capsule,
respectively. The red disks are lattice spring nodes. Open circles (�) are intersec-
tions on curved wall when fluid nodes connecting its neighboring overlapped
nodes. The gray solid squares are located in the fluid region but not on grid nodes.
The thin blue solid lines are the grid lines. The thick arrows represent the
trajectories of a ‘particle’ (a distribution function) interacting with the wall. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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where e�a means the reverse direction of ea, i.e., e�a ¼ �ea. xf means
the position of the node ‘‘f’’.

After the micro fluidic force acting on the wall node (xb2) is
known, it can be distributed to the nearby lattice spring nodes
(r1, and r2):

FðbÞ r1; t þ
Dt
2

� �
¼ ð1� sÞFðbÞ xb2; t þ

Dt
2

� �
; ð12Þ

and

FðbÞ r2; t þ
Dt
2

� �
¼ sFðbÞ xb2; t þ

Dt
2

� �
; ð13Þ

where s ¼ jxb2�r1 j
jr2�r1 j

. The other micro forces acting on the membrane

can also be distributed in a similar way.
2.3.2. Moving curved wall boundary condition
On the other hand, the effect of movement of the curved wall

should be involved in the LBM solver. Physically, the fluid flow at
wall should satisfy the no-slip boundary condition. To handle
curved wall boundary in the LBM, the most simple and successful
treatment was proposed by Bouzidi et al. [38]. Because the colli-
sion step is not applicable to the fluid nodes occupied by capsule,
for the fluid node which is nearest the wall, the distribution func-
tions in some direction are actually unknown after streaming step.
For example, in Fig. 2, for the fluid node ‘‘j’’, distribution functions
f 3; f 4; f 7 are unknown.

To include the effect of curved wall in the LBM solver, the
unknown distribution functions should be reconstructed. The main
idea of Bouzidi et al. [38] is using Lagrange interpolation to obtain
unknown distribution functions and extrapolation is avoided to
improve numerical stability. Lallemand and Luo [37] later devel-
oped it taking account of the moving wall. It is introduced briefly
in the follows.
In Fig. 2, the fluid and solid regimes are separated by the wall
(solid red curved line). The D2Q9 velocity model is illustrated in
the upper right corner. In the figure, q is defined as the fraction
of the intersection link in the fluid region, e.g., for node xj in e5

direction,

q ¼ j xj � xb4 j
j xj � xm j

; ð14Þ

and for node xj in e1 direction q ¼ 1
2.

The simplest reconstruction case is the case q ¼ 1
2. The actual

position of the wall is located at ‘‘b5’’, which is one-half grid spac-
ing beyond the fluid node ‘‘j’’. The unknown f 3ðxj; t þ DtÞ is recon-
structed by [38] f 3ðxj; t þ DtÞ ¼ fþ1 ðxj; tÞ. It looks like the particle in
e1 direction at node ‘‘j’’ bounces back after it collides with the wall
(see Fig. 2).

Another example about the reconstruction of unknowns is case
q < 1

2. At time t, the distribution function fþ5 ðxc; tÞ at the point ‘‘c’’,

which located at a distance
ffiffiffi
2
p
ð1� 2qÞDx away from the grid point

‘‘j’’ would end up at the grid point ‘‘j’’ after bounce back collision.
That is indicated by a thick bent arrow in Fig. 2. Because
f 7ðxj; t þ DtÞ ¼ fþ5 ðxc; tÞ, the unknown fþ5 ðxc; tÞ can be reconstructed
by a quadratic interpolation [38]:

fþ5 ðxc;tÞ¼ qð1þ2qÞfþ5 ðxj;tÞþð1�4q2Þfþ5 ðxd;tÞ�qð1�2qÞfþ5 ðxe;tÞ:
ð15Þ

Study of Lallemand and Luo [37] provides more general formu-
las for moving boundary. Suppose the wall boundary moves with
velocity uw, to account for this moving effect, an extra term should
be added into the above equations. In practice, it is more conveni-
ent to combine collision and streaming step together. Hence, more
general formulas for unknown ‘‘f �aðxj; tÞ’’ taking the effect of mov-
ing boundary can be written as the follows. For the case of q < 1

