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a b s t r a c t 

The effective viscosities of dilute and semi-dilute suspensions in a two-dimensional shear flow are stud- 

ied using the lattice Boltzmann method. The suspensions contain non-Brownian hard circular buoyant 

porous particles. Here a more accurate formula for intrinsic viscosity as a function of Darcy number ( Da ) 

for the whole Da regime is proposed through our numerical result. The effects of fluid inertia, perme- 

ability of the particle, and confinement of the bounding walls are investigated. It is found that for the 

cases with a small Da , the effective viscosity significantly increases with confinement and fluid inertia. 

However, for the cases with a large Da , the confinement ratio and fluid inertia have very minor effect. 

Moreover, for semi-dilute suspensions, the permeability of the particle weakens the effect of the hydro- 

dynamic interactions between particles on the relative viscosity ηr and makes ηr decrease. The above 

phenomena can be well understood through quantifying the disturbance of the porous particle to the 

flow. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Suspended or dispersed particles in a viscous liquid occur in

idespread natural and man-made settings, for example, blood,

roteins, paint, waste slurries. The viscosity of particle suspension

s important in controlling industrial flow processes accurately [1] .

 variety of theoretical, experimental and numerical studies have

een carried out to understand the relative viscosity ηr of suspen-

ion, which is the ratio between effective viscosity of the suspen-

ion and viscosity of the pure fluid. In 1906, Einstein analytically

tudied the relative viscosity of dilute particle suspensions, where

he hydrodynamic interactions between the particles are neglected.

n his theory, the relative viscosity is ηr = 1 + [ η] φ, where φ is

he solid volume fraction and intrinsic viscosity [ η] = 

5 
2 for hard

pheres [2] . Later, Batchelor [3] theoretically extended this rela-

ionship to second order: ηr = 1 + [ η] φ + βφ2 where β = 6 . 2 for

rownian suspensions in any flow and β = 7 . 6 for non-Brownian

uspensions in pure straining flow. For higher concentrated sus-

ensions in which particle crowding causes hydrodynamic inter-

ctions among particles, Krieger and Dougherty [4] proposed the

emi-empirical expression: ηr = (1 − φ
φm 

) −[ η] φm , where φm 

is the

aximum packing concentration of particle, at which there is no

uid to lubricate relative particle motion any more. Recently, based
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n the work [5] , Zhu et al. [6] proposed a simple parametric equa-

ion which describes the relative viscosity of a suspension as a

unction of suspended solid concentration, covering a wide range

rom very dilute to highly concentrated states. 

In addition to the effect of the volume fraction of particles, the

ffects of the confinement ratio and inertia on the relative viscos-

ty were also investigated. Davit and Peyla [7] found that the ef-

ective viscosity of suspensions in a shear flow between two walls

hanges abruptly with strong confinements. Fornari et al. [8] found

hat the suspension’s effective viscosity decreases if the width of

he channel is an integer multiple of particle diameter. Doyeux

t al. [9] studied the confinement effect on ηr of the sheared two-

imensional suspensions of non-Brownian disks in the presence of

alls. Lin et al. [10] studied the inertial effects on the suspension

f hard sphere and proposed a formula for the suspension viscosity

r = 1 + (2 . 5 + 1 . 34 Re 1 . 5 ) φ, where Re = 

γ D 2 

4 ν and γ , D , and ν are

hear rate, particle diameter, and kinematic viscosity, respectively.

urthermore, Lorenz et al. [11] studied the rheology of dense poly-

isperse frictional suspensions and Ye et al. [12] investigated the

ntrinsic viscosity of dilute non-spherical capsule suspension. 

