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a b s t r a c t 

The complete growth process of a single bubble in quiescent liquid is simulated using a three- 

dimensional hybrid thermal lattice Boltzmann model. The non-equilibrium extrapolation pressure bound- 

ary condition is extended to handle the thermal multiphase flow. Unfavorable spurious currents are usu- 

ally generated in the vicinity of curved interfaces when two-phase lattice Boltzmann methods are applied. 

Here a level-set scheme is incorporated into the simulations to accurately represent interfacial dynamics. 

The phase change is controlled by an equation of state automatically instead of any artificial phase change 

model. Hence the present simulation is more accurate and thermodynamically consistent. The tempera- 

ture, velocity fields during the bubble growth are consistent with relevant theories. The bubble growth 

rate obtained from the lattice Boltzmann simulations agree well with the analytical solutions. The result 

shows that the present scheme is able to simulate the relevant thermal bubble dynamics quantitatively. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Boiling heat transfer is a heat transfer mode during the phase

change of liquid to vapor. Because of its high heat transfer effi-

ciency and extensive industrial applications, a lot of studies have

been carried out to explore the mechanism of boiling heat transfer.

Bubble growth plays a key role in the boiling. Usually the growth

procedure can be divided into two stages: isothermal stage and

isobaric stage [1] . A large amount of experimental work [2,3] was

implemented to study the bubble growth, and some theoretical

formulas were also obtained through experiments [4–6] . However,

due to the limitations of experimental study, the mechanism and

heat transfer characteristics during bubble growth are not well un-

derstood. Over the past decade, with the rapid development of

computer technology and numerical methods, Computational Fluid

Dynamics (CFD) has become an effective tool for studying bubble

growth and boiling problem. 

Nucleate boiling has been investigated numerically using the

level-set method [7] and the volume of fluid (VOF) method [8] .

Two-dimensional (2D) simulation of nucleate boiling was also car-

ried out using the VOSET method [9] , which combines the advan-

tages of VOF and level-set methods. A mesh-free method is also

applied to study bubble departure from the heated surface [10] .

However, the methods mentioned above have to track or recon-
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truct the vapor-liquid interfaces. To track the interfaces, special

reatments are necessary [11] , in which artificial corrections may

ave to be incorporated. That may decrease the numerical accu-

acy. 

The lattice Boltzmann method (LBM) has been widely used in

imulating multiphase flows in recent years. It is based on meso-

copic kinetic equations. Comparing with conventional methods for

ultiphase flows, LBM does not track interfaces explicitly while

harp interfaces can be maintained. LBM has also been successfully

pplied to study wetting and spreading phenomena [12,13] , bubble

ollision and bubble rising phenomena [14–16] , etc. 

There are several popular multiphase lattice Boltzmann (LB)

odels in the literature. The first type is the color-gradient model

roposed by Gunstensen et al. [17] which is developed from the

othman–Keller lattice gas model [18] . The second type is the

han–Chen (SC) model [19] , which is a pseudopotential model. The

hird type is free-energy-based model [20] . The last one is pro-

osed by He et al. [21] which uses the idea of phase field. Among

hem the Shan–Chen pseudopotential lattice Boltzmann model has

ecome the most popular one. 

In the multiphase LBM, phase change model is also impor-

ant. For phase change models, there are two popular ones in the

BM literature. One is the two-phase LB model with an artifi-

ial evaporation model. The other is the thermodynamic consistent

wo-phase LBM with equation of state (EOS). The former one has

o explicit EOS and evaporation model comes from phenomenol-

gy study (Stefan problem) [22,23] . For example, in Ref. [22] , the

roplet evaporation was simulated using the two-phase LBM based

https://doi.org/10.1016/j.compfluid.2017.10.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2017.10.005&domain=pdf
mailto:huanghb@ustc.edu.cn
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Fig. 1. The schematic diagram for the bubble growth stage. (a) the isothermal growth and (b) the isobaric growth. p, T represent pressure and temperature, respectively. The 

subscripts ‘ l ’, ‘ v ’ denote liquid and vapor, respectively. �p and �T are an additional pressure and superheat, respectively. R is the bubble radius and r is a distance between 

a point in the liquid and the bubble center. The origin of coordinates (0,0,0) is located at the center of the computational domain. 
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n Ref. [24] . In the scheme, the gradient of the vapor concentration

t the liquid-vapor interface is included as the driving force for va-

orization. For the latter one, the temperature field is governed by

he energy equation and the temperature in the flow field is cou-

led with that in the equation of state. The energy equation can

e solved by a LB scheme [11] or the Runge–Kutta scheme [25] . 

The Shan–Chen model with different EOS has been further de-

eloped to simulate thermal two-phase flows [11,25–30] . Using

he thermal Shan–Chen LBM, quantitative analyses for the bubble

eparture from a horizontal plate in heterogeneous boiling were

arried out [11,26] . Gong and Cheng also applied the model to

tudy the bubble nucleation, growth, and departure in presence

f a heated wall [28,29] . Biferale et al. [27] applied the three-

imensional (3D) thermal Shan–Chen model for simulating the

onvection in multiphase flows. Li et al. [25] used the scheme to

tudy the film boiling process. Fang et al. [30] adopted a MRT

seudopotential thermal LBM to simulate the pool boiling. In the

bove LBM studies, bubble departure and rising are focused. How-

ver, the bubble growth process has not been studied systemati-

ally using the LBM. 