2,

f �aðxj; tÞ ¼ qð1þ 2qÞf aðxj þ eaDt; tÞ þ ð1� 4q2Þf aðxj; tÞ

� qð1� 2qÞf aðxj � eaDt; tÞ þw�aq
ðe�a � uwÞ

c2
s

: ð16Þ

For more details about the curved wall boundary condition, please
refer to Ref. [37].

It is note that the moving velocity on the intersections can be
constructed by interpolation from the velocities on nearby lattice
spring nodes:

ub2 ¼ ð1� sÞuðr1; tÞ þ suðr2; tÞ: ð17Þ

The initial value of uðr1; tÞ and uðr2; tÞ are set to be zero (refer to
Fig. 2). Through the above explicit strategy, the fluid flow and the
translation and deformation of the capsule can be coupled
effectively.

3. Validation

3.1. Validation I: Deformable capsule moving in a channel flow

The first benchmark flow problem is the steady motion of a
compliant capsule moving in a 2D rigid channel [29]. It should
be noticed that present numerical method is identical to that of
Zhu et al. [29]. Fig. 3 shows the schematic diagram of this flow
problem. Initially the capsule is circular and placed midway
between the channel walls. In our simulations, the channel height
and length are H ¼ 54 lu and L ¼ 8H, respectively. The channel’s
upper and lower walls are assumed to be rigid. Three cases with
D ¼ 0:5H;0:8H, and 0:9H are simulated, where D is the capsule’s
initial diameter. The flow is driven by a fixed pressure drop

between inlet and outlet boundaries Dp ¼ 1:44� 10�3mu=ðluts2Þ.
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Fig. 3. Schematic diagram of a deformable capsule moving in a channel flow.
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Fig. 4. The non-dimensional equilibrium velocity of the capsule Vr as a function of
Ca for D ¼ 0:5H;0:8H, and 0:9H in log–log coordinates.
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The pressure boundary condition proposed by Zou and He [42] is
used. The shell consists three layers (n ¼ 3) and lattice spring
nodes per layer are approximately two times as many as the nodes
used to discretize the diameter of the capsules. For example, the
diameter of the capsule is 40 lu, i.e., the diameter is discretized into
40 Dx. Then the perimeter of the capsule is approximately 125:6 lu.
Instead of 125 nodes, approximately 80 nodes are used to dis-
cretize the perimeter. Hence DxLS � 1:57 lu.

In this flow, the Reynolds number is defined as

Re ¼ U0D
m

; ð18Þ

where m is the kinematic viscosity of the fluid and U0 is the charac-
teristic velocity. Here U0 is chosen to be the mean velocity of the
fluid within the channel without capsule driven by pressure drop
Dp.

In this flow, Re is small and the inertia effect is negligible.
Another important non-dimensional parameter in this flow is the
Capillary number:

Ca ¼ l U0

Eshc
; ð19Þ

where hc denotes the thickness of capsule and l ¼ qm is the
dynamic viscosity of the fluid. Ca is the ratio of viscous effect of fluid
to elastic effect of capsule.

In Ref. [29], the final equilibrium moving velocities of the cap-
sule are plotted. It is noted that the equilibrium shape of the cap-
sule due to deformation is not given in Ref. [29]. However, if the
equilibrium moving velocity agrees well with the data of Zhu
et al. [29], the equilibrium deformation is expected to be very con-
sistent with theirs since the equilibrium velocity highly depends
on deformation.

In Fig. 4, the non-dimensional equilibrium velocity of the cap-
sule Vr as a function of Ca is shown. Here Vr is defined as

Vr ¼
V � U0

Umax � U0
; ð20Þ

where V is the mass-averaged velocity of the capsule, and Umax is
the maximal velocity of the fluid within the channel without cap-
sule. For the Poiseuille flow in 2D channel without capsule,
Umax ¼ 1:5U0.