The main focus of the above studies have been on the viscos-

ty of suspensions of impermeable particles. In reality, permeable

articles are frequently encountered and are important in vari-

us fields of science and technology [13] . The effects of the per-

eability on the flow patterns and the overall drag coefficient

ave been studied [14–17] . Moreover, Li et al. [18] investigated the

https://doi.org/10.1016/j.compfluid.2019.01.013
http://www.ScienceDirect.com
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Fig. 1. Schematic diagram for particles moving in a shear flow. 
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rotational behavior of porous circular particle in shear flow. Re-

cently, Xu et al. [19] studied the shear viscosity of porous particle

suspensions. They found that the intrinsic viscosity changes non-

linearly at low Da regime but linearly at high Da regime, where

Da = 

K 
D 2 

, K is the permeability of particles and the intrinsic viscos-

ity increases linearly with Re . However, the data in their result is

limited. Meanwhile, they did not consider the effect of the confine-

ment ratio and only the dilute suspensions were considered. Here

we propose a more accurate formula for [ η] as a function of Da for

the whole Da regime. Furthermore, the effects of confinement ra-

tio and inertia are investigated and the semi-dilute cases are also

considered. 

For the numerical studies on suspension of porous particles,

Darcy’s law and the Brinkman equation are commonly used in the

literature to describe the fluid flow within the permeable particle.

For example, using Darcy’s law, Burganos et al. [20] investigated

the creeping flow around and through a permeable sphere, which

is moving towards a solid planar wall. Using Brinkman equation,

Roy and Damiano [21] studied the motion of a porous sphere in a

stokes flow parallel to a planar confining boundary. However, using

Darcy’s law or the Brinkman equation is only valid for fluid flow

with sufficient low Re , such as creeping flow. Recently, adopting

the general volume-averaged conservation equations [22] , Wang

et al. [22] proposed a momentum equation to formulate the fluid

flows around and through a permeable particle, which is more

suitable for fluid flow with finite Re . 

In this paper, we numerically investigate the relative viscos-

ity of porous circular particle suspension in a two-dimensional

shear flow using the momentum equation proposed by Wang

et al. [22] . Here the Lattice Boltzmann method is used to solve

the improved equations [22] . The numerical method is introduced

in Section 2 and validated in Section 3 . Results and discussion

are presented in Section 4 . Finally conclusions are addressed in

Section 5 . 

2. Computational model 

2.1. Governing equations 

In this work we consider circular, neutrally buoyant, porous par-

ticles which undergoes translational and rotational motions in a

simple shear flow as illustrated in Fig. 1 . The fluid flow in a rect-

angular channel of Length L and width H is driven by two im-

permeable parallel plates moving in opposite direction with the

same speed U . The shear rate is defined as γ = 

2 U 
H . There are

three key dimensionless numbers: Da , the particle Reynolds num-

ber Re p = 

γ D 2 

ν and the confinement ratio B = 

H 
D . In our simulations,

for a dilute case there is only one particle in the computational do-
ain. For a semi-dilute case, there are multiple particles inside the

omputational domain. It is noted that in all simulations, periodic

oundaries are imposed in the x direction. 

The volume-averaged macroscopic equations in terms of in-

rinsic phase-average is used to solve the fluid flow around and

hrough the porous particle. The equations can be written as

22] , 

∂〈 u f 〉 f 
∂t 

+ 〈 u f 〉 f · ∇〈 u f 〉 f = − 1 

ρ f 

∇ 〈 p f 〉 f + ν∇ 

2 〈 u f 〉 f + F m 

, (1)

 · 〈 u f 〉 f = 0 , (2)

here ρ f is the fluid density and 〈 u f 〉 f and 〈 p f 〉 f are the intrin-

ic phase-average velocity and pressure of fluid phase, respectively
22] . F m 

is the total body force 

 m 

= −εν

K 
(〈 u f 〉 f − 〈 u s 〉 s ) − ε 2 F ε √ 

K 
(〈 u f 〉 f − 〈 u s 〉 s ) |〈 u f 〉 f − 〈 u s 〉 s | + G , 

(3)

here 〈 u s 〉 s is the intrinsic phase-average velocity of particle, and

is the porosity of particle. G is the external force. The permeabil-

ty K quantifies the ability of the porous particle to transmit fluids

nd geometric function F ε of the porous medium is a function of ε
23] 

 = 

ε 2 d 2 p 

150(1 − ε) 2 
, (4)

 ε = 

1 . 75 √ 

150 ε 3 
, (5)

here d p is the diameter of filling grains within the porous

edium. 