For the bubble growth in the superheated quiescent liquid, the

rst stage is isothermal growth stage [1] . In this stage, the bub-

le is very small and the pressure inside the bubble is larger than

hat outside. Bubble gradually increases due to the inertial force,

he viscous force, and the surface tension. During this process, the

emperature inside and outside the bubble are approximately iden-

ical, the effect of heat transfer can be neglected. The schematic

iagram for the isothermal growth is shown in Fig. 1 (a). As the

ubble grows, the internal pressure of the bubble decreases till it

eaches the pressure of the quiescent liquid. The temperature in-

ide the bubble also decreases and it becomes lower than that out-

ide. At this point, the bubble growth enters the second stage: the

sobaric stage. Its schematic diagram is shown in Fig. 1 (b). The heat

ransfer of the superheated liquid around the bubble plays a key

ole in this stage. 

For the droplet evaporation, some LBM studies have been

arried out [22,31,32] . For bubble growth, the LBM studies are

eldom. For example, the Shan–Chen multiphase flow model has

een used to study the isothermal growth stage for a bubble

33] , in which the temperature was constant and the heat trans-

er was not considered. In their study, the isobaric growth stage

as not investigated. Besides, in the work of Chen et al. [33] , the

ubble is 2D, which is very different from the 3D cases because the

sothermal bubble growth rates for 2D and 3D are different (see

[ e 0 , e 1 , e 2 , e 3 , e 4 , e 5 , e 6 , e 7 , e 8 , e 9 , e 10 , e 11 , e 12 , e 13

= c 

[ 

0 1 −1 0 0 0 0 1 −
0 0 0 1 −1 0 0 1 

0 0 0 0 0 1 −1 0 
(  
ppendix A derivation). Ryu and Ko [23] applied a free-energy-

ased LBM [34] to simulated the complete bubble growth pro-

ess. In the study, an artificial phase change model [35] is used

nd there is no EOS. Without the EOS, the simulation may be not

hermodynamically consistent. Moreover, the comparison between

heir LBM results and the analytical solutions is not so good. 

In this paper, the two bubble growth processes including

sothermal and isobaric stages, were studied completely using a

hree-dimensional hybrid thermal Shan–Chen LBM. In the method,

he energy equation is solved by the second-order Runge–Kutta

ethod. Because the EOS is used, the phase transition is automatic

nd thermodynamically consistent. An improved non-equilibrium

xtrapolation pressure boundary condition is developed for the su-

erheated boundary. A level-set scheme is incorporated into the

imulations to correct the spurious currents in the vicinity of the

urved interface. In the following Section 2 , the LBM is introduced

riefly. The pressure boundary condition for superheated liquid

nd correction of the spurious currents are also elucidated. The

BM is validated in Section 3 . The LBM results for bubble growth

t the isothermal and isobaric stage are discussed in Section 4 . 

. Numerical method 

.1. Shan–Chen single-component two-phase LBM 

Here we implement the SC LBM [19] in three dimensions for

 single-component two-phase system. In the model, one distribu-

ion function is introduced for the fluid. The distribution function

atisfies the following lattice Boltzmann equation: 

f a ( x + e a �t, t + �t ) = f a ( x , t ) − �t 

τ

(
f a ( x , t ) − f eq 

a ( x , t ) 
)
, (1) 

here f a ( x , t ) is the density distribution function in the a th ve-

ocity direction and τ is a relaxation time which is related to the

inematic viscosity as ν = c 2 s ( τ − 0 . 5�t ) , where c s is the lattice

ound speed. The equilibrium distribution function f 
eq 
a ( x , t ) can be

alculated as 

f eq 
a (x , t) = w a ρ

[
1 + 

e a · u 

eq 

c 2 s 

+ 

( e a · u 

eq ) 
2 

2 c 4 s 

− (u 

eq ) 2 

2 c 2 s 

]
. (2)

In Eqs. (1) and (2) , the e a ’s are the discrete velocities. For the

3Q19 model, they are given by 

 

, e 15 , e 16 , e 17 , e 18 ] 

1 −1 1 −1 1 −1 0 0 0 0 

−1 −1 0 0 0 0 1 −1 1 −1 

0 0 1 1 −1 −1 1 1 −1 −1 

] 

. 

In Eq. (2) , for the D3Q19 model, w a = 1/3 ( a = 0), w a = 1/18, ( a =
,...6), w a = 1/36, ( a = 7,...18), c s = 

c √ 

3 
, where c = 

�x 
�t 

is the ratio of

attice spacing �x and time step �t . Here, we define 1 lattice unit

 �x ) as 1 lu and 1 time step ( �t ) as 1 ts . ‘ mu ’ denotes the mass
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unit. In Eq. (2) , ρ is the density of the fluid, which can be obtained

from ρ = 

∑ 

a f a . 

In the SC LBM, the effect of body force is incorporated through

adding an acceleration into velocity field. The macroscopic velocity

u 

eq is given by 

u 

eq = u 

′ + 

τF 

ρ
, (3)

where u 

′ is the velocity defined as 

u 

′ = 

∑ 

a f a e a 

ρ
. (4)

In Eq. (3) , F = F int is the inter-particle force. The actual whole

fluid velocity u is defined as [12] : 

u = u 

′ + 

F 

2 ρ
, (5)

which means the “fluid velocity” should be calculated correctly by

averaging the momentum before and after the collision [12] . The

inter-particle force is defined as [36] , 

F int (x , t) = −Gψ(x , t) 
∑ 

a 

w a ψ(x + e a �t , t ) e a , (6)

where G is a parameter that controls the strength of the inter-

particle force and ψ is a effective number density [19] . Originally,

Shan and Chen [19] proposed that, 

ψ(ρ) = ρ0 [ 1 − exp ( −ρ/ ρ0 ) ] , (7)

where ρ0 is a constant. 