It is seen that the velocity quantitatively agrees well with the
data of Zhu et al. [29] for D ¼ 0:5H;0:8H and 0:9H. When
D ¼ 0:5H;Ca effect on Vr is minor. For cases D ¼ 0:8H and
0:9H;Vr approximately increases linearly with Ca in the log–log
coordinates. Hence, Vr and Ca approximately obey a power law.
Hence, in this benchmark problem, our model does reproduce good
results.
3.2. Validation II: Deformation of capsule in shear flow

The second benchmark flow problem is about an initial circular
capsule freely suspended in a simple shear flow. The shear rate of
the shear flow is c, and the exterior and interior liquids are identi-
cal incompressible Newtonian fluids. In this flow, the definition of
Ca and Re are identical to Eqs. (19) and (18) except for the charac-
teristic velocity

U0 ¼
cD
2
; ð21Þ

where D is the diameter of the capsule. In this validation, the order
of Re is about 10�2 and the inertia effect is negligible.

As showed in Fig. 5, the capsule is placed in the center of the
computational domain, which is L� H ¼ 20D� 20D and
D ¼ 40 lu. Periodic boundary conditions are applied in the flow
direction (x-direction). The shell consists three layers and 80 lattice
spring nodes per layer, i.e., n ¼ 3, and N ¼ 80. The corresponding
DxLS � Dr ¼ 2pðD=2� hs=2Þ=N ¼ 1:57 lu.

In follow simulations, we fixed c and different Ca is achieved
through adjusting the spring constant k. It is noted Es ¼ 5k

2DxLS
is a

monotonic function of k when DxLS is fixed.
Due to shear stress, the circular capsule shell would deform in

the flow and finally reach an equilibrium state. Here the Taylor
shape parameter Dxy is used to evaluate the deformation of the
capsule, which is read

Dxy ¼
L� B
Lþ B

; ð22Þ
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Fig. 5. Schematic of a capsule suspended in a shear flow.
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where L and B are the lengths of the semi-major and minor axes of
the equilibrium elliptical capsule, respectively (see Fig. 5). h is the
inclined angle (the major axis with respect to the horizontal x-axis).

Fig. 6 shows the deformation of capsules Dxy and the inclination
angle h as functions of time for cases with different Ca. It is seen
that at beginning, deformation of the capsule Dxy in each case
increases with time and finally reaches an equilibrium state. The
equilibrium deformation of the capsule is large in the case with
large Ca.

In each case, the inclination angle h decreases with time at
beginning and finally reach an equilibrium value. From Fig. 6(a)
and (b), it is also observed that the time to reach equilibrium state
also increases with Ca. In this benchmark problem, our results are
quantitatively consistent with those of Breyiannis and Pozrikidis
[44], which is obtained by boundary element method.

Here the grid-independence and time-step independence stud-
ies are also carried out. The case of Ca ¼ 0:0125 and Re ¼ 10�2 is
taken as an example. Cases with mesh size Dx	 ¼ Dx

D ¼ 0:05;0:02,
and 0:01 are simulated. The evolutions of Dxy are shown in
Fig. 7(a). It is seen that Dx	 ¼ 0:05 is fine enough to get accurate
result for the case of Ca ¼ 0:0125. For the time-step independence
study, three cases with Dt	 ¼ cDt ¼ 10�4;2� 10�4;8� 10�4 are
simulated. The results is shown in Fig. 7(b). It is seen that time-step
Dt	 ¼ 2� 10�4 is small enough to get accurate result. In the follow-
ing simulations, Dx	 ¼ 0:05 and Dt	 ¼ 2� 10�4 are adopted.