The flow in a moving porous medium is characterized by the

orosity ε, Re p and Da . In the limit of ε = 0 , K approaches to zero

nd the porous particle reduces to a solid impermeable particle,

hereas as ε approaches unity, the porous regime would be filled

y fluid. Therefore, the macroscopic equations can be used for the

hole domain with different values of ε in different regions. The

ranslational and rotational motions of the particle are governed by

ewtonian dynamics, 

 = M p 
d U p 

dt 
, (6)

 p = I p 
d ω p 

dt 
, (7)

here F and T p are the force and torque experienced by the parti-
le, respectively. M p is the particle mass, and I p is the moment of
nertia of particle. U p and ω p are translational and rotational ve-
ocities of particle, respectively. The momentum-exchange method
s adopted to calculate the force and torque exerted on the particle
y the fluid [24] . When the gap between two particles is small, the

ubrication force should be considered to avoid overlapping of par-
icles. Based on the treatment [25] , Kromkamp et al. [26] proposed
he lubrication force for the two-dimensional system, 

F i j = {
− ν̂ R i j ̂

 R i j ·U i j 

2 
[( 

a i + a j 
h 

) 
3 
2 (F 0 + 

h 
a i + a j F 1 ) − ( 

a i + a j 
h c 

) 
3 
2 (F 0 + 

h c 
a i + a j F 1 )] h < h c 

0 h > h c 

(8)

here F 0 is the numerical constant 3 π
√ 

2 
4 = 3 . 3322 and F 1 is the

rst order correction with a value of 231 π
√ 

2 
80 = 12 . 829 . The unit

ector ̂  R i j = 

R i j 

| R i j | , where R i j = x i − x j , x i and x j are positions of the
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Fig. 2. Dimensionless torque acting on a porous particle as a function of 1 / (2 
√ 

Da ) . (a) The particle is fixed in shear flow with shear rate γ ; (b) the particle has no 

translational motion but rotates with angular velocity γ
2 

in a quiescent fluid. 

Fig. 3. The lateral migration of a particle in a shear flow.In the figure t ∗ is the non- 

dimensional time defined by t∗ = 

TU 
H 

where T is the time step. 
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Fig. 4. Normalized rotational angular velocity ω p / γ of a circular cylinder freely sus- 

pended in simple shear flow as a function of Re p . Each square symbol denotes a 

case we simulated. 
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article i and j , respectively. The particle’s relative velocity is U i j =
 i − U j . The gap distance between the particle h = | R i j | − a i − a j ,

here a i and a j denote the radii of the particle i and j. h c is the

ut-off distance. 

.2. Lattice Boltzmann method 

The lattice Boltzmann method has become a particular useful

ool to simulate particulate suspensions [24,25] . In this work the

attice Boltzmann is adopted to solve Eq. (1) and the evolution

quation is 

f α( x + e αδt, t + δt) − f α( x , t) = − 1 

τ
[ f α( x , t) − f eq 

α ( x , t)] + δtF α, 

(9) 

here τ is the relaxation time, f α( x , t ) is the particle distribution

unction, f 
eq 
α ( x , t) is the equilibrium particle distribution function

nd F α is the force term. f 
eq 
α ( x , t) and F α are defined as 

f eq 
α ( x , t) = ρ f ω α[1 + 

e α · u 

c 2 
+ 

( e α · u ) 2 

2 c 4 
− u 

2 

2 c 2 
] , (10) 
s s s 
 α = ρ f ω α

(
1 − 1 

2 τ

)[
e α · F m 

c 2 s 

+ 

( e α · u )( e α · F m 

) 

c 4 s 

− u · F m 

c 2 s 

]
. (11) 