Through Taylor expanding as described in the Appendix A in

Ref. [37] and −∂ j p + ∂ i 
(
c 2 s ρ

)
= F i , here i, j means the x or y coor-

dinates, we obtained the pressure p as [37] : 

p = c 2 s ρ + 

c 2 s G 

2 

ψ 

2 . (8)

According to the Yuan and Schaefer [38] , if the EOS of p =
p ( ρ, T ) is already known, we can use the following formula 

ψ = 

√ 

2(p − c 2 s ρ) 

c 2 s G 

(9)

to incorporate different EOS into the SC LBM. Actually if Eq. (9) is

adopted, G is only an auxiliary parameter, which is required to en-

sure that the whole term inside the square root is positive [38] . 

Here we use the van der Waals EOS which is the most classic

EOS for non-ideal gas. It is given by 

p = 

ρRT 

1 − bρ
− aρ2 , (10)

where R is the ideal gas constant. The critical properties for the

EOS, such as p c , T c can be obtained by performing the first and

second derivatives of pressure with respect to density to be zero.

Then a and b can be presented as functions of p c and T c , i.e.,

a = 27(RT c ) 2 / 64 p c and b = RT c / 8 p c . Following Refs. [20,38] , the pa-

rameters are chosen as R = 1 , a = 9 / 49 , and b = 2 / 21 . 

2.2. Energy equation 

Two schemes are commonly used to solve the energy equation

in the thermal LBM: double-distribution-function (DDF) scheme

[26] and finite-difference scheme. Neglecting the viscous heat dis-

sipation, the energy equation can be written as [25] 

ρc v 
DT 

Dt 
= ∇ · (κ∇T ) − T 

(
∂ p 

∂T 

)
ρ

∇ · u , (11)

where κ is the thermal conductivity and c v is the specific heat at

constant volume. 
If another lattice Boltzmann evolution equation is used to solve

he energy equation [26] , the scheme may introduce a spurious

erm into the macroscopic energy equation [25] . So here the finite-

ifference scheme is directly used to solve Eq. (11) . To apply finite-

ifference scheme, Eq. (11) can be rewritten as 

 t T = −u · ∇T + 

1 

ρc v 
∇ · (κ∇T ) − T 

ρc v 

(
∂ p 

∂ T 

)
ρ

∇ · u ≡ M(T ) . 

(12)

o solve Eq. (12) , here the second-order Runge–Kutta method is

sed, 

 ( x , t + �t) = T ( x , t) + 

�t 

2 

(h 1 + h 2 ) , (13)

here h 1 and h 2 represent 

 1 = M [ T ( x , t) ] , h 2 = M 

[
T ( x , t) + 

�t 

2 

h 1 

]
. (14)

For the first derivative in Eq. (12) , the second-order central dis-

retization is adopted as follows 

∂φ

∂x i 
= 

∑ 

a � =0 

w a e a · i [ φ( x + e a �t) − φ( x − e a �t)] 

2 c 2 s �t 
, (15)

here φ denotes a physical variable, i is the unit vector pointing

long the i -coordinate axis. For the van der Waals EOS ( Eq. (10) ),
∂ p 
∂T 

)
ρ

= 

ρR 
1 −bρ

, it is a function of ρ . It can be calculated directly

rom ρ . The second order derivative terms can be calculated by

pplying the first order derivative in Eq. (15) twice. 

.3. Correction of the spurious currents 

Spurious currents are usually generated in the vicinity of curved

nterfaces when the Shan–Chen LBM is applied. Spurious velocities

re not preferred and it may confound the accurate representa-

ion of interfacial dynamics [39] . There are some techniques can be

dopted to eliminate the spurious currents, e.g., extending the spa-

ial range of the pseudopotential interaction [40] . Recently, a sim-

le level-set scheme is incorporated into the simulations to handle

he problem [39] . Using the scheme, the interface velocity can be

etermined accurately even when spurious currents are generated

39] . 

The level-set equation is [39] 

∂ρ

∂t 
+ ζ |∇ρ| = 0 , (16)

here ζ denotes the interfacial velocity magnitude in the direction

ormal to the interface. ζ can be calculated from rearranging the

evel-set equation, i.e., [39] 

= −∂ρ

∂t 
/ |∇ρ| . (17)

t is noted that the normal vector to the lower-density phase can

e computed as the gradient of the phase density field evaluated

n by n = 

∇ρ
|∇ρ| . 

In the vicinity of curved interfaces, the level-set scheme

39] modifies actual fluid velocity u in Eq. (6) instead of u 

eq ,

.e., the modified velocity is u = ζn . The time derivative ∂ρ
∂t 

at

ach node is calculated from the simple temporal difference ∂ρ
∂t 

=
ρt −ρt−�t 

�t 
. 

It is seen that actually in the above level-set scheme [39] , the

odified velocities are obtained through the change of interface

ocations at two continuous time steps. In the implementation,

he gradient of density ∇ρ at each node can be calculated. The

argest density gradient ( ∇ρ) max in the flow field can be obtained,
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hich should appear in the vicinity of the interface in our sim-

lations. Then, we only modify the velocities in the points with

 ρ < 

1 
2 (∇ ρ) max , which confined the modified velocities only in

he vicinity of the interface. The coefficient 1 
2 is obtained by trial

nd error in our simulations, which may be changed in other two-

hase flow problems. 