As we know, the relations for the material properties of LSM are
derived for a linear elastic material, which is consistent with the
Hooke’s law [14,40]. Hence, it is expected that present LSM result
D
xy
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Fig. 6. Evolution of (a) Taylor shape parameter, (b) inclination angel for different Ca. Solid
will be consistent with that from the SK law when Ca is not large,
because in the limit of small deformation, all laws including MR
and SK laws are reduced to the 2D Hooke’s law [14]. The compar-
ison between present results and those of the SK-law membrane
model [6,3] for Ca < 0:2 is shown in Fig. 8. In the figure, the results
from the SK-law with C ¼ 0;1, and 10 are shown, where C is a
parameter in the law and connected with Poisson’s ratio by
ms ¼ C

ð1þCÞ [6].

From Fig. 8, we can see that the results of the SK law [6] with
C ¼ 0; C ¼ 1 almost collapse into a single curve while the curve
of C ¼ 10 is slightly lower than those of smaller C when
Ca > 0:05. The results of the SK law [6] are independent of C for
sufficiently small Ca. Present result is close to those of the SK law
at Ca < 0:2. Due to the limitation of the LSM [14], to get reliable
numerical result, the Ca in all of our simulation is limited to
Ca < 0:2. The shape of the capsule in the case of Ca ¼ 0:2 is also
shown in Fig. 8.

The ‘‘tank treading motion’’ of membrane also occurs when a
capsule reaches the equilibrium state in shear flow, i.e., the shell
(Lagrange points) would rotate around the deformed profile.
Fig. 9 shows the angular velocity of a Lagrange point as a function
of time. After the initial transient, which depends on the initial
flow field, dies out in the first period, the angular velocity becomes
a perfect periodic function. It is noted that at the equilibrium state,
the angular velocity at a Euler point occupied by the shell or the
membrane is a constant.

Fig. 10 shows that the average angular velocity �x of the shell as
a function of Ca. �x decreases with Ca and may asymptotically
reaches a constant value. Hence, the ‘‘tank treading motion’’
becomes weak when Ca increases.
4. Motion in bifurcated channel

The characteristic ‘‘tank treading motion’’ discussed before has
its own feature: the rotating direction of the shell would be consis-
tent with the shear flow. This is one of the bases for sorting in our
device. We would demonstrate that how the micro-channel is able
to sort capsules.

The simple bifurcated channel designed by us is shown in
Fig. 11. The widths of inlet and outlet of the domain are
H ¼ H1 ¼ H2 ¼ 60 lu. The length of domain is L ¼ 300 lu. The cap-
sule is initially placed at L1 ¼ 50 lu from the inlet. The other geome-
try parameters are L2 ¼ 60 lu; L3 ¼ 60 lu, and L4 ¼ 80 lu. For the sub-
channels, the inclined angle h0 ¼ 35�. An arc with R0 ¼ 17 lu is used
to connect the two sub-channels. Radius of capsule is R ¼ 20 lu and
its thickness is hs ¼ 3 lu. Pressures on the inlet of main channel and
θ/
π
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lines denote the present result, disks (�) denote the results of element method [44].
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Fig. 7. Grid-independence study (a) and time-step independence study (b) for the case Ca ¼ 0:0125 and Re ¼ 10�2.
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outlets of sub-channels are specified [42]. The capsule that
immersed in flow domain moves with the flow and deforms under
the effect of viscous force. The lattice spring nodes on the shell of
the capsule are identical as that in Section 3.2, i.e., n ¼ 3, and
N ¼ 80. The initial condition is that both the flow and capsule are
stationary.

The Re and Ca are identical to those in Eqs. (18) and (19), respec-
tively except the characteristic velocity

U0 ¼
DP
L

� �
H2

12l
: ð23Þ

The Re is of Oð1Þ, so the inertia effect is negligible.
If the circular capsule is initially placed in the center of the
channel, i.e. Sf ¼ 0, due to symmetry, the capsule will not rotate.
Which sub-channel it will enter is only determined by the pres-
sures in the outlets. For example, if the pressure on the upper out-
let is lower, the capsule will enter the upper sub-channel. It has
nothing to do with the rigidity of the capsule.