In our LBM simulations, the D2Q9 velocity model is adopted.

he discrete velocity e α is 

 α = 

⎧ ⎨ 

⎩ 

0 α = 0 

c(cos [ (α−1) π
4 

] , sin [ (α−1) π
4 

]) α = 1 , 2 , 3 , 4 √ 

2 c(cos [ (α−1) π
4 

] , sin [ (α−1) π
4 

]) α = 5 , 6 , 7 , 8 

(12) 

The weighting parameters ω α are defined as ω α = 

4 
9 for α = 0 ,

 α = 

1 
9 for α = 1 − 4 , and ω α = 

1 
36 for α = 5 − 8 . The lattice speed

 is given by c = 

δx 
δt 

, where δx is the lattice size, and δt is the time

tep. c s = 

c √ 

3 
is the lattice sound speed. The macroscopic proper-

ies are related to the distribution functions by 

f = 

8 ∑ 

α=0 

f α, ρ f u = 

∑ 

e α f α + 

δt 

2 

ρ f F m 

. (13)
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Fig. 5. Streamlines for a porous particle with different Da in shear flow, (a ) Da = 10 −5 , (b) Da = 10 −4 , (c) Da = 10 −2 , (d) Da = 10 −1 . 
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By introducing (3) to (13) , the macroscopic velocity is calculated as

[22,27] 

u = 

v 
d 0 + 

√ 

d 2 
0 

+ d 1 | v | 
+ u s , (14)

where u s = U p + ω p × ( x − x p ) is velocity at a lattice node x inside

the particle region and x p is the position of the particle center. v

is the temporal variable and is calculated by Guo and Zhao [27] 

v = 

1 

ρ f 

8 ∑ 

α=0 

e α f α + 

1 

2 

δt G − V p . (15)

The two parameters d 0 and d 1 are d 0 = 

1 
2 (1 + 

δtεν
2 K ) , d 1 = 

δtε 2 F ε 
2 
√ 

K 
.

The relative viscosity of the particle suspension in a shear flow is

calculated by 

ηr = 

ηsusp 

η f 

= 

σ

ρνγ
, (16)

where ηsusp is the apparent viscosity of the particle suspension,

which is calculated by ηsusp = 

σ
γ . ηf is the viscosity of the sol-

vent of the suspension which is calculated as η f = ρν . The aver-

age shear stress σ is obtained through averaging the shear stress

acting on the moving flat walls over time. The periodic boundary

0  
onditions are implemented in the flow direction, and the extrap-

lation method is used for the impermeable parallel plates [28] . It

s noted that in this method the boundary condition between the

orous particle region and free flow is satisfied automatically [22] .

. Validation 

To validate the numerical model, a test examining the torque

xerted on a porous circular particle with small Re p is performed.

wo situations are considered, (a) the particle is fixed in shear flow

ith shear rate γ , and (b) the particle has no translational motion

ut rotates with an angular velocity ω = 

γ
2 in a quiescent fluid.

ccording to the theoretical work of Masoud et al. [29] , the torque

cting on a porous circular particle in a simple two-dimensional

hear flow with the shear rate γ is 

 = −πμγ D 

2 

2 

I 2 

(
1 √ 

4 Da 

)
I 0 

(
1 √ 

4 Da 

) , (17)

here T is the magnitude of the torque, and I 2 and I 0 are modified

essel functions of the first kind. μ is the dynamic viscosity. In

he simulation, the particle Reynolds number is set to be Re p =
 . 01 . The density of the fluid and the particle are identical and Da
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Fig. 6. Relative viscosity ηr (a) as a function of the volume fraction φ for various Da , the black solid line is the results for solid impermeable particle, the dash line is the 

linear fit of the simulation results, and (b) as a function of Da for various φ. 