.4. Pressure boundary condition for superheated liquid 

For single phase flow, pressure boundary condition can be im-

lemented through the non-equilibrium extrapolation scheme [41] .

n the scheme, the distribution function on the boundary node is

upposed to be composed of the equilibrium and non-equilibrium

arts. The non-equilibrium part is extrapolated from that of the

earest interior fluid node and the equilibrium part is calculated

y Eq. (2) . When the equilibrium part is calculated, the density

nd velocity are required. If density is specified, the velocity should

lso be extrapolated from the nearest interior fluid node [41] . 

For single phase flow, in the LBM the pressure is a linear func-

ion of the density. The pressure boundary condition is imple-

ented through specifying the density in the boundary. However,

or two-phase flow, due to the van der Waals EOS, the pressure is a

unction of both temperature and density, which is different from

hat in the single phase flow. 

To simulate the bubble growth, constant pressure boundary

ondition with a superheat should be imposed in the following

ay. Suppose at beginning, the temperature of the liquid is T 0 , the

orresponding saturated vapor pressure and the liquid density are

 0 and ρ l 0 , respectively. The p 0 , T 0 and ρ l 0 should conform Eq. (10) .

hen the Dirichlet thermal boundary condition T = T 0 + �T with

 superheat of �T is specified at boundary nodes. On the other

and, to ensure the constant pressure p 0 at boundary, the density

n the boundary has to be reduced by �ρ when calculating the

quilibrium distribution function, i.e., the density on the boundary

s specified as ρl = ρl0 − �ρ . It is noted that p = p 0 , T = T 0 + �T ,

nd ρl = ρl0 − �ρ satisfies Eq. (10) , i.e., 

p 0 = 

(ρl0 − �ρ) R (T 0 + �T ) 

1 − b(ρl0 − �ρ) 
− a (ρl0 − �ρ) 2 , (18)

nd then �ρ can be obtained. In this way, at the boundary, pres-

ure is constant and superheat �T is also imposed. In the Shan–

hen model, when the equilibrium part is calculated, the density,

elocity, and inter-particle force are required (see Eqs. (2) and (3) ).

f density is specified, the velocity and inter-particle force should

lso be extrapolated from the nearest interior fluid node. 

. Coexistence curve of the EOS, surface tension, and latent 

eat 

In this section, coexistence curve obtained from the LBM simu-

ations was compared to the analytical one. The analytical coexis-

ence curve obtained from the Maxwell construction [42] is shown

n Fig. 2 (a). To check whether the equilibrium coexistence densities

f the liquid and the vapor are consistent with the analytical ones,

est cases of a droplet immersed in vapor in the absence of grav-

ty are simulated. In our simulations, the computational domain is

00 × 100 × 1 and periodic boundary conditions are applied on all

oundaries. A circular area in the center of the domain is initial-

zed as liquid area (higher density ρ li ) while the other region is

nitialized with vapor ( ρvi ) at lower density. ρ li and ρvi are chosen

o be close to the analytical liquid and vapor densities, respectively.

After the simulations reach the equilibrium state, we check the

quilibrium densities of the liquid and vapor. For each case at dif-

erent temperature, τ = 0 . 6 and τ = 1 . 0 were performed. The con-

ergence criterion can be set based on the radius of the droplet
r the spurious currents reaching a constant value, for example,

 u < 0.5% over 10 0 0 ts , where 

 u = 

√ ∑ 

x (| u (x , t) − u (x , t − 10 0 0�t) | 2 ) ∑ 

(| u (x , t) | 2 ) . (19) 

t is noted that there is no velocity corrrection in these simu-

ations. For a typical simulation with 

T 
T c 

= 0 . 85 and τ = 0 . 6 , ini-

ially the density inside a circular droplet with a radius of R i =
0 lu is set to be ρli = 6 . 3 mu/lu 3 and the other area is set to

v i = 1 . 3 mu/lu 3 . At the equilibrium state, the densities are ρv =
 . 179 mu/lu 3 , ρl = 6 . 331 mu/lu 3 . Radius of the droplet may change

 little bit but the whole mass is conserved. 

Through simulating many cases at different T , and measuring

he densities, we can recover the coexistence curve. Fig. 2 (a) shows

he LBM results for T /T c = 0 . 8 , 0.825, 0.85, ...compared with the

nalytical coexisting densities. It demonstrates that the LBM results

or τ = 0 . 6 and τ = 1 . 0 are all consistent with the analytical one

xcept small discrepancies for the density of vapor. 

The surface tension σ can be calculated numerically using the

aplace’s formula. For two-dimension cases, the Laplace’s law can

e expressed as �p = 

σ
R . In the above typical simulation, the

quilibrium pressures inside and outside of the bubble are p in =
 . 38986 mu/ (lu ts 2 ) and p out = 0 . 38259 mu/ (lu ts 2 ) , respectively

nd the pressure difference �p = p in − p out = 0 . 00727 mu/ (lu ts 2 ) .

he radius of the droplet is R = 29 . 22 lu . It is noted that the in-

erface is supposed to be located at ρs = 

(ρl + ρv ) 
2 . Hence the sur-

ace tension is σ = �pR = 0 . 212 mu/ts 2 . More accurate σ can be

btained through linear fit in �p − 1 
R plot where results of several

ases with different initial bubble sizes are presented [42] . From

ig. 2 (b), it is seen that the surface tensions at different T calcu-

ated from the LBM are consistent with the analytical solutions. 