If initially there is a shift between the center of capsule and the
central line of the channel, through changing the two outlet pres-
sures, the motion of the capsule may be adjusted. In other words,
the capsules with different rigidities may be sorted.



Fig. 12. Evolution of capsule moving in channel with t	 ¼ U0 t
H ¼ 0; 2; 6; 8; 10. and

Sf ¼ 3 lu and Ca ¼ 0:05. The outlet pressures are P01 ¼ P02.
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Firstly, the case with identical outlet pressures is considered.
The inlet pressure is set to be Pi ¼ c2

s q0 þ 1
2 L DP

L

� �
, pressures in both

upper and lower outlets are Po ¼ c2
s q0 � 1

2 L DP
L

� �
, where

DP
L ¼ 1:3� 10�6 mu=ðlu2ts2Þ. The capsule is initially placed below

the symmetric line with an offset Sf , which is referred to as a nega-
tive offset. Otherwise, it is referred to as a positive offset. Due to
symmetry of the channel, in the following discussion, only cases
with a negative offset are discussed. Under the circumstances,
Fig. 12 shows the motion of the capsule. We can see that the cap-
sule would choose the lower sub-channel because of the initial
negative offset when the pressures in both upper (P01) and lower
(P02) outlets are identical, i.e., P01 ¼ P02 ¼ Po. The time in this section
is normalized by H

U0
.

Then we would like to discuss how the channel can be used to
sort capsules with different rigidity. Taking the advantage of tread-
ing motion, the sorting may be controlled by the outlet pressures.
For simplicity, the pressures in the upper (P01) and lower outlets
(P02) are set to be

P01 ¼ c2
s q0 �

DP
L

� �
Q
2
; P02 ¼ c2

s q0 þ
DP
L

� �
Q
2
; ð24Þ

respectively. It is noted that in the following study, Q > 0 and
P01 < P02. The inlet pressure Pi is fixed be Pi ¼ c2

s q0 þ 1
2 L DP

L

� �
. The pres-

sures in the outlets are controlled by changing Q, which represents
pressure difference between P01 and P02. Suppose the Poiseuille flow
is fully developed inside the channels without capsules, the flow

rates inside upper and lower channels are eQ 1 and eQ 2, respectively.

The flux ratio eQ is defined as eQ 
 eQ 1eQ 2

. Obviously, the flux ratio eQ will

increase with Q. Due to different flow fluxes entering the two
branches, the capsule may be drawn to the branch with the higher
flow rate [18,43].
Fig. 13. Evolutions of a capsule moving in the channel for cases Sf ¼ 3 lu;C
In the following, cases with Ca ¼ 0:05 are studied. Fig. 13(a)
shows the motion of the capsule near the bifurcation. For the case
Q ¼ 0:01, the capsule still chooses the lower sub-channel.
However, when Q ¼ 0:1, Fig. 13(b) shows that the capsule enters
the upper sub-channel, i.e., it moves to the sub-channel with lower
pressure (P01). Hence, the pressure difference in outlets, i.e., the
magnitude of Q would affect the movement of the capsule and
determine which sub-channel the capsule will enter. In the fol-
lows, we would investigate the sorting effect due to Q
systematically.
4.1. Ca–Q phase diagram

To find the critical Q for a specific Ca, we carried out many
numerical simulations with different Q. For example, for cases with
Ca ¼ 0:05, ten simulations with Q 2 ½0:01; 0:1� with an interval
value of 0.01 were simulated. It is found the critical Q is approxi-
mate 0.05 for Sf ¼ 3 lu. Alternatively, we can fix Q and simulate
cases with different Ca to find the critical Ca. Through a systematic
numerical simulations, we find how the capsules can be controlled
to enter the upper sub-channel with the initial negative offset.