Fig. 7. The intrinsic viscosity [ η] as the function of Da . 
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Fig. 8. The dimensionless time-averaged axial velocity with Da = 10 −2 and Da = 

10 −5 . The solid line is the dimensionless velocity for pure fluid in shear flow. 
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n  

0  
aries from 10 −7 to 10 −2 . Confinement ratios B = 4 and B = 10 are

onsidered. 

Fig. 2 shows our results of normalized torque on the porous

article and those of the analytical solutions. We can see that the

imulation results of B = 10 agree well with the analytical results

nd the results of B = 4 have a very small deviation. The results

alidate our numerical method. It is also seen that the confine-

ent ratio, which is not considered in the analytical solution, has

n influence on the particle dynamics. 

Next, the benchmark problem of a neutrally buoyant two-

imensional porous particle moving in shear flow between two

lates is tested. The parameters used in the simulation are pre-

ented as follows: the plate width L = 20 0 0 , the height H = 80 ,

he relaxation time τ = 0 . 6 , the diameter of particle D = 20 , the

arcy number Da = 1 . 2 × 10 −8 . The two plates are moving with

 = 1 / 120 in opposite directions. Initially the particle is at rest and

laced at the position y 0 = 0 . 25 H above the bottom plate. The lat-

ral migration of the particle is shown in Fig. 3 . From the figure

t is seen that evolution of lateral position obtained from present

ethod agrees well with that of an impermeable particle in [30] . 

To further validate the method, the rotation of a porous circu-

ar cylinder freely suspended in simple shear flow is simulated.

n this simulation, the computational domain has width L = 600

nd height H = 100 . The diameter of particle is D = 50 . The corre-
ponding confinement ratio is B = 2 . The porous circular cylinder

e simulated has a very small Darcy number Da = 3 . 29 × 10 −9 ,

hich approximates its rigid impermeable counterpart. Normalized

otational angular velocity ω p / γ of the cylinder as a function of Re p 
s shown in Fig. 4 . It is seen that the present result is consistent

ith the results in [18,31,32] . Hence, the present method is able to

apture the inertial and confinement effects accurately. 

. Results and discussions 

We consider one porous particle freely moving in a shear flow

etween two bounding walls. Here the volume fraction of particle

 φ) is smaller than 0.012, and the effects of Da, B and Re p on ηr 

re considered. In the simulations, the relaxation time is τ = 0 . 8 .

arameter ranges Da ∈ (10 −6 , 0 . 3) , φ ∈ (0.0028, 0.011), B ∈ (2, 12)

nd Re p ∈ (0.01, 6) are considered. The flow field inside and around

he porous particle at Da = 10 −5 , 10 −4 , 10 −2 and 10 −1 is shown in

ig. 5 . It is seen that the penetration of the streamlines through the

orous particle is prominent at a higher Da , e.g., Da = 10 −1 , while

he penetration is very weak at a lower Da , e.g., Da = 10 −5 . 

First only effect of Da on the relative viscosity of porous particle

uspension is investigated. In these cases the effect of B ( B > 8) is

egligible because the channel is wide enough. Re p is fixed to be

.01. Fig. 6 shows ηr as a function of the volume fraction φ and Da .
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Fig. 9. The dimensionless flow rate as a function of Da. Q porous is normalized by Q tp , 

which is the flow rate in Eq. (19) without particle or that at infinite Da . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The intrinsic viscosity [ η] as a function of B .The dash-dotted lines are 

drawn to guide the eye. 
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For different Da, ηr increases linearly with the increase of φ, which

is similar with the dilute impermeable particle suspension. Linear

fits of our numerical data are presented in Fig. 6 ( a ). It is seen the

slope of the linear fit decreases with Da . As Da approaches to zero,

the particle becomes solid and impermeable. Hence, at a small Da ,

e.g., Da = 10 −5 , the linear fit for ηr is close to that of the Einstein

equation [2] , which is derived from the solid impermeable particle

suspension. 