The specific latent heat λ would be used extensively in the fol-

owing study. Fig. 3 shows the latent heat as a function of temper-

ture. λ can be calculated from the enthalpy of liquid and vapor,

.e., 

= h v − h l , (20) 

here v and l denote the vapor and liquid phases, respectively. For

an der Waals gas, the internal energy can be written as 

 = c v T − aρ. (21)

sing the definition of enthalpy h = u + pv , we have 

 = c v T − aρ + 

p 

ρ
. (22)

inally the latent heat for van der Waals EOS ( Eq. (10) ) can be cal-

ulated from 

= h v − h l = 

[ 
−aρ + 

p 

ρ

] 
v 
−

[ 
−aρ + 

p 

ρ

] 
l 

= −2 a (ρv − ρl ) + RT 

(
1 

1 − bρv 
− 1 

1 − bρl 

)
. (23) 

ubstituting the densities of the liquid and vapor at temperature T ,

e have the latent value at T . The result is shown in Fig. 3 . 

. Results and discussions 

.1. Isothermal growth stage 

Isothermal growth stage is the initial stage during bubble

rowth. At beginning, the bubble is small and the pressure inside

he bubble is very high. In this stage, the growth of the bubble is

ainly dominated by the inertial force. It is an inertia-controlled

tage, in which the effect of heat transfer can be neglected. 
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Fig. 2. (a) Coexistence curve of the van der Waals fluid. In the EOS (i.e., Eq. (10) ), a = 

9 
49 

, b = 

2 
21 

, and R = 1 . The corresponding critical density and temperature are ρc = 

7 
2 

and T c = 

4 
7 
, respectively. (b) the surface tension as a function of T 

T c 
. 

Fig. 3. Latent heat ( λ) as a function of temperature for van der Waals EOS 

( Eq. (10) ), with a = 

9 
49 

, b = 

2 
21 

, and R = 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Grid-independent study for bubble growth at the isothermal stage. The key 

parameters are �p = 0 . 05239 mu/ (lu ts 2 ) , T 0 = 0 . 875 T c . 
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The isothermal growth of a single bubble in an infinite qui-

escent liquid can be described by Rayleigh–Plesset equation [43] ,

i.e., 

p b (t) − p ∞ 

(t) 

ρl 

= 

(
1 

R 

− 1 

r ∞ 

)[ 

2 R 

(
dR 

dt 

)2 

+ R 

2 d 
2 R 

dt 2 

] 

− 1 

2 

(
dR 

dt 

)2 

+ 

4 νl 

R 

dR 

dt 
+ 

2 σ

ρl R 

, (24)

where p is pressure, ρ is density, ν is the kinematic viscosity, σ is

surface tension and R is the bubble radius. The subscripts b , ∞ , l

represent the bubble, infinity, and liquid, respectively. 

In our simulations, in order to keep the pressure constant, the

improved non-equilibrium extrapolation pressure boundary condi-

tion for superheated boundary mentioned in Section 2.4 is applied

on all directions. The temperature of the whole domain is set to

be T 0 , and it remains unchanged during the bubble growth. Sup-

pose when temperature is T 0 , at equilibrium state densities of va-

por and liquid are ρv and ρ l , respectively. The initial density inside

the bubble ρ in is set to be ρv , while that outside the bubble ρout 

is set to be slightly lower than ρ . That means the liquid is super-
l 
eated at temperature T 0 . The densities in the boundary nodes are

lso fixed to be ρB = ρout . Due to ρout < ρ l , the pressure outside

s lower than the saturated pressure at T 0 . In this way the initial

ressure difference across the interface is established. 

First, the grid-independent study was performed. Three cases

ith different com putational meshes were simulated. Suppose

hey all have dimensions of 240 lu × 240 lu × 240 lu and total simu-

ated time is T = 600 ts . For computational meshes 240 × 240 × 240,

80 × 180 × 180, and 120 × 120 × 120, the grid spacings are �x =
 lu, 1.5 lu , and 2 lu , respectively. The time step sizes are �t =
 ts, 1 . 5 ts, 2 ts, respectively. The initial bubble size is R i = 20 lu

nd the other parameters are identical. e.g., c = 1 lu/ts, c 2 s = 

1 
3 c 

2 ,

p = 0 . 05239 mu/ (lu ts 2 ) etc. It is seen from Fig. 4 that the sim-

lation result of 240 × 240 × 240 agrees well with the analytical

esult. The other simulation results have significant discrepancies

ith the analytical result but the result of 180 × 180 × 180 is closer

o the analytical one. 

In the follows, the computational domain size is

40 × 240 × 240. Fig. 5 shows radius of the bubble as a func-

ion of time for different pressure differences across the interface

 �p ) at T = 0 . 875 T c . The key parameters are listed in Table 1 . The
0 
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Fig. 5. Radius of the bubble as a function of time for different pressure differences 

across the interface �p at a constant temperature T 0 = 0 . 875 T c . 

Table 1 

The key parameters in the cases presented in Fig. 5 . The 

inside and outside pressures can be calculated from the 

EOS with ρ in and ρout , respectively. 