Fig. 14 gives the phase-diagram about the movement of the
capsules in the Ca–Q plane for different Sf . In Fig. 14(b), squares
represent the normal movement of the capsule, i.e., entering lower
sub-channel due to the negative offset. The trajectory is referred to
as ‘‘normal path’’. In the lower left region of the Ca–Q plane, cap-
sules adopt normal path, i.e., a very small Q has no effect on the
normal choice of capsules. In contrast, triangles in the figure
denote the capsule entering the upper sub-channel. The trajectory
of this movement is referred to as ‘‘sorting path’’. From Fig. 14, we
can see that for a specific Ca, above a critical Q, the capsule would
follow the sorting path. Otherwise, the capsule would follow the
normal path.

Obviously, to get more accurate phase-diagram requires much
computational cost because the interval value of the simulations
should be smaller. Here, we tried to find the border to separate
the regimes of normal and sorting paths as accurate as possible.
In Fig. 14(b), the border is represented by the solid line that con-
nects the mid-values (circles) of the corresponding squares and tri-
angles. Fig. 14(a) and (c) are obtained in the similar way. The
phase-diagrams demonstrate the mechanism about using this
channel to sort the capsules with different rigidities.

Here Fig. 14(b) with the initial negative offset Sf ¼ 3 lu is taken
as an example to illustrate how this equipment works in reality.
Suppose we plan to sort capsules with Ca 2 ð0:1;0:15Þ, we should
use the equipment twice. In the first time, Q � 0:02 is adopted to
get capsules with Ca < 0:15 in the lower sub-channel (capsules
with Ca > 0:15 in the upper sub-channel). In the second time, let
the capsules with Ca < 0:15 go through the equipment again with
Q � 0:03, then from the upper sub-channel, we will obtain the cap-
sules with Ca 2 ð0:1;0:15Þ.
a ¼ 0:05 with t	 ¼ U0 t
H ¼ 0; 2; 6; 8; 10. (a) Q ¼ 0:01, and (b) Q ¼ 0:1.
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Fig. 15. Streamlines in flow fields (a) Q ¼ 0:1;Ca ¼ 0:05 and (b) Q ¼ 0:01;Ca ¼ 0:05. Pressure contours are normalized by the inlet pressure.
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From Fig. 14(a), it is seen that for the initial offset Sf ¼ 1 lu;Ca
decreases quickly with Q when Q is small. That means a small Q
is required to sort capsules. However, in Fig. 14(a) the border is
steep for Ca 2 ð0:02;0:15Þ. Hence, to sort capsules with a specific
Ca 2 ð0:02;0:15Þ when Sf ¼ 1 lu, pressure difference Q should be
controlled more precisely. That may be a challenge in reality. We
prefer the border lines like those in Fig. 14(b) and (c), which are
not so steep.

4.2. Mechanism of sorting

When the capsule moves in the main channel, it would rotate
clockwise and move upward due to the initial negative offset and
shear stress in the Poiseuille flow. When it enter into the region
near the joint, the rotating direction would change with different
condition. Results of two cases are shown in Fig. 15. One case is
Q ¼ 0:1;Ca ¼ 0:05, the other case is Q ¼ 0:01;Ca ¼ 0:05. They are
referred to as Case A and Case B, respectively. In the two cases,
the capsules adopt sorting path and normal path, respectively.
Fig. 15(a) shows that in Case A, the capsule rotates clockwise,
which keeps the original rotating direction. While in Case B
(Fig. 15(b)), the capsule’s rotation direction changes to counter-
clockwise.

The capsule in shear flow will experience a lift force because the
deformation of the capsule breaks the symmetry of the stokes flow
when the capsule or vesicle near a wall [45]. In case of our scheme,
Doddi and Bagchi [46] confirmed that the presence of the walls and
parabolic nature of Poiseuille flow makes the capsule near the wall
experience a deformation-induced lift force, which makes the cap-
sule migrate to the center of the domain where the shear magni-
tude is low.