For a large Da , Fig. 6 ( b ) shows that ηr decreases rapidly with

an increasing Da when Da > 10 −3 and ηr decreases more rapidly

for cases with higher φ. For a very large Da , e.g., Da = 10 −1 , per-

meability of the particle is high and the presence of the particle

has a minor effect on the shear flow, therefore the relative viscos-

ity approaches to unity. 

Fig. 7 shows the intrinsic viscosity [ η] as a function of Da . The

results in Fig. 7 are similar to the result in Xu et al. [19] However,

here a more accurate formula to fit the data points is proposed,

i.e., 

[ η] = 1 + 

2 

π
arctan (a 1 + a 2 log (Da )) , (18)

where the two parameters a 1 and a 2 are a 1 = −3 . 6 ± 0 . 23 , a 2 =
−1 . 8 ± 0 . 1 . 

From Fig. 7 , it is seen that when Da is close to zero, the intrin-

sic viscosity approaches 2 and when Da is infinite, the intrinsic vis-

cosity approaches zero. However, data fitting in Xu et al. [19] does

not have these features. Hence, here “more accurate” means that

our formula is more consistent with physics. It is not due to only

one formula or it covering the whole Da regime. From Fig. 7 we

can also see that [ η] decreases with an increasing Da , indicating

that the permeability of the particle reduces the effect of the par-

ticle on the fluid. Fig. 8 shows the normalized axial velocity pro-

file ( U ( x )/ U , where U is the velocity of the wall), which is averaged

over one period. The discrepancy between the velocity profile of

the suspension flow and that of the undisturbed fluid flow (with-

out particle) quantifies the disturbance of the particle to the fluid.

It is seen from Fig. 8 that the presence of porous particles with

larger Da has a minor disturbance on the fluid flow, which is con-

sistent with our intuition. 

Usually, flow rate is also used to the quantify the disturbance

to the flow. Suppose the center of the channel in the y -direction

is y = 0 , the flow rate passing the top-half of the particle due to

permeability of the particle is defined as 

Q porous = 

∫ D 
2 

u (x ) dy ≈ u a v e D 

2 

, (19)

0 
here u is the fluid velocity and u ave denotes the average fluid ve-

ocity along the top radius in the y direction of the particle [18] . It

s noted that in the shear flow, the equilibrium position of a neu-

rally buoyant particle is y = 0 . Q porous as a function of Da is shown

n Fig. 9 . For Da < 10 −3 , the flow rate increases very slowly with

he increase of Da , whereas for Da > 10 −3 , the flow rate increases

ramatically. A larger Q porous represents a smaller disturbance to

he flow. Hence, variation of Q porous also plausibly explains the re-

ults in Fig. 7 that [ η] changes slowly for small Da (Da < 10 −3 ) and

rops quickly for large Da (Da > 10 −3 ) . 

For dilute and semi-dilute impermeable particle suspensions,

he confinement ratio has a strong effect on ηr [7] . For a porous

article, the effect of B is investigated here. The intrinsic viscosity

 η] as a function of B is shown in Fig. 10 . For a small Da (Da ≤
0 −2 ) , the walls with strong confinements have non-negligible ef-

ect on the intrinsic viscosity. However, the influence of walls can

e neglected for a large Da (Da ≥ 10 −1 ) . For a wide enough channel

 B > 8), the walls have little influence on [ η] for any Da . Therefore,

 critical B ∗ can be defined to illustrate the importance of the ef-

ect of confinement ratios. For B > B ∗, [ η] remains almost constant

ith an increasing B , while for B < B ∗, [ η] increases rapidly with a

ecreasing B . From Fig. 10 , we identify that B ∗ = 8 for Da = 10 −5

nd B ∗ = 6 for Da = 10 −2 , which suggests that B ∗ decreases with

n increasing Da . 