Case T 
T c 

τ ρ in ρout ( ρB ) �p 

1 0.875 1.0 1.420 6.040 0.04151 

2 0.875 1.0 1.420 6.020 0.05239 

3 0.875 1.0 1.420 5.980 0.07312 

Fig. 6. Radius of the bubble as a function of time at different temperature with 

�p = 0 . 05239 mu/ (lu ts 2 ) . 
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Table 2 

The key parameters in the cases presented in Fig. 6 . 

Case T 
T c 

τ ρ in ρout ( ρB ) �p 

A 0.875 1.0 1.420 6.020 0.05239 

B 0.850 1.0 1.290 6.295 0.05239 

C 0.825 1.0 1.150 6.534 0.05239 
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Fig. 7. Isobaric growth curves with different superheat at T 
T c 

= 0 . 875 . 
nitial bubble radius is R i = 19 . 5 lu . In the figure, the analytical so-

utions are also drawn for comparison. The analytical solutions are

btained through solving Eq. (24) by the fourth-order Runge–Kutta

ethod. Due to limitation of our computational domain, r ∞ 

in

he solution is chosen to be 120 lu , which is the half size of each

imension. It is seen from the figure that the LBM results agree

ell with the theoretical solutions. 

The isothermal growth stage at different tem peratures were

lso simulated. Fig. 6 shows the radius of the bubble as a function

f time at different temperatures with �p = 0 . 05239 mu/ (lu ts 2 ) .

he key parameters are listed in Table 2 . From the figure it is seen

hat the LBM results also agree well with the theoretical solutions.

n addition, we can see that when �p is fixed, the bubble growth
ate can be enhanced by the temperature of the liquid. The higher

he temperature is, the faster the bubble grows. 

.2. Isobaric growth stage 

After the short isothermal growth stage ends, the bubble’s vol-

me increases to a certain extent. Both the pressure and tem-

erature inside the bubble decrease. The inertial effect is dimin-

shed. Then the bubble growth enters the second stage, i.e., isobaric

rowth stage. In this stage, the bubble growth mainly depends on

he heat transfer of the superheated liquid. So this stage is also

alled the heat-controlled stage. 

Based on the D 

2 law of droplet evaporation [44] , the three-

imensional spherical bubble growth at the isobaric stage in in-

nite quiescent liquid can be described by 

 

2 
(

1 − 2 R 

3 r ∞ 

)
= R 

2 
i 

(
1 − 2 R i 

3 r ∞ 

)
+ 

2 ρs αs 

ρv 
ln (1 + B ) t, (25)

here R is the bubble radius, R i is the initial bubble radius, αs is

he thermal diffusivity at the interface. The subscript s denotes the

ubble interface. The coefficient B = c p (T ∞ 

− T v ) /λ, where c p is the

pecific heat at constant pressure. 

In the LBM simulation, the computational domain size is

92 × 192 × 192 and the origin of coordinates (0,0,0) is located at

he center of the computational domain. It is reasonable to set

 ∞ 

= 96 lu . Before the temperature boundary condition is imposed,

he bubble and liquid densities are allowed to reach an equilibrium

tate at the temperature of the saturated liquid, i.e., T 0 . Then the

irichlet boundary condition with T 1 = T 0 + �T is set on all direc-

ions. The velocity and inter-particle force at boundary nodes are

xtrapolated from the neighbouring fluid nodes. It is noted that

or an edge point, e.g., ( x 1 , y 1 , z 1 ), where x 1 = 96 lu, y 1 = 96 lu,

nd z 1 � = 1 lu , 192 lu , the velocity and inter-particle force are ex-

rapolated from point ( x 2 , y 2 , z 1 ), where x 2 = 95 lu, y 2 = 95 lu .

or a corner point, e.g., (96,96,96), its velocity and inter-particle

orce are extrapolated from the point (95,95,95). For pressure, the

on-equilibrium extrapolation boundary condition [41] described

n Section 2.4 is applied to ensure the pressure is equal the satu-

ation pressure at the corresponding temperature T 0 . If not speci-
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Fig. 8. (a) Velocity field for the case �T /T c = 0 . 005 at t = 1800 ts . The vectors in planes x = 0 , y = 0 , and z = 0 represent the velocity directions at the points (vector length is 

uniform). The contours for the velocity squared are shown in the planes. The central blue sphere represents the bubble. (b) The temperature field for the case �T /T c = 0 . 005 

at t = 1800 ts . Isosurfaces with T /T c = 0 . 876 , 0.8775, 0.8785 are presented. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 9. A zoom-in view of the velocity vectors in the vicinity of the bubble in the z = 0 plane with the contours for u 2 at t = 1800 ts . (a) Corrected velocity field, (b) original 

flow field with spurious currents. 
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fied, in our LBM simulations, the level-set scheme is incorporated

to correct the spurious currents in the vicinity of the interface. 

Fig. 7 shows the radius squared of the bubble as a func-

tion of time when the boundary superheat �T is fixed to be

�T = 0 . 005 T c and 0.01 T c , respectively. The initial bubble radii are

R i = 34 . 5 lu and R i = 39 . 5 lu, respectively for the above two su-

perheats. The key parameters in the simulations are T = 0 . 875 T c ,

c p = 30 , αs = 0 . 5 and τ = 1 . 0 . The initial densities of vapor and

liquid are set to be the equilibrium densities at T 0 , e.g., ρin =
 . 42 mu/lu 3 and ρout = 6 . 094 mu/lu 3 for T 0 = 0 . 875 T c . The liquid

ensity at boundary is ρB = 6 . 0230 mu/lu 3 for �T = 0 . 005 T c and

B = 5 . 9476 mu/lu 3 for �T = 0 . 01 T c . It is seen from Fig. 7 , the

BM results are consistent with the analytical solutions given by

q. (25) . It is found that increasing the superheat at the bound-

ries can significantly accelerate the bubble growth. The LBM re-

ult for �T = 0 . 005 T c without velocity correction is also presented

n Fig. 7 for comparison. We can see the result of the simulation

ithout velocity correction has significant discrepancy with the
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Fig. 10. The temperature contours on slice z = 0 at (a) t = 1800 ts and (b) t = 5800 ts . 