After the capsule translates to the region near the joint, the

effect of flux ratio becomes dominant. If the flux ratio eQ is large
enough, the capsule would be drawn to the upper sub-channel.
The capsule translates along the upper sub-channel and rotates
clockwisely due to the shear stress in the upper sub-channel. On

the contrary, if the flux ratio eQ is small, the capsule would choose
the lower sub-channel. The rotating direction would change
because of the shear stress of Poiseuille flow in the lower sub-
channel.

In summary, firstly, the capsule would translate along the main
channel and migrate to the center of the channel due to the flow
and the deformation-induced lift force [46]. Secondly, after the
capsule leaves the main channel, due to the effect of the initial off-
set, the capsule would reach a specific place near the joint. At the

place, if the flux ratio eQ is large enough, the capsule would be
drawn into the upper sub-channel and follow the sorting path.
Otherwise, it would follow the normal path. In a whole, the initial
offset and the flux ratio due to outlet pressures in sub-channels
determine the behavior of the capsule.
4.3. Effect of viscosity ratio and initial distance

The viscosity ratio also plays an important role in the deforma-
tion of a capsule in flow [4,5], and in practical conditions, the inter-
nal fluid is always more viscous than the external one. In this
section the effect of viscosity ratio on the sorting of capsule in
the bifurcated channel is discussed.

Fig. 16 shows that for cases with Ca ¼ 0:05;Q ¼ 0:05 and lower
viscosity ratio (k 6 6), the capsule would follow the sorting path.
As k increases (k > 6, cases of k ¼ 8 and k ¼ 10), the capsule would
follow the normal path (entering the lower sub-channel). When k

increases, a large flux ratio eQ is required to force the capsule to fol-
low the sorting path. That can be understood in the following way.
When k is large, the capsule looks like a solid body and the
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deformation of the capsule is smaller, which is similar to the cases
with large rigidity.

From the discussion of mechanism, the rotation and lateral
migration of the capsule is important. The distance between the
capsule’s initial place and the joint is referred to as the initial dis-
tance. If the initial distance is small, the lateral migration may be
not close to the centerline of the main channel enough and the flux
ratio may be unable to drawn the capsule into the upper sub-chan-
nel (sorting path).

Fig. 17 shows that when the initial distance is less than 0:25L
with Ca ¼ 0:05;Q ¼ 0:1, the capsule would choose the normal

path, this shows that a larger flux ratio (larger eQ ) is required to
guide it to the sorting path.

5. Conclusion

In this paper, behavior of a compliant capsule inside a bifur-
cated channel is studied through coupling the LBM and LSM. Two
benchmark flow problems are used to validate our numerical
method.
Although the results above are obtained through flows in a
specific micro-channel, the mechanism of sorting capsules with
different rigidities is demonstrated. Due to the initial offset of the
capsule, it rotates in the main channel. Taking advantage of the
rotating of capsules in shear flow (Poiseuille flow), the simple
bifurcated micro-channel is able to sort capsules with different
rigidities by adjusting the outlet pressures P01 and P02. Both initial
offset, which induce the rotating and flux ratio due to P01 and P02
contribute to the sorting mechanism. Compared to other micro-
channels with different geometrical model, present one is more
convenient and may be more efficient to screen the microcapsule
we want.

Two-dimensional simulations are able to qualitatively capture
some behavior of real, three-dimensional capsules in a tube flow,
such as the key features of the capsule profile and the lateral
migration to the tube centerline [18]. On the other hand, we must
confess that two-dimensional studies have some limitation when
they describe the elastic behavior of the capsule membrane. For
example, in-plane shear deformation occurs in three-dimensions
but not in two-dimensions [18].

Hence, we plan to extend the present work to the three-dimen-
sional setting to study the sorting behavior of a capsule in a bifur-
cated channel, where the capsule membrane mechanics conform
to a physically realistic constitutive model, in the near future.
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