To better understand the effect of the porous particle to the

ow field, we plot the dissipation density field and the disturbance

ow generated by the presence of the porous particle, which are

hown in Fig. 11 . The disturbance flow is obtained through the ac-

ual flow field subtracting the imposed shear flow. The dissipation

ensity is obtained by Doyeux et al. [9] 

= 

1 

2 

ρν | ∇ u + ∇ u 

T | 2 . (20)

It is seen that the disturbance flows for Da = 10 −5 and Da =
0 −2 are similar. A discrepancy is that the magnitude of the dis-

ipation for Da = 10 −2 is smaller than that of Da = 10 −5 . Hence,

he porous particle with a larger Da has smaller disturbance to the

hear flow. That contributes to the results in Fig. 7 , i.e., ηr decreas-

ng with Da . 

Next we consider the effect of particle Reynolds number on ηr .

irst the effect of walls is eliminated because B > 8 is chosen and

= 0 . 00589 is fixed. The relative viscosity ηr as a function of Re p 
nd Da is shown in Fig. 12 ( a ). It is seen that the effect of Re p can

e neglected for Re p < 0.1 and when Re p > 0.1, ηr increases with an
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Fig. 11. The disturbance flow for (a) Da = 10 −5 , (b) Da = 10 −2 . The dissipation density field for (c) Da = 10 −5 , (d) Da = 10 −2 . 

Fig. 12. The relative viscosity ηr (a) as a function of Re p and (b) as a function of Da . 

Fig. 13. (a) The relative viscosity as a function of φ, (b) intrinsic viscosity as a function of Da . 
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increasing Re p . Fig. 12 ( b ) shows that for different Re p , ηr decreases

with an increasing Da . 

When the contribution of hydrodynamic interactions between

particles are considered, the Einstein’s calculations is expanded to

second order [2,3] . Doyeux et al. [9] proposed the two-dimensional

form 

ηr = 1 + 2 φ + 3 . 6 φ2 . (21)

Here, we also consider porous particles with a semi-dilute volume

fraction ( φ < 0.15) in a simple shear flow, and the results are pre-

sented in Fig. 13 ( a ). A seconder order function ηr = 1 + [ η] φ + βφ2

is adopted to fit the simulation data, and the results are shown in

Fig. 13 ( b ). The intrinsic viscosity [ η] decreases with an increasing

Da , which is similar with the results of dilute suspension. More-

over, the value of β also decreases with Da . Because β value repre-

sents the effect of hydrodynamic interactions between particles on

ηr , the result illustrates that the permeability of the porous parti-

cles also weakens the effect of hydrodynamic interactions between

particles on ηr . 

5. Conclusion 

In this work, we have studied the effect of the Darcy num-

ber ( Da ), the confinement ratios ( B ) and the Reynolds number( Re p )

on the viscosity of the circular porous particle suspensions in a

simple shear flow between two impermeable walls. The numeri-

cal simulations are performed using the model proposed by Wang

et al. [22] and the lattice Boltzmann method is used to solve the

fluid flow. The relative viscosities of dilute porous particle sus-

pensions with parameter ranges 10 −6 ≤ Da ≤ 0 . 3 , 2 ≤ B ≤ 12 and

0.01 ≤ Re p ≤ 6 are investigated. 

It is found that the correlation between ηr and φ for different

Da is similar to that for a suspension of solid impermeable parti-

cles. It is identified that as Da increases, the particle disturbance

to the shear flow decreases, which lead to the decrease of ηr . In

addition, an accurate formula is proposed to describe the correla-

tion between intrinsic viscosity and Da . For the confinement effect,

the walls have significant effect on ηr when B is small. However,

the effect of B is diminished as Da is large. The inertial effect at

a large Re p has significant effect on ηr , while the inertial effect is

diminished as Da is large. For semi-dilute suspensions, it is found

that the permeability of the porous particles weakens the effect of

hydrodynamic interactions between particles on ηr . 

The results of this paper may be helpful for understanding the

effect of the permeability of particles in the suspension on its rel-

ative viscosity and may shed some light on the three-dimensional

cases. On the other hand, this study is a two-dimensional work.

Three-dimensional simulations will be performed to obtain more

accurate quantitative results in the near future. 
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