Fig. 11. The macro variables (a) density, (b) temperature and (c) pressure as functions of the distance from the origin of coordinates (0,0,0) on the z = 0 plane. 
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Fig. 12. Vapor mass ( m v ), liquid mass inside the computational domain ( m l ), liquid 

mass left the domain ( m out ), and total mass ( m total ) as functions of time. 
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analytical solution. Hence, the velocity correction improves simu-

lation accuracy for the bubble growth. 

Fig. 8 (a) shows the velocity field for the case �T /T c = 0 . 005 at

 = 1800 ts . It is seen that during the bubble growth, the bubble

squeezes the surrounding liquid, which pushes the liquid to flow

outwardly. Due to the correction of spurious currents, the isosur-

faces for the velocity squared are close to spherical. The velocity

vector at any point on the sphere is perpendicular to the local sur-

face. Fig. 9 (a) shows the velocity field with velocity correction in

the vicinity of the interface in the z = 0 plane. The contours for the

velocity squared in the vicinity of the bubble are also close to cir-

cular. However, if the spurious currents are presented, the contours

for u 

2 in the vicinity of the bubble is not circular (see Fig. 9 (b)).

From the comparison between Fig. 9 (a) and (b), it is seen that the

velocity correction does improve the representation of interfacial

dynamics. On the other hand, it is also seen from Fig. 8 (a), the iso-

surfaces for u 

2 close to the boundary of the finite computational

domain may be not so spherical due to the effect of boundary. 

Fig. 8 (b) shows the temperature field at t = 1800 ts with �T =
0 . 005 T c . It is seen that the isosurfaces for the temperature are also

spherical. The temperature contours on slice z = 0 at (a) t = 1800 ts

and (b) t = 5800 ts are shown in Fig. 10 . It is seen that as time

evolves the temperature of the vapor inside the bubble decreases

a little bit. 

Fig. 11 (a), (b), and (c) show the density, temperature and pres-

sure distribution at different time during bubble growth with

�T = 0 . 005 T c . It is seen that the vapor-liquid interface moves as

time evolves, i.e., bubble grows. 

From Fig. 11 (c), it is seen that during this growth stage, the

pressures inside and outside of the bubble are almost identical be-

cause the pressure due to surface tension is negligible. The bub-

ble growth is attributed to the heat transfer from the liquid to

the vapor-liquid interface, which make the liquid film evaporate.

It is seen that at a specific time, the temperature inside the bub-

ble remains constant, e.g., the temperature inside the bubble is
T 
T c 

≈ 0 . 874 at t = 1800 ts . As the bubble grows, the temperature in

the bubble may slightly decrease, as shown in Figs. 10 or 11 (b).

The decrease may be due to the heat absorbtion when liquid film

evaporates. When the liquid film close to the interface evaporates,

it absorbs not only the heat from the liquid but also that in-

side the bubble. It is noted that the temperature distribution from

the interface to the boundary (e.g., approximately x 
r ∈ (0 . 4 , 1) at

 = 1800 ts ) represents the heat transfer outside the bubble (inside

the liquid region) instead of that in the thermal boundary layer at

the interface. 

In the follows, the mass conservation issue during the simula-

tion at the isobaric growth stage is also investigated. Due to evap-

oration, a very small portion of liquid changes into vapor, and

therefore the mass of vapor increases. The mass of liquid in the

fixed computational domain decreases mainly because the growth

of bubble pushes the liquid away from the domain. Total mass

( m total ) in our study consists of vapor mass ( m v ), liquid mass inside

the computational domain ( m l ), and liquid left the domain ( m out ).

They are functions of time, and can be calculated through 

m v (t) = 

∑ 

x ∈ �v 

ρ(x )�V, (26)

m l (t) = 

∑ 

x ∈ �l 

ρ(x )�V, (27)

m out (t) = 

∑ 

t 

∑ 

x ∈ �
ρ(x )(u (x ) · n 

′ )�t�S, (28)

m (t) = m v + m + m out , (29)
total l 
here �t = 1 ts, �V = �x �y �z, �x = �y = �z = 1 lu . �v and �l

enote regions occupied by the vapor and liquid, respectively. In

he regions, we have ρ( x ) < ρs and ρ( x ) ≥ρs , respectively. Here

represents the outside boundary of the whole computational

omain � = �v ∪ �l . The interface is supposed to be located at

s = 

1 
2 (ρl + ρv ) . n 

′ is the unit vector normal to the boundary �

nd ( u · n 

′ ) denotes the flow velocity normal to the boundary. �S =
x �y, or �y �z , or �z �x . It represents a finite surface normal to

he local vector n 

′ . It is seen from Fig. 12 that at any time, the solid

ine is horizontal and the total mass m total is a constant. Hence, in

he simulation, the mass conservation is well satisfied. 

. Conclusion 

The two growth stages for a single bubble, i.e., the isother-

al and isobaric stages in a finite domain of quiescent liquid are

tudied using a hybrid thermal lattice Boltzmann model. An im-

roved non-equilibrium extrapolation pressure boundary condition

s adopted for the superheated boundary. Unfavorable spurious cur-

ents in the vicinity of the interface are successfully corrected by

 level-set scheme. The bubble growth rate obtained from the LB

imulations are consistent with the analytical solutions. It shows

hat the present scheme is able to simulate relevant thermal bub-

le dynamics quantitatively. 
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ppendix A. Derivation of Rayleigh–Plesset equation 

The derivation of Rayleigh–Plesset equation, i.e. Eq. (24) is given

y Brennen [43] . In the liquid, the conservation of mass requires

hat 

 (r, t) = 

F (t) 

r 2 
, (A.1)

here F ( t ) is related to the bubble radius R ( t ) by a kinematic

oundary condition at the bubble surface and u ( r, t ) is the radial

elocity in a spherical coordinate system. we also have u (R, t) =
 R/d t, therefore 

 (t) = R 

2 dR 

dt 
. (A.2)

https://doi.org/10.13039/501100001809
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ssuming a Newtonian liquid and abandoning the viscous terms,

he Navier–Stokes equation for motion in the r direction, 

1 

ρl 

∂ p 

∂r 
= 

∂u 

∂t 
+ u 

∂u 

∂r 
. (A.3) 

ubstituting the Eq. (A.1) into Eq. (A.3) , we obtain 

1 

ρl 

∂ p 

∂r 
= 

1 

r 2 
dF 

dt 
− 2 F 2 

r 5 
. (A.4) 

ntegrating Eq. (A.4) from R to r ∞ 

, we have 

p − p ∞ 

ρl 

= 

(
1 

R 

− 1 

r ∞ 

)
dF 

dt 
− 1 

2 

F 2 

R 

4 
. (A.5) 

 pressure boundary condition at the bubble surface is written as

p b − ( p ) r= R −
4 μl 

R 

dR 

dt 
− 2 σ

R 

= 0 , (A.6) 

here μl is the dynamic viscosity of liquid and the subscript b

enotes the bubble. Substituting Eqs. (A.2) and (A.6) into (A.5) , we

ave the Rayleigh–Plesset equation 

p b (t) − p ∞ 

(t) 

ρl 

= 

(
1 

R 

− 1 

r ∞ 

)[ 

2 R 

(
dR 

dt 

)2 

+ R 

2 d 
2 R 

dt 2 

] 

− 1 

2 

(
dR 

dt 

)2 

+ 

4 νl 

R 

dR 

dt 
+ 

2 σ

ρl R 

. (A.7) 

For the bubble growth at the isothermal stage (an inertia-

ontrolled stage), the nondimensional pressure difference �p ∗ =
p b −p ∞ 

ρl 

(
�x 
�t 

)2 controls the bubble growth. 

ppendix B. Derivation of equation of bubble isobaric growth 

n superheat liquid 

The single-component equation of heat transfer in a spherical

oordinate is given by 

 

2 ρc p u 

dT 

dr 
= 

d 

dr 

(
r 2 κ

dT 

dr 

)
. (B.1)

rom the integrated continuity equation, we get 

 

2 ρu = r 2 s ρs u s , (B.2)

here subscript s denotes the bubble interface. Therefore, the

q. (B.1) can be rewritten as 

 

2 
s ρs u s c p 

dT 

dr 
= 

d 

dr 

(
r 2 κ

dT 

dr 

)
. (B.3)

he boundary condition of energy balance at the bubble interface

s given by (
dT 

dr 

)
s 

= ρs u s λ. (B.4) 

sing Eq. (B.4) , we integrate Eq. (B.3) , and have 

 

2 
s ρs u s c p 

(
T − T s + 

λ

c p 

)
= r 2 κ

dT 

dr 
. (B.5)

fter separating the variables and integrating Eq. (B.5) with the

oundary condition that T → T ∞ 

as r → ∞ , we have 

r 2 s ρs u s c p 

κ

(
1 

r 
− 1 

r ∞ 

)
= ln 

(
T ∞ 

− T s + λ/c p 

T − T s + λ/c p 

)
. (B.6) 

onsidering r = r s at the surface, we have 

 

2 
s u s 

(
1 

r s 
− 1 

r ∞ 

)
= αs ln 

[
1 + 

c p (T ∞ 

− T s ) 

λ

]
≡ αs ln [1 + B ] , (B.7)
here αs = 

κ
ρs c p 

and B = 

c p (T ∞ 

−T s ) 

λ
. The mass continuity at the bub-

le surface is given by 

v 
dr s 

dt 
= ρs u s . (B.8) 

sing Eq. (B.8) , we have 

 

2 
s 

(
1 

r s 
− 1 

r ∞ 

)
dr s 

dt 
= 

ρs αs 

ρv 
ln (1 + B ) . (B.9)

inally, separating the variables and integrating Eq. (B.9) for with

n initial bubble radius R 0 , we get the equation of bubble isobaric

rowth in superheat liquid, which is written as 

 

2 
(

1 − 2 R 

3 r ∞ 

)
= R 

2 
i 

(
1 − 2 R i 

3 r ∞ 

)
+ 

2 ρs αs 

ρv 
ln ( 1 + B ) t. (B.10)

For the bubble growth at the isobaric stage, the Jakob number

a = 

ρl c p (T ∞ 

−T s ) 

ρg λ
controls the growth. 